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A B S T R A C T

Several scenarios that use the Internet of Drones (IoD) networks require a Fog paradigm,
where the Fog devices, provide time-sensitive functionality such as task allocation, scheduling,
and resource optimization. The problem of efficient task allocation/scheduling is critical for
optimizing Fog-enabled Internet of Drones performance. In recent years, many articles have
employed meta-heuristic approaches for task scheduling/allocation in Fog-enabled IoT-based
scenarios, focusing on network usage and delay, but neglecting execution time. While promising
in the academic area, metaheuristic have many limitations in real-time environments due to
their high execution time, resource-intensive nature, increased time complexity, and inherent
uncertainty in achieving optimal solutions, as supported by empirical studies, case studies,
and benchmarking data. We propose a task allocation method named F-DTA that is used as
the fitness function of two metaheuristic approaches: Particle Swarm Optimization (PSO) and
The Krill Herd Algorithm (KHA). We compare our proposed method by simulation using the
iFogSim2 simulator, keeping all the settings the same for a fair evaluation and only focus on
the execution time. The results confirm its superior performance in execution time, compared
to the metaheuristics.

. Introduction

The proliferation of connected things (e.g., vehicles, drones, and wireless sensors) linked in a collaborative network has resulted
n the evolution of Internet of Things (IoT). In such environments, intelligent things integrate with their surroundings, sharing data
cross media to interact with each other [1]. As a result, scientific knowledge managers, administrations, and investigators are
orking hard to invent approaches allowing widespread IoT deployment to sustain various case studies in multiple scenarios [2].
rones have become widely used in various applications, including surveillance, object tracking, disaster investigation, and
nvironmental monitoring. The Internet of Drones (IoD) refers to the integration of drones into IoT networks in which drones
ct as IoT devices [3].

IoD-Fog networks, in which we deploy Fog devices close to drones, make IoD application implementation more suitable for
ime-sensitive tasks. Fog devices are connected to Fog gateways to store servers at the network’s edge and execute time-sensitive
rones’ requests to reduce execution time. Drones are part of IoD-Fog networks in an operation involving numerous computationally
hallenging duties. For example, a drone gathers data, renders tasks and allocates their processing to Fog devices for execution at
orresponding Fog regions. The processed outcomes are then returned to the drones and delivered to the intended end users [4].
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Efficient task allocation is an inseparable part of the IoD-Fog network. While metaheuristic algorithms have played a key role
n computational problem-solving, their productivity in IoD-Fog time-sensitive applications is questionable due to high execution
ime [5,6]. These algorithms may not be practical in real environments because they are computationally expensive and require
any resources. It can lead to poor performance in terms of execution or processing time, which is a critical metric in real-time

oD-Fog applications. As the number of tasks and resources increases, the optimization problem becomes more complex, and the
lgorithms may not find optimal solutions within a reasonable time.

.1. Motivation

The primary motivation of this research article is to discuss challenges and considerations that limit the practicality of
etaheuristic algorithms for Fog-enabled IoT applications like IoD-Fog task allocation. In the context of IoD, a proper task allocation

lgorithm should minimize execution time. While existing research has explored the use of metaheuristic algorithms, there is a
eed to reevaluate their practicality in execution time. Using such algorithms is practical in some environments with sufficient
omputational resources to run the algorithms. In IoT-Fog networks, we may implement these algorithms in Fog gateways with
ood computational capacities; however, metaheuristic algorithms do not guarantee an optimal answer, and their results may be
emi-optimal. In other words, while metaheuristic algorithms have been used for IoT-Fog task allocation in some research studies,
hey may not be suitable for real-world applications owing to the time complexity (High execution time), uncertainty of real
nvironments, and computational cost.

Metaheuristic algorithms are not inherently designed for time-sensitive applications with strict time constraints. They may
equire a considerable amount of time to converge to solutions, which is not suitable for applications that demand immediate
esponses [6–8]. Accordingly, they often have high execution times, which can be challenging in time-sensitive applications where
uick decision-making is crucial. Here, we introduce the F-DTA method and compare it with metaheuristic algorithms such as PSO
nd KHA. We aim to illustrate why metaheuristic approaches are unsuitable for time-sensitive IoD-Fog applications; instead, a light
ethod with low execution time is more practical.

.2. Contribution

We devise a fuzzy-based method (F-DTA) that simultaneously uses the characteristics of resources and the drone’s tasks. Then, we
ut it in the fitness function of two well-known metaheuristic approaches (PSO and KHA) to illustrate that they are impractical in the
ime-sensitive real environments for Fog-enabled IoD applications regarding execution time. These contributions can be summarized
s follows:

• proposing a lightweight function and employing it in the two metaheuristic approaches’ fitness functions, PSO and KHA;
• Comparing PSO and KHA algorithms in respect to their execution times and illustrating why these approaches are impractical

for Fog-enabled IoD networks.
• Discussing some challenges in devising, evaluating and implementing metaheuristic approaches in IoD-Fog networks.

This study illustrates the practicality of lightweight methods such as F-DTA in addressing the multifaceted challenges of task
llocation in Fog-enabled IoD networks. As a result, we hope that this paper serves as a valuable resource for researchers seeking
o advance the practical approaches in IoT-Fog networks. The rest of the article is organized as follows: Section 2 studied related
iterature on Fog-enabled IoT and IoD task allocation employing metaheuristic methods. Section 3 presents an overview of the
eference architecture, problem statement, and the F-DTA, PSO, and KHA task allocation approaches. Section 4 examines how the
etaheuristic approaches evaluated. Section 5 discusses the challenges related to our work that may pave the way for future research
irections. Finally, Section 6 concludes our study.

. Related works

This section examines the state-of-the-art articles about task allocation in IoT and IoD. As drones act as IoT devices, we explain
elevant articles about task allocation in IoT, IoD and UAV.

In our former works, we employed metaheuristic approaches, PSO, MOPSO, and NSGA-III algorithms, for FPFTS [9], FUPE [10],
nd S-FoS [11] projects for resource management in IoT-Fog networks. In FPFTS, we employed a single objective optimization
or resource efficiency, while we used a multi-objective optimization to balance security [12] and resource efficiency in FUPE.
inally, we used NSGA-III for performance optimization in a secure resource management system. Zhang et al. [13] developed
multi-UAV task assignment technique based on a clone selection algorithm in UAV clustering. The authors contended that
etaheuristic methods, instead of thoroughly exploring every potential option, can swiftly identify nearly optimal solutions for

ntricate optimization issues, including multi-UAV job distribution. The problem of optimal task scheduling as also been studied
n [14,15].

A PSO-based algorithm was put forth by Min Deng et al. [16] to address the task assignment issue in dynamic scenarios, including
AVs and digital twins. To increase the effectiveness and diversity of solutions, it integrates metaheuristic initialization, adaptive
2

utation, and subgroup techniques. Shufang Xu et al. [17] proposed a task allocation algorithm based on the Multi-Discrete Wolf
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Pack Algorithm (MDWPA) for UAVs. As the authors used MDWPA, their approach can quickly find near-optimal solutions for multi-
UAV task allocation in the simulation. Jie Zhu et al. [18] employed NSGA algorithm for the task scheduling in a UAV-enabled
Mobile Edge-Computing. They also employed a simulated annealing local search in the crossover operation.

The authors in the article [19] proposed a metaheuristic strategy for IoT-Fog–Cloud networks based on Modified Harris Hawks
ptimization (MHHO). This paper aims to improve resource usage in the Fog and Cloud layers while lowering makespan time

for Cloud computing), job execution costs, and power consumption. In multi-UAV-enabled mobile edge computing, Yong Wang
t al.’s focus [20] was on optimizing joint deployment and work scheduling for large-scale mobile users. The authors suggest a joint
eployment and job scheduling optimization greedy method to reduce mobile users’ latency. Schwarzrock et al. [21] developed a
warm intelligence solution from a generalized assignment problem algorithm to task allocation for multiple UAVs in a decentralized
ay. Their method scales well under conditions of high task density, making it appropriate for large-scale networks.

.1. The comparison and the positioning of our work

In our former works, FPFTS, FUPE, and S-FoS [9–11], we used the simulators (iFogSim, Matlab, and IoTSim-Osmosis), which
llowed us to explore and develop our approaches. While, these works are good regarding delay and network usage, they did not
resent any solutions for execution time.

The optimal solution depends on the algorithm’s parameters and the problem’s features; the metaheuristic approach article [13]
tilized did not guarantee the discovery of the optimal solution. Evaluating the algorithm’s performance in the article [16] is
ltimately challenging because it needs to provide a thorough comparison with other cutting-edge algorithms regarding performance
easures. Article [17] employed the MDWPA algorithm. In this work, various variables, like the problem’s size, the constraints’
ifficulty, and the quantity of UAVs assigned to the tasks, affect how long MDWPA takes to execute. Consequently, the MDWPA’s
xecution time may hinder its widespread use in real-world settings. Article [18] incorporated a Simulated Annealing algorithm
ithin the NSGA for task scheduling in a UAV-enabled MEC (Multi-access Edge Computing) system. The authors evaluated their
pproach in Java without considering the network layers and IoT features. Accordingly, the metrics do not include the characteristics
f computer networks. Moreover, While this approach may offer advantages in optimizing solutions, utilizing a Simulated Annealing
lgorithm can lead to extended execution times.

Article [19] presented a hybrid heuristic method and conducted comparisons with other heuristic approaches regarding execution
ost and energy consumption. As stated in detail in article [20], metaheuristic techniques have the potential to outperform their
reedy algorithm in solving task scheduling problems. But compared to their greedy algorithm, the metaheuristic approach has
much higher computational time complexity. This is because a metaheuristic method uses an iterative process to find the best

olution. According to article [21], heuristic techniques often result in tasks not being completed, even when UAVs are equipped
ith sufficient resources to carry them out.

Even though the articles [20,21] mentioned the disadvantages of metaheuristic methods in task allocation in IoT, we aim to study
he execution time of these approaches in IoD-Fog networks and illustrate why they cannot be practical in time-sensitive real-time
oD applications. The primary drawback of the mentioned articles is that they did not emphasize the importance of execution time,
hich is vital in determining the practicality of any approach, particularly in time-sensitive applications. Metaheuristic algorithms,
s noted in the literature [6–8], often need extended convergence times, making them less suitable for real-time, time-sensitive
asks.

F-DTA, in contrast, places a strong emphasis on minimizing execution time to consider the productivity of the proposed
pproach. We have designed our approach to meet the requirements of time-sensitive applications through extensive optimization
nd efficiency enhancements. As a result, it demonstrates a marked advantage over metaheuristic methods in this critical aspect.
y reducing execution time, we address a fundamental issue that can impact our approach’s feasibility in real-world settings.

. Task allocation approaches

This section explains the proposed function and the metaheuristic algorithms that employs it in their fitness functions. To that
nd, we describe the IoD-Fog architecture. Following that, we state the problem the presented approaches addressed, and finally,
e explain the fuzzy function and metaheuristic approaches.

.1. Fog-enabled IoD architecture

This section explains the reference architecture, which uses a Fog-enabled Internet of Drones to execute tasks via a broker
pproach. To meet drone requirements for IoD-Fog networks, we use a three-layers architecture as the typical architecture in IoT-
og networks [9,12,22,23]. In the flying plane (i.e., device layer), a drone (IoT device in IoT) launches to finish an expedition over
ome device layer Fog regions. The Fog layer comprises a collection of Fog devices at the network’s edge. The drones hover above
he Fog regions, gather information (e.g., recording voice for audio translation service), and generate several tasks. It then sends
hem to the Fog gateways to assign them to the Fog devices to use their computing resources. When the drone moves to another
og region, it repeats the same behaviour as before.

In the reference architecture, in case of overloading in a Fog device, it may offload tasks to the Fog devices inside the Fog region
r the distant Cloud data centre [24]. We assume infinite computing resources are contained in data centres at the Cloud layer and
3

omplete the offloaded tasks. Fig. 1 depicts the architecture the presented scheduling approaches employ. The Fog devices in our
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Fig. 1. The reference architecture with three layers: flying drones, fog devices, and the cloud. The fog devices are managed by a fog gateway in each zone.

scheme are grouped into Fog regions and connected by Fog gateways. Our scheme’s task manager is located on the Fog gateway.
For task allocation, we use a decentralized broker management strategy [25]. The task scheduler modules are in the Fog gateways,
and they assign the drones’ tasks to the Fog devices.

By defining this reference architecture, we create a common environment for evaluating the performance of metaheuristic
techniques in the complex and dynamic environment of IoT-Fog task allocation within IoD scenarios. In subsequent sections, we
will investigate the comparative analysis of these techniques within drone scenarios.

3.2. Problem statement

The task allocation problem in Fog-enabled IoD aims to assign drone tasks to Fog to enhance resource utilization. Given a set
of drones and Fog devices, the goal is to allocate tasks to Fog devices to minimize execution time. While researchers have made
significant progress using metaheuristic algorithms for IoD task allocation in academic areas, their productivity may fade due to high
execution time. To illustrate the limitations of metaheuristic approaches, we conducted experiments using the PSO, KHA, and F-DTA
methods. We used the F-DTA method in the PSO and KHA fitness functions and kept the settings the same for a fair comparison. The
goal is to show that PSO and KHA have much higher execution times than the simple method (F-DTA), making them impractical
in time-sensitive IoD applications. In real-world IoT scenarios, the capacity of Fog devices plays a crucial role in ensuring efficient
task execution. Real-time and time-sensitive tasks necessitate careful consideration of Fog device limitations. Now, we define more
formally the problem of task scheduling: we consider a set  = {𝑡1, 𝑡2,… , 𝑡𝑘} of 𝑘 ∈ N drones’ tasks, and a set  = {𝑓1, 𝑓2,… , 𝑓𝑚} of
𝑚 ∈ N Fog devices; each task must be assigned to exactly one fog device. Each task require a time to be transmitted to the fog-device,
and the solution computed, we denote with 𝑇 (𝑡𝑖, 𝑓𝑗 ) an (expected) time required to receive, compute and get back the solution of
task 𝑡𝑖 when it is assigned to fog device 𝑓𝑗 . Let 𝑥𝑖𝑗 be boolean variables, such that 𝑥𝑖𝑗 = 1 iff task 𝑖 is selected to be scheduled in fog
device 𝑗. Note that, tasks scheduled to different fog-devices runs in parallel, so the overall metric for delay, is similar to makespan
in parallel job scheduling problems. So, the problem can be stated as the following mixed integer-linear program:

Problem 1 (Task Scheduling).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 =max
𝑗

𝑘
∑

𝑖=1
𝑥𝑖𝑗𝑇 (𝑡𝑖, 𝑓𝑗 ) (1)

𝑚
∑

𝑗=1
𝑥𝑖𝑗 = 1 ∀𝑖 ∈ [1, 𝑘] (2)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ [1, 𝑘], 𝑗 ∈ [1, 𝑚] (3)

The optimization is performed, by minimizing the makespan of the schedule, i.e. the maximum of the load among the different
fog-devices. Note that, in this mathematical formulation we need to know the exact values of 𝑇 (𝑡𝑖, 𝑓𝑖), i.e. it is a deterministic and
offline optimization problem. In practice we assume that each task has an estimated cost of execution 𝑡𝑖, and each fog-devices has
a level of cpu-utilization 𝑓𝑗 that is clearly related to the number of tasks in its execution queue. The F-DTA algorithm uses a fuzzy
based optimization approach that is practical in most scenarios, since the exact determination of the values of 𝑇 (𝑡𝑖, 𝑓𝑗 ) is difficult
in most of the real cases.
4
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Fig. 2. Fuzzy sets.

3.3. Fuzzy-based method (F-DTA):

As previously stated, the task manager’s role inside the Fog gateways is to allocate the drones’ tasks to the most suitable Fog
devices. The Fog device assigned to the drones’ tasks should minimize execution time. Our proposed method employs a lightweight
algorithm to optimize resource utilization. It is worth mentioning that, like the former works, FPFTS, FUPE, and S-FoS [9–11], we
employed a broker approach for node communications. As we discussed the architecture in Section 3.1, the task managers inside
the fog gateways receive the drones’ tasks and assign them to the most suitable Fog device inside the Fog region. As drones can
travel inside the Fog regions, they send new requests to the Fog gateways that are responsible for task allocation inside the newly
travelled Fog region. Accordingly, the assigned Fog devices are near the drones.
Resource utilization: IoT-Fog literature demonstrates that efficient task scheduling and allocation can be accomplished by
simultaneously considering the resources’ computing features and the tasks’ CPU requirements [9–11,26–28]. Therefore, we use
the CPU requirements of tasks and the available CPU of Fog devices as input values to fuzzy functions to optimize the performance.
Mamdani is a popular fuzzy inference engine that employs sets and rules based on prior experience or predefined premises [9,11].
We create three overlapping fuzzy sets that allocate the input values in multiple sets simultaneously. As a result, each input value is
located in at least two fuzzy sets with varying degrees of membership. For instance, consider Fig. 2(a). The blue line (low set) goes
from (0,1) to (0.5, 0), and the yellow one (high set) goes from (0.5, 0) to (0,1). They overlapped with the medium set in red line. It
means the input parameters between 0 and 0.5 are low and medium with two different degrees of membership. For instance, 0.3 is
low and medium, with the degree of membership at 0.7. The point of intersection of two overlapped fuzzy sets indicates the degree
of membership in the vertical axis.

For mindful readers, the question may arise that our proposed method is incomplete, as this would mean disregarding all aspects
concerning the actual deployment of the tasks once they have been allocated and the delay and network usage. The contribution of
this article is to focus on execution time and ignore delay, latency, energy consumption, and network delay to show the disadvantages
of classic metaheuristic methods. As we used a simple Mamdani fuzzy function, we can add more input parameters, such as link
bandwidth, nodes’ energy consumption or other criteria, proposing a modified version of the proposed approach.

The fuzzy sets for the parameters above and the result parameter are as follows:

• 𝑇 𝑎𝑠𝑘: ∈ {Low; Medium; High}
• 𝐹𝑜𝑔 𝐷𝑒𝑣𝑖𝑐𝑒: ∈ {Low; Medium; High}
• 𝑅𝑒𝑠𝑢𝑙𝑡: ∈ {Proper; Medium; Inappropriate}

We use Task and Fog Device in the above fuzzy sets to represent the tasks’ CPU requirement and the Fog devices’ available CPU,
respectively. Moreover, the fuzzy rules and fuzzy sets used in the fuzzy function are shown in Table 1 and Fig. 2. In this work, we
define nine fuzzy rules and based on the input values, some are fired. The input values for both input fuzzy sets must be within the
specified range for triggering the fuzzy rule. The centroid approach builds a non-fuzzy value as the outcome of the fuzzy function
in the aggregation step using all of the values of the fired rules. A non-fuzzy number is the outcome of the fuzzy function, a number
between zero and one. The task manager assigns the task to the fog device that has the higher value. In our former work, S-FoS [11],
we discussed the difference between the triangle fuzzy functions and the isosceles trapezoid fuzzy functions. Accordingly, with the
lessons we learned from FPFTS and S-FoS projects, we implemented an isosceles trapezoid fuzzy function. Besides, we explained
how the fuzzy function obtained the results in the FUPE project by some numerical examples [10]. Moreover, we discussed defining
the fuzzy settings and fuzzy rules in the FPFTS and S-FoS projects [9,11].

Mamdani fuzzy inference consists of five stages: fuzzification of the input variables, carrying out fuzzy operations and fuzzy
reasoning, carrying out fuzzy inferences, aggregation of the fired rules and defuzzification of the results. It uses Table 1 and Fig. 2
in all the mentioned five steps to obtain the output non-fuzzy number. As the scope of our article does not discuss the details of fuzzy
5
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Table 1
Fuzzy rules.

Rule Tasks cost Fog CPU Result

1 Low Low Proper
2 Low Medium Medium
3 Low High Inappropriate
4 Medium Low Medium
5 Medium Medium Proper
6 Medium High Medium
7 High Low Inappropriate
8 High Medium Medium
9 High High Proper

logic, we refer enthusiastic readers to the S-FoS article [11] for more information about how the Mamdani fuzzy inference engine
works. Algorithm 1 indicates the algorithm of F-DTA method for IoD task allocation. In the algorithm, the values of the function
𝑇 (𝑡𝑖, 𝑓𝑗 ) described in the model 1 is evaluated using the fuzzy inference, and denoted by 𝑣𝑖𝑗 , the schedule is produced by selecting
or each task the fog devices with higher value of this function. Note that the algorithm, always produce a feasible schedule since:
he set of tasks managed by the fog-gateway comprise also idle tasks (that can be scheduled when there are few tasks) or can be
oved to the cloud (if the overall load of the fog-devices is at the maximum, and the remaining tasks if scheduled would produce
makespan that is over a maximum threshold), eventually increasing the delay for some tasks. We can observe that in the latter

ase, the problem is more easily defined as a problem of setting the right SLA requirements of the entire architecture, and maybe
olved by, for example, increasing the number of fog-devices deployed.

Algorithm 1 F-DTA
INPUT: 𝑚, 𝑘, 𝑐𝑝𝑢(𝑓𝑗 ), 𝑙𝑜𝑎𝑑(𝑡𝑖)
𝑚 Number of Fog devices
𝑘 Number of Tasks
𝑐𝑝𝑢(𝑓𝑗 ) Cpu level of Fog Device 𝑓𝑗
𝑙𝑜𝑎𝑑(𝑡𝑖) Cost of Task 𝑡𝑖

1: Define isosceles trapezoid fuzzy function as the membership function
2: Define the rules for the fuzzy inference system
3: Define the centroid method as defuzzification to obtain the crisp output value.
4: for 𝑖 = 1 to 𝑘 do
5: for 𝑗 = 1 to 𝑚 do
6: Use the fuzzy system to compute the values of 𝑣𝑖𝑗
7: based on the values of 𝑙𝑜𝑎𝑑(𝑡𝑖) and 𝑐𝑝𝑢(𝑓𝑗 ).
8: end for
9: 𝑥𝑖𝑗 ← 1 iff 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗𝑣𝑖𝑗 , i.e. Assign task 𝑖 to the fog device 𝑗 with the max value of 𝑣𝑖𝑗

10: Update the values of 𝑐𝑝𝑢(𝑓𝑗 ) to reflect the assignment.
11: end for
12: Output the schedule, i.e. variables 𝑥𝑖𝑗 .

How to use F-DTA method for Task allocation: We have a set of drone tasks and a set of Fog devices. When assigning a task to
a Fog device, we run F-DTA for the task and each Fog devices to find the most proper one. We assign a Fog device to the task with
the highest number, similar to the previous work, FPFTS [9]. Finally, as we aim to illustrate a simple, lightweight approach that
considers the features of tasks and the resources much more practical and has less execution time than metaheuristic approaches
such as PSO and KHA, we employed the F-DTA method in the PSO and KHA fitness functions.

3.4. Metaheuristic approaches

In the literature, researchers have employed metaheuristic approaches such as NSGA [29], PSO [30], Firework algorithm
(FWA) [31], Whale optimization algorithm (WOA) [32], Bee life algorithm (BLA) [33], Harmony Search (HS) [34], and Tabu Search
(TS) [35] for IoT applications. PSO is one of the most acceptable ones, and KHA is almost the newest one that reduced the iterations,
so we chose them as the employed metaheuristic ones.
Particle Swarm Optimization (PSO): PSO is a popular optimization algorithm inspired by the collective behaviour of birds. In a PSO
algorithm, a population of potential solutions, known as ‘‘particles’’, explores a solution space in search of the optimal solution. Each
particle represents a potential solution and adjusts its position based on its own experience and the experiences of its neighbouring
particles [36]. The algorithm refines the particle positions by moving them towards the best solutions found so far. This process
employs how a flock of birds cooperatively adapts to find the most suitable direction. While PSO is a popular optimization algorithm
with various applications, its suitability for online, real-time, and time-sensitive tasks is limited due to its inherent characteristics
and computational needs.
6
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Table 2
Entity requirements.

Requirements Cloud Fog device Task

RAM 0 4 GB 10 MB
CPU 0 44800 MIPS 200 MIPS
Bandwidth 0 200 Mbps 100 Mbps

Krill Herd Algorithm (KHA): KHA is a bio-inspired optimization algorithm inspired by the collective behaviour of krill, small
marine crustaceans. KHA is a population-based optimization technique that simulates krill’s social interactions and movements in
search of optimal solutions. In KHA, each potential solution is represented as a krill, and these individuals collectively explore the
solution space by adjusting their positions. Krill update their positions based on various factors, including their experience and other
neighbouring krill’s influence [37]. The algorithm aims to improve the quality of solutions over time by employing the swarming
behaviour of krill, where individuals cooperate to find more suitable solutions. KHA offers certain advantages over PSO. One key
advantage is KHA’s ability to adapt to dynamic and complex solution spaces. KHA’s collective behaviour, inspired by krill swarming,
allows it to better handle problems with varying environments. Additionally, KHA often requires fewer tuning parameters than PSO,
making it more suitable for practical applications.
PSO and KHA fitness functions: In the PSO and KHA algorithms, the fitness function is a crucial component that determines the
suitability of a Fog device to run the drone’s tasks. The primary purpose of the fitness function is to evaluate how well a particular
Fog device satisfies the optimization objectives and constraints. As our aim is to study the execution time of the metaheuristic
algorithms, we used the proposed F-DTA method in their fitness function to have a fair comparison. We refer the enthusiastic
readers to read the article [38] for more information about the Metaheuristic algorithms and fitness functions.

4. Performance evaluation

In this section, we clarify the evaluations we performed to assess the performance of the approaches. The performance evaluation
depicts the impact of devising a task manager that considers resource utilization by employing metaheuristic techniques and a
simple method (i.e., F-DTA). To implement our approach, we used iFogSim2 [39], a java-based simulator built on the CloudSim
framework. We use this simulator because it supports mobility and clustering and is quite acceptable for task allocation approaches
for Fog-enabled IoT applications. Moreover, it integrates real-world datasets into the simulation.

4.1. Simulation setup

We used the EUA dataset of iFogSim2 for the simulation environment because it supports mobility of the drones. We also used
XFuzzy tool [40] to define the fuzzy rules and fuzzy sets. We employed six Fog gateways spread across six Fog regions. Besides, we
used a broker approach and put the algorithms in the Fog gateways. The Fog gateways are the broker between the drones (things
in the IoT) and the Fog devices in the Fog regions. Drones have a path, and the simulation will allow them to create several tasks
at random points so they offload to the region brokers, and finally, Fog gateways assign them to the Fog devices. The scenarios
that are actually running in the simulation contain drones flying to multiple Fog regions and also the simulation grid if formed by
multiple Fog devices. We used random_usersLocation_melbCBD_1.csv, which contains the drone’s mobility traces and represents the
drone’s path during the simulation and edgeResources-melbCBD.csv for fog layer’s nodes configurations.

We used the particular features of the scenarios listed in Table 2 in order to simulate the methods, the configuration setup used in
the simulation is shown in this Table. The computational capability and bandwidth (i.e., the amount of CPU, RAM, and bandwidth)
of the cloud data centre and Fog devices are displayed. As we do not use Fog device to cloud data-centre data offloading in our
simulation, we put zero for its features in the table. Each fog device is equipped with a reasonable amount of RAM and with a
multi-core processor, we took the MIPS of a processor like ARM CORTEX-A73.1 The Task column shows how much RAM, CPU,
and bandwidth they require to run. We use the iFogSim2 entities to implement this functionality. Furthermore, we fixed the range
of fuzzy sets for the security portion of our proposed task manager between zero and one. Next, we took the information out of
the EUA dataset and divided it by the maximum value to normalize it. As a result, the fuzzy algorithm’s actual value range falls
between zero and one. After that, we defined the fuzzy sets and fuzzy rules using XFuzzy. Finally, we assessed the approaches using
the iFogSim2.

4.1.1. Simulation metrics
The primary metric for the evaluation of the task scheduling and management approach is execution time. It is the time a task

management unit takes to complete a task once it has received a request. It includes processing time but not the time for the response
to travel back to the drone. For the execution time, we should consider the optimization result (the execution time of the tasks on
the Fog devices) and the time it takes to execute the optimization itself. In our experiments, we considered both of them, but, it is
worth mentioning that we kept all the settings the same for all three methods. We used a star topology, and the distance between
the Fog devices and the Fog gateways and their configurations (links and Fog devices) are the same; the differences between the
execution times for the three algorithms are mainly due to the second one.

1 https://wiki2.org/en/Instructions_per_second
7
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Table 3
Comparison of the Execution Time (in sec.) of F-DTA, PSO, and KHA with an
increasing number of tasks.

Tasks F-DTA PSO KHA

30 0.82 1402 720
50 1.36 2039 1102
70 1.53 3807 1613
90 2.05 4234 1956

110 2.38 4944 2408
150 2.98 5450 2717
200 4.18 6031 3119

4.1.2. Implementation scenarios
Metaheuristic approaches require a ready workload to choose the best answer among the many answers for the various drones.

n the real environment, we cannot wait to have a huge workload. We should assign the most available and proper fog device to the
equest. That is why some real-world IoT applications still use First-Come-First-Serve (FCFS) scheduling algorithms. For instance,
rticle [41] uses FCFS priority scheduling to detect and allocate empty parking spaces in a real-time manner. We implement a small
etwork scale. The main reason is that we want to show that metaheuristic approaches do not have any merits when the size of the
etwork is small or when we do not have a ready huge workload. Over the following various drones, and Fog devices scenarios, we
ompare our proposed approach to PSO and KHA approaches:

• Scenario-1: Comparing approaches based on various number of drones: The number of Fog devices in this scenario is 12 in 6 Fog
regions. We vary the number of drones to adjust the number of tasks (requests) to study the effects of the number of requesters
on PSO and KHA and compare the execution time with the F-DTA method we use in their fitness functions.

• Scenario-2: Comparing approaches based on various number of Fog devices: The number of drones in this scenario is one with 10
tasks. This scenario aims to illustrate the effects of the number of Fog devices on PSO and KHA and compare the execution
time with the F-DTA method that we use in their fitness functions.

.2. Evaluation results

This section shows the implementation results for the metaheuristic approaches and the F-DTA method. As this research aims
o illustrate that metaheuristics are unsuitable for time-sensitive Fog-enabled IoD applications, we keep the settings the same for
he three approaches. We used the F-DTA method in the PSO and KHA fitness functions. We just show the result of the execution
ime and discuss the network utilization and delay, stating that their results are sufficient for our research report.

First, we discuss the evaluation for the first scenario, comparing approaches based on various numbers of drones. In this scenario,
e have 12 Fog devices, and we test the result of the methods by varying the drone numbers from 1 to 11. Table 3 summarizes the

xecution time of the F-DTA, PSO, and KHA methods. As they illustrate, there is a clear upward trend in execution time across all
ethods. There are more requests than there are drones, which means that the task management should distribute more work to

he Fog devices.
The significantly lower execution time of the F-DTA method in the context of IoD task allocation is due to its simplicity. F-DTA,

s a custom-designed method, likely involves straightforward calculations and minimal data processing, making it faster to evaluate.
n the other hand, the KHA and PSO have more execution time. However, KHA showcases a lower execution time than PSO due

o using the K-means algorithm. KHA is a nature-inspired optimization algorithm that emphasizes a more streamlined approach
o population movement, often leading to quicker convergence towards a solution. In contrast, PSO involves more complicated
echanisms for particle update, global best position tracking, and computational overhead, contributing to a relatively longer

xecution time [42].
As we observed from simulation, The network usage of the three approaches was the same, because it is primarily determined by

he communication requirements of the tasks and the data transfer between the Fog gateways and the drones. All three approaches
llocate the same tasks to the same Fog device (due to using F-DTA method in the PSO and KHA fitness functions), resulting in
imilar network usage across these approaches. In other words, the allocation of tasks to drones is the same, so the network usage,
hich depends on these task assignments, remains unchanged. Moreover, when we have more drone tasks, the links should transfer
ore data, and accordingly, we see an increase in network usage.

Finally, we discuss the evaluation for the second scenario, comparing approaches based on various numbers of Fog devices. In
his scenario, we have a drone with 10 tasks, and we test the result of the methods by varying the Fog device numbers from 18 to
80. Table 4 summarizes the execution time of the F-DTA, PSO, and KHA methods.

Some notable results emerged when we employed the F-DTA, PSO, and KHA methods with varying numbers of Fog devices. As
he number of Fog devices increases from 18 to 180, the execution time for all three methods experiences an increase. The main
eason is that, as the algorithms should consider more resources, it takes more time to select the proper one. However, comparing
he execution times reveals that F-DTA consistently outperforms PSO and KHA across all scenarios. F-DTA exhibits significantly
horter execution times, in contrast, PSO and KHA, while effective optimization methods show notably longer execution times. This
8
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Table 4
Comparison of the Execution Time (in sec.) of F-DTA, PSO, and KHA with an
increasing number of Fog devices.

Fog devices F-DTA PSO KHA

18 0.96 908 414
36 1.15 1696 857
60 1.69 2224 1060
90 2.37 3731 1544

120 2.60 3980 2244
150 3.50 6002 2702
180 4.45 7736 3074

outcome indicates the advantage of using the F-DTA method for IoT task allocation, as it consistently provides quicker results even
as the scale of the problem increases, making it a valuable choice for time-sensitive and resource-constrained IoD-Fog environments.

In the evaluation scenario where the F-DTA, PSO, and KHA methods are employed for drone task allocation with varying numbers
f Fog devices distributed across 6 Fog regions, a consistency emerges regarding network usage. Despite the increase in Fog devices,
anging from 18 to 180 across these regions, the network usage for all three methods remained constant. This result indicates that
hen we have very few requests (IoD tasks) when assigning to the resources (Fog devices), adding the Fog devices does not affect the
etwork utilization. The reason is that we have six Fog regions, and each of them has a Fog gateway. We use the broker approach,
nd the instances of the algorithms are in the Fog gateways. More importantly, we used a star topology and the distance between
he Fog devices, and the Fog gateways and their configurations (links and Fog devices) are the same. As a result, network usage
emains the same.

In our experimental results, we evaluated the execution time and discussed network usage. As the result of the delay in a common
imulator could be far from reality in the real-world, we did not assess it. The main reason is that the simulators simplify real-world
equirements such as processing delay, transmission delay, propagation delay, queuing delay, sensing delay, task queuing delay, task
xecution delay, and load balancing delay to make them computationally feasible. These simplifications can lead to a significant
ifference between the simulation results and the real-world results. In the discussion Section 5.1, we discuss the problems of
btaining delay in common simulators. Still, to pave the way for the other researchers, we anticipate that the outcomes of the three
pproaches are almost the same in terms of delay. We anticipate delay remains nearly identical across the three methods, despite
ariations in execution times. The reason why we anticipate equivalent delays across these methods is due to employing F-DTA in
he PSO and KHA fitness functions [43].

.2.1. Time complexity
We use metaheuristics if the problem is so complex that precise optimization takes too much time. It is usually proved by showing

hat the problem is NP-Hard. If the problem is simpler and an efficient polynomial solution exists, metaheuristics are unmotivated.
or the time-sensitive Fog-enabled IoD applications, the time complexity should be very low, and Fog gateways do not have enough
apacity to run metaheuristics. The task manager should assign the tasks to the most available Fog device, and cannot wait to gather
huge amount of tasks, and then repeat the iterations and find the best Fog device. Accordingly, their practicality fades away in

eal scenarios. As the primary goal of our article is to show the execution time of the mentioned algorithms, to wrap up this section,
e discuss the time complexity of the PSO, KHA, and F-DTA methods. The time complexity of a Mamdani fuzzy method is (1)
ue to performing all the steps in a parallel manner [44]. But as the F-DTA assigns each task to a Fog device, by iterating among 𝑘
asks and 𝑚 fog devices, the overall complexity is (𝑘 ⋅𝑚). The time complexity of the PSO and KHA methods are (𝑖 ⋅𝑚 ⋅ 𝑓 ), where
, 𝑚, and 𝑓 are the number of iterations, the population size (i.e., number of Fog devices), and fitness function, respectively. When
-DTA is used as the fitness function, the time complexity of the PSO and KHA methods are (𝑖 ⋅ 𝑘 ⋅ 𝑚2).

. Discussion

In this section, we discuss some challenges in devising, evaluating and implementing metaheuristic approaches in IoD-Fog
etworks that inspire researchers and pave the way for future research directions for developing practical applications.

.1. The limitations of IoT simulators

In our study, the utilization of metaheuristic methods for IoD-Fog task allocation was explored, and we encountered particular
hallenges inherent in using common simulators focusing on execution time. We acknowledge that, at times, the choice of simulator
s constrained, and in our case, we opted for a Java-based simulator. However, it is imperative to highlight that the results
btained from such simulators may not truly mirror real-world scenarios, thus potentially impacting the validity of our proposed
pproach [45]. The unreliability of common IoT simulators can be attributed to several factors: Firstly, these simulators often need
he incorporation of essential IoT features and network layers, which makes it challenging to replicate the characteristics of real-
orld settings; Additionally, the parameters used in these simulators are frequently based on assumptions and approximations,
9
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To take an example, consider the delay metric. Many elements that are difficult to accurately model in a simulator, such as packet
oss, and network congestion, affect the delay parameter. Common simulators frequently obtain delay based on approximations and
ssumptions that may not accurately represent the actual conditions of the network. Besides, the simulators do not consider the
omputation delay of a Fog gateway, but in reality, it tends to be far different due to caching in processors. In a nutshell, the absence
f network layers, network-level features, and the simplified IoT and network models in the simulator significantly limits its ability
o model and evaluate delays in real-world scenarios accurately. The simulator’s architecture does not capture the characteristics of
ommunication protocols and networking dynamics, which are critical factors in determining the delay in IoT task allocation.

.2. IoD simulators

In addition to the commonly used simulators, there are several simulation tools, namely IoD-Sim, AirSim, Gazebo, and
ealFlight’s drone simulator. These simulators do not have abilities to implement task allocation approaches and evaluate drone task
llocation metrics, as their primary purpose is to simulate drone movement and interactions within an environment. For instance,
oD-Sim creates realistic simulations of the UAV by extending the features of ns-3 to cover various aspects of IoD, including mission
esign, trajectory planning, hardware and application configuration, mobile wireless communication, and energy consumption
odels [47,48]. A well-liked simulator for testing and simulating robotic systems, including drones, is the Gazebo. Gazebo, however,

s primarily concerned with mimicking automated systems’ sensors and physical components. It is particularly good at simulating
rone dynamics, sensor data, and environmental interactions [49].

.3. The productivity of IoD task allocation approaches

Metaheuristic approaches such as PSO and KHA have been widely explored and refined by researchers seeking to optimize
ask allocation in IoT applications. However, their practical productivity often needs to improve when applied to time-sensitive
pplications. Although they may yield excellent solutions in controlled, non-real-time environments, the time required for these
ethods to converge can be prohibitive in time-sensitive scenarios such as drone operations. Consequently, the high execution time

f metaheuristic approaches can significantly hinder their productivity and practical utility in time-sensitive IoD applications.

.4. Challenges in bridging academic theory and practical productivity

This academic research helps build a foundation of knowledge that can eventually lead to more practical and efficient solutions.
lthough metaheuristic approaches may not be immediately suitable for time-sensitive Fog-enabled IoD applications because of their
igh execution time, research in academia serves as a stepping stone for future work. The theoretical insights gained from studying
etaheuristics can inform the development of hybrid methods or improved algorithms that better balance theoretical considerations

nd practical applications. While these approaches might not have direct productivity in real-world applications, they contribute to
he academic area, enabling a deeper understanding of optimization methods and inspiring further innovation that may eventually
ridge the gap between academic theory and practical productivity in time-sensitive IoD applications, such as drone operations.

. Conclusions and future directions

Practical task allocation and scheduling are essential for achieving optimal performance in the fog-enabled Internet of Drones
nd numerous researchers have developed metaheuristic-based task allocation techniques. Empirical studies, case studies, and
enchmarking data support the notion that metaheuristic algorithms while promising in the academic realm, may have limitations
n real-time environments because of their high execution times, resource-intensive nature, increased temporal complexity, and
nherent uncertainty in reaching optimal solutions. This paper presented F-DTA, a lightweight and straightforward task allocation

method that serves as the fitness function for two metaheuristic methods: the Krill Herd Algorithm (KHA) and Particle Swarm
Optimization (PSO). We used the iFogSim2 simulator to simulate our suggested methodology, and the findings validate that F-DTA
performs better than metaheuristic methods in terms of execution time.
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