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Abstract. We prove that any set-theoretic solution of the Yang–Baxter
equation associated with a dual weak brace is a strong semilattice of non-
degenerate bijective solutions. This fact makes use of the description of
any dual weak brace S we provide in terms of strong semilattice Y of
skew braces Bα, with α ∈ Y . Additionally, we describe the ideals of S
and study its nilpotency by correlating it to that of each skew brace Bα.
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Introduction

The quantum Yang–Baxter equation takes its name from two independent
works by Yang [35] and Baxter [3]. It is an important tool in several fields
of research, among these are statistical mechanics, quantum field theory, and
quantum group theory, whose study of solutions has been a major research
area for the past 50 years. The challenging problem of determining all the
set-theoretic solutions arose in 1992 in the paper by Drinfel’d [15] and is still
open. Into the specific, given a set S, a map r : S × S → S × S is said to be
a set-theoretic solution of the Yang–Baxter equation, or briefly a solution, if
r satisfies the braid identity

(r × idS) (idS ×r) (r × idS) = (idS ×r) (r × idS) (idS ×r) .

Writing r (x, y) = (λx (y) , ρy (x)), with λx, ρx maps from S into itself, then
r is left non-degenerate if λx ∈ SymS , right non-degenerate if ρx ∈ SymS , for
every x ∈ S, and non-degenerate if r is both left and right non-degenerate.
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Several techniques for constructing solutions starting from known solutions
have been introduced over the years. For the purposes of this paper, we
mention the strong semilattice of solutions [8], which is a method that allows
for determining solutions starting from a semilattice Y , a family of disjoint
sets {Xα | α ∈ Y }, and solutions rα defined on these sets.
In 2007, Rump [31] innovatively showed how an involutive non-degenerate
solution can be obtained starting from the special algebraic structure of brace.
This type of approach had a large following in the last few years and other
similar structures have been studied. Among these, we mention the weak brace
[9] that is a triple (S,+, ◦) such that (S,+) and (S, ◦) are inverse semigroups
satisfying

a ◦ (b + c) = a ◦ b − a + a ◦ c and a ◦ a− = −a + a,

for all a, b, c ∈ S, where −a and a− denote the inverses of a with respect to +
and ◦, respectively. Clearly, the sets of the idempotents E(S,+) and E(S, ◦)
coincide, so we will simply write E(S). In particular, if |E(S)| = 1, then (S,+)
and (S, ◦) are groups having the same identity, and so (S,+, ◦) is a skew brace
[17] which is a brace if the group (S,+) is abelian. Necessarily, the additive
structure is a Clifford semigroup, instead, in general, the multiplicative one is
not. A class of weak braces having (S, ◦) as a Clifford semigroup is obtained
in [10, Theorem 16]. We call dual the weak braces for which (S, ◦) is Clifford.
Any weak brace (S,+, ◦) gives rise to a solution r : S × S → S × S defined
by

r (a, b) =
(
−a + a ◦ b, (−a + a ◦ b)− ◦ a ◦ b

)
,

for all a, b ∈ S (see [9, Theorem 11]). Such a map r is close to being bijective,
and, in the case of a dual one, r is also close to being non-degenerate (see
[10, pp. 604–605]). Besides, a new family of solutions coming from dual weak
braces has been investigated in [24]. For this kind of structure, a notion of
ideal has been also introduced in [10, Definition 20]. Moreover, it turns out
that the quotient structure is a new dual weak brace with semilattice of
idempotents isomorphic to E (S).

In this paper, we entirely describe the structure of a dual weak brace
(S,+, ◦), by showing that it is a strong semilattice Y of skew braces (Bα,+, ◦),
for every α ∈ Y , where (Bα,+) and (Bα, ◦) are the groups fulfilling the
structure of (S,+) and (S, ◦), respectively, as Clifford semigroups (see [18,
Theorem 4.2.1]). As a consequence, we prove that the solution r associated
with S is the strong semilattice Y of the non-degenerate bijective solutions rα

on each Bα. Any strong semilattice of skew braces is realized by combining
skew brace homomorphisms φα,β from Bα to Bβ (whenever α ≥ β), thus
this further motivates the study of such maps, a problem already emerged in
literature (cf. [11, Problem 10.2], [34, Problem 2.18], [26,29,30]).
Despite the obtained description, the skew brace theory is not exhaustive for
developing the theory of dual weak braces. In fact, for instance, although we
show the ideals of any dual weak brace S are specific strong semilattices of
ideals of every skew brace Bα, if we consider known ideals, such as its socle
Soc(S), in general, it is not the strong semilattice Y of each Soc (Bα). This
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led us to deepen the theory of dual weak braces and not just reduce it to
the study of every skew brace Bα. As a first step, we introduce the binary
operation · on S given by a · b := −a + a ◦ b − b, for all a, b ∈ S, classically
known in the context of radical Jacobson rings. We give some properties
that are useful to characterize the ideals of S in terms of the operation ·.
Furthermore, this has allowed us to investigate the right nilpotency and the
nilpotency of S by relating them with those of each skew braces Bα. We
highlight that nilpotency in skew braces has been intensively studied over the
years by many authors (see, for instance, [1,2,4–6,12,20,32]) and it is still
under investigation above all concerning multipermutation solutions [16].

1. Basics on Weak Braces

This section aims to give actual results on the structures of weak braces [9]
paying particular attention to the behavior of the idempotents.

To make this paper self-contained and to set up the notation, throughout
the paper where it will be needed, we will recall some notions contained in
classical books on inverse semigroups, as [14,18,23,27]. A semigroup S is
inverse if for each a ∈ S, there exists a unique a−1 ∈ S such that a = aa−1a
and a−1 = a−1aa−1. We call such an element a−1 the inverse of a. The class of
inverse semigroups is very close to that of groups since (ab)−1 = b−1a−1 and
(a−1)−1 = a, for all a, b ∈ S. Note that aa−1 and a−1a are the idempotents of
S, for every a ∈ S. An inverse semigroup S is called Clifford if its idempotents
are central, or, equivalently, aa−1 = a−1a, for every a ∈ S.

Definition 1. [9, Definition 5] Let S be a set endowed with two operations +
and ◦ such that (S,+) and (S, ◦) are inverse semigroups. Then, (S,+, ◦) is a
weak brace if

a ◦ (b + c) = a ◦ b − a + a ◦ c and a ◦ a− = −a + a,

for all a, b, c ∈ S, where −a and a− denote the inverses of a with respect to
+ and ◦, respectively.

Clearly, the sets of the idempotents E(S,+) and E(S, ◦) coincide, thus we
will simply denote such a set by E(S). Obviously, if |E(S)| = 1, then (S,+, ◦)
is a skew brace [17].
In [9, Theorem 8], it is proved that the additive semigroup of any weak brace is
necessarily Clifford. In general, the multiplicative one is not (see [9, Example
3]). Any Clifford semigroup (S, ◦) determines two trivial weak braces having
both Clifford structures, by setting a + b := a ◦ b or a + b := b ◦ a, for all
a, b ∈ S. A bigger class of weak braces having (S, ◦) Cifford is studied in [10,
Theorem 16].

Definition 2. [10, Definition 2] A weak brace (S,+, ◦) is called dual if (S, ◦)
is Clifford.

Given a weak brace (S,+, ◦), let λ : S → End(S,+), a �→ λa and
ρ : S → Map(S), b �→ ρb be the maps defined by

λa (b) = −a + a ◦ b and ρb (a) = (−a + a ◦ b)− ◦ a ◦ b,
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for all a, b ∈ S, respectively. One has that λa(b) = a ◦ (a− + b), for all
a, b ∈ S, and λa(E(S)) ⊆ E(S). Besides, the map λ is a homomorphism
of (S, ◦) into the endomorphism semigroup of (S,+) and the map ρ is an
anti-homomorphism of (S, ◦) into the monoid Map(S). Following [9, Theo-
rem 11], the map r : S × S → S × S defined by r (a, b) = (λa(b), ρb(a)),
for all a, b ∈ S, is a solution that has a behavior close to bijectivity: in-
deed, considered the solution rop associated with the opposite weak brace
Sop := (S,+op, ◦) of S they hold

r rop r = r, rop r rop = rop, and rrop = ropr.

In addition, if S is dual, r has also a behavior close to the non-degeneracy
since

λaλa−λa = λa, λa−λaλa− = λa− , and λaλa− = λa−λa,

ρaρa−ρa = ρa, ρa−ρaρa− = ρa− , and ρaρa− = ρa−ρa,

for every a ∈ S. Clearly, if S is a skew brace, r is non-degenerate and bijective
with r−1 = rop [21]. Moreover, S is a brace if and only if r is involutive.

In the lemma below, we collect some useful properties of weak braces
provided in [9,10].

Lemma 1. Let (S,+, ◦) be a weak brace. Then, the following hold:
1. λa (a−) = −a,
2. a ◦ (−b) = a − a ◦ b + a,
3. a ◦ b = a + λa (b),
4. a + b = a ◦ λa− (b) ,

for all a, b ∈ S.

The following key lemma highlights the behavior of idempotents in any
weak brace.

Lemma 2. If (S,+, ◦) is a weak brace and e ∈ E(S), then ρe (a) = a ◦ e and

λe(a) = e ◦ a = e + a,(1)

for every a ∈ S. In particular, if S is a dual weak brace, then e ◦ a = e + a =
a ◦ e = a + e = λe (a) = ρe (a), for every a ∈ S..

Proof. Let a ∈ S. Then, by Lemma 1-3., e◦a = e+λe (a) = e−e+e◦a = λe (a).
As a consequence, we obtain λe(a) = e ◦ e ◦ (e + a) = e ◦λe(a) = e+a, where
the last equality follows from Lemma 1-4.. In addition, by [9, Proposition 9-
3.], ρe (a)− = e ◦ a− − e = λe (a−) = e ◦ a−, hence ρe (a) = a ◦ e, thus the
claim is satisfied. �

In light of Lemma 2, in any dual weak brace S the set of the idempotents
E(S) gives rise to a structure of trivial weak sub-brace of S, the general
definition of which is given below.

Definition 3. Let (S,+, ◦) be a weak brace and H ⊆ S. Then, H is said to
be a weak sub-brace of (S,+, ◦) if H both is an inverse semigroup of (S,+)
and (S, ◦) such that E(S) ⊆ H.



MJOM Solutions of the Yang–Baxter Equation and Strong Semilattices Page 5 of 22 67

Convention. From now on, we will only deal with dual weak braces and briefly
write a0 to denote the idempotent a − a = a ◦ a−, for every a ∈ S.
It follows by Lemma 2 that a ◦ b = a0 + a ◦ b = a ◦ b + b0, for all a, b ∈ S.

In the last part of this section, we introduce a new operation on a
dual weak brace (S,+, ◦) that will allow characterizing its ideals. Such an
operation is the usual multiplication in the context of rings and is already
known for skew braces [12,22] and cancellative semi-braces [6]. Specifically,
we define the operation · on S given by

a · b := −a + a ◦ b − b,

for all a, b ∈ S, that can be also written as a · b = λa (b)− b and, by Lemma 2,
a · b = a0 + a · b = a · b + b0. As it is usual in brace theory (cf. [31, Definition
2]), by (1), one has that

λa (b) = −a + a ◦ b + b0 = a · b + b,(2)

for all a, b ∈ S.

Lemma 3. Let (S,+, ◦) be a dual weak brace and a, b ∈ S. Then, the following
are equivalent:

(i) a · b ∈ E(S),
(ii) a · b = a0 + b0,
(iii) a + b = a ◦ b.

Proof. If a · b ∈ E(S), then we have that

a · b = a · b − a · b = −a + a ◦ b + b0 − a ◦ b + a = a0 + b0 + (a ◦ b)0 =
(1)

a0 + b0.

Now, if a·b = a0+b0, then a+b = a+a0+b0+b = a+a·b+b =
(1)

a◦b. Finally, if

a+b = a◦b, we obtain that a·b = −a+a◦b−b = −a+a+b−b = a0+b0 ∈ E(S),
which completes the proof. �

Using Lemma 3 and (1), we immediately obtain that, for all a ∈ S and
e ∈ E (S),

a · e = e · a ∈ E(S).(3)

Proposition 1. Let (S,+, ◦) be a dual weak brace. Then, the following are
satisfied:

1. a ◦ b = a + a · b + b
2. a · (b + c) = a · b + b + a · c − b,
3. (a ◦ b) · c = a · (b · c) + b · c + a · c,

for all a, b, c ∈ S.

Proof. Let a, b, c ∈ S. Firstly, by (1), we have a◦b = a0+a◦b+b0 = a+a·b+b.
Moreover, a · (b + c) = −a + a ◦ b + b0 − a + a ◦ c − c − b = a · b + b + a · c − b.
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Finally, using (1), we get

a · (b · c) + b · c + a · c

= −a + a ◦ (b · c) + a · c

= −a ◦ b + a ◦ (b ◦ c − c) + a · c by Lemma 1 − 2.

= −a ◦ b + a ◦ b ◦ c − a ◦ c + a ◦ c − c by Lemma 1 − 2.

= −a ◦ b + a ◦ b ◦ c ◦ a0 ◦ c0 − c

= −a ◦ b + a ◦ b ◦ c − c

= (a ◦ b) · c,

which completes our claim. �
Corollary 1. Let (S,+, ◦) be a dual weak brace. Then, they hold:

1. a · (b + e) = a · b + a · e,
2. (e + a) · b = e · b + a · b,

for all a, b ∈ S and e ∈ E(S).

Proof. If a, b ∈ S and e ∈ E(S), we obtain

a · (b + e) = a · b + b + a · e − b by Proposition 1 − 2.

= a · b + b0 + a · e by (3)

= a · b + a · e by (1)

and

(e + a) · b = (e ◦ a) · b by (1)

= e · (a · b) + a · b + e · b by Proposition 1 − 3.

= e ◦ (a · b)0 + a · b + e · b by (1)

= e · b + a · b by (3) − (1)

Therefore, the claim follows. �

2. A Description of Dual Weak Braces and Their Solutions

In this section, we provide a description theorem for dual weak braces by
showing that they are strong semilattices of specific skew braces. This de-
scription is consistent with the fact that Clifford semigroups are strong semi-
lattices of groups (see [27, Theorem II.2.6]).

Let Y be a (lower) semilattice and {Gα | α ∈ Y } a family of disjoint
groups. For all α, β ∈ Y such that α ≥ β, let φα,β : Gα → Gβ be a homo-
morphism of groups such that

1. φα,α is the identical automorphism of Gα, for every α ∈ Y ,
2. φβ,γφα,β = φα,γ , for all α, β, γ ∈ Y such that α ≥ β ≥ γ.

Then, S =
⋃

α∈Y

Gα endowed with the operation defined by a b := φα,αβ(a) φβ,αβ(b),

for all a ∈ Gα and b ∈ Gβ , is a Clifford semigroup, also called strong semi-
lattice Y of groups Gα, usually written as S = [Y ;Gα;φα,β ]. Conversely, any
Clifford semigroup is of this form.
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Theorem 1. Let Y be a (lower) semilattice, {Bα | α ∈ Y } a family of disjoint
skew braces. For each pair α, β of elements of Y such that α ≥ β, let φα,β :
Bα → Bβ be a skew brace homomorphism such that

1. φα,α is the identical automorphism of Bα, for every α ∈ Y ,
2. φβ,γφα,β = φα,γ , for all α, β, γ ∈ Y such that α ≥ β ≥ γ.

Then, S =
⋃ {Bα | α ∈ Y } endowed with the addition and the multiplica-

tion, respectively, defined by

a + b := φα,αβ(a) + φβ,αβ(b) and a ◦ b := φα,αβ(a) ◦ φβ,αβ(b),

for all a ∈ Bα and b ∈ Bβ, is a dual weak brace with E(S) isomorphic
to Y , called strong semilattice S of skew braces Bα and denoted by S =
[Y ;Bα;φα,β ]. Conversely, any dual weak brace is a strong semilattice of skew
braces.

Proof. The proof of the sufficient condition is contained [10, Corollary 6].
Conversely, let (S,+, ◦) be a dual weak brace and let [Y ;Bα;φα,β ] and
[Z;Hi;ψi,j ] the two Clifford semigroups (S,+) and (S, ◦), respectively. Since
E (S,+) and E (S, ◦) coincide and they are isomorphic to Y and Z, respec-
tively, there exists a semilattice isomorphism f : Y → Z, that, formally, can
be written as f (α) = iα, for every α ∈ Y . Keeping in mind this fact, it is
not restrictive to consider Y = Z. Now, let α ∈ Y and show that Bα = Hα.
Thus, if a ∈ Bα, then there exists β ∈ Y such that a ∈ Hβ . Denoted by eα

and eβ the identities of the groups (Bα,+) and (Hβ , ◦), respectively, note
that

eα = a − a = a ◦ a− = eβ ,

hence a ∈ Bα∩Hα ⊆ Hα. Reversing the role of + and ◦, one similarly obtains
that Hα ⊆ Bα. Finally, if α, β ∈ Y and α ≥ β, observe that

φα,β (a) = a + eβ =
(1)

a ◦ eβ = ψα,β (a) ,

for every a ∈ Bα. Therefore, {Bα | α ∈ Y } is a family of disjoint skew braces
and the claim follows. �

The following result is a consequence of [27, Proposition II.2.8] and
Theorem 1.

Proposition 2. Two dual weak braces S = [Y ;Bα;φα,β ] and T = [Z;Ci;ψi,j ]
are isomorphic if and only if there exists a semilattice homomorphism η :
Y → Z and a family of skew brace isomorphisms {Θα : Bα → Cη(α) | α ∈ Y }
such that Θβφα,β = ψη(α),η(β)Θα, for every α ≥ β.

The following example shows that Theorem 1 allows for obtaining new
dual weak braces even if we start from trivial skew braces.

Example 1. Let us consider Y = {α, β}, with α > β, Bα and Bβ the trivial
skew braces on the cyclic group C3 and on the symmetric group Sym3 of
order 3, respectively, and φα,β : C3 → Sym3 the homomorphism given by
φα,β(0) = id3, φα,β(1) = (123), φα,β(2) = (132). Then, S = [Y ;Bα;φα,β ] is a
dual weak brace.
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The following natural question arises intending to concretely construct
dual weak braces.
Question Determining all skew brace homomorphisms.
Note that the problem of studying homomorphisms between skew braces has
emerged yet in the literature, such as [11, Problem 10.2], [34, Problem 2.18],
[26,29], and [30], and also in a recent conference talk held by Civino [13].

Now, by Theorem 1, we illustrate that the solution r associated with any
dual weak brace S = [Y ;Bα;φα,β ] is the strong semilattice of the solutions
rα on each skew brace Bα. In this regard, we recall the more general result
contained in [8, Theorem 4.1].

Theorem 2. Let Y be a (lower) semilattice, let {rα | α ∈ Y } be a family of
disjoint solutions on Xα indexed by Y such that for each pair α, β ∈ Y with
α ≥ β, there is a map φα,β : Xα → Xβ. Let X be the union

X =
⋃

{Xα | α ∈ Y }
and let r : X × X −→ X × X be the map defined as

r (x, y) := rαβ (φα,αβ (x) , φβ,αβ (y)) ,

for all x ∈ Xα and y ∈ Xβ. Then, if the following conditions are satisfied
1. φα,α is the identity map of Xα, for every α ∈ Y ,
2. φβ,γφα,β = φα,γ , for all α, β, γ ∈ Y such that α ≥ β ≥ γ,
3. (φα,β × φα,β) rα = rβ (φα,β × φα,β), for all α, β ∈ Y such that α ≥ β.

then r is a solution on X called a strong semilattice of solutions rα indexed
by Y .

Given a dual weak brace S = [Y ;Bα;φα,β ], clearly the conditions of Theo-
rem 2 are satisfied by each solution rα on each skew brace Bα. In particular,
the condition 3. follows by the fact that the map φα,β : Bα → Bβ is a skew
brace homomorphism, for every α ≥ β. Moreover, it is easy to see that also
the converse is true. Thus, we can sum it all up in the following result.

Proposition 3. Let S = [Y ;Bα;φα,β ] be a dual weak brace. Then, the solution
r associated with S is the strong semilattice of the solutions rα associated with
each skew brace Bα.

To be thorough, we know from [33, Theorem 4.13] that in the finite
case the order of each solution rα, or equivalently the period p (rα) of rα,
for every α ∈ Y , is even and, by [8, Theorem 5.2], we can establish the
order of the overall solution r. In the next result, for a finite dual weak brace
S = [Y ;Bα;φα,β ] we mean that Y and Bα are finite, for every α ∈ Y .

Corollary 2. Let S = [Y ;Bα;φα,β ] be a finite dual weak brace and r the
solution associated with S. Then, r2k+1 = r with 2k = lcm{p (rα) | α ∈ Y },
where rα is the solution on each skew brace Bα, for every α ∈ Y .

Corollary 3. Let S = [Y ;Bα;φα,β ] be a strong semilattice of braces such that
Y is finite. Then, the solution r associated with S is cubic, namely, r3 = r.
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3. Ideals of Dual Weak Braces

In this section, we entirely describe the structure of any ideal of a dual weak
brace S = [Y ;Bα;φα,β ] through ideals of each skew brace Bα.

Let us start by recalling the notion of ideal contained in [10, Definition
20]. To this end, by a normal subsemigroup I of a Clifford semigroup S we
will mean a subset I of S such that

1. E(S) ⊆ I (i.e., I is full in S),
2. ∀a, b ∈ I ab ∈ I and a−1 ∈ I,
3. ∀a ∈ S a−1Ia ⊆ I.

Note that such a definition is equivalent to that of normal subset contained
in [28, Definition VI.1.2].

Definition 4. (cf. [10, Definition 20]) Let (S,+, ◦) be a dual weak brace and
I a subset of S. Then, I is an ideal of (S,+, ◦) if they hold

1. I is a normal subsemigroup of (S,+),
2. λa(I) ⊆ I, for every a ∈ S,
3. I is a normal subsemigroup of (S, ◦).

It follows from the definition of every ideal I that E(S) ⊆ I. In particular,
I is a dual weak sub-brace of S, thus S and E(S) are trivial ideals of S.
According to [10, Proposition 23], another known ideal of S is its socle (or
left annihilator), i.e., the set

Soc (S) = {a | a ∈ S, ∀ b ∈ S a + b = a ◦ b and a + b = b + a}.

In addition, note that if I and J are ideals of S, then, as proved in [10,
Proposition 24], I +J and I ◦J also are, and one can easily see from Lemma 1
that they coincide.

In light of Theorem 1, we can give the following structure theorem for
every ideal of a dual weak brace.

Theorem 3. Let S = [Y ;Bα;φα,β ] be a dual weak brace, Iα an ideal of each
skew brace Bα, and set ψα,β := φα,β |Iα

, for all α ≥ β. If φα,β(Iα) ⊆ Iβ, for
any α > β, then I = [Y ; Iα;ψα,β ] is an ideal of S and, conversely, every ideal
of S is of this form.

Proof. To show that I = [Y ; Iα;ψα,β ] is an ideal of S, by [27, Exercises
III.1.9(ii)], it is enough to prove the λ-invariance of I. If a ∈ S and x ∈ I,
there exist α, γ ∈ Y such that a ∈ Bα and x ∈ Iγ , and so, since by the
assumption φγ,αγ (x) ∈ Iαγ , we have that

λa (x) = φα,αγ (−a) + φα,αγ (a) ◦ φγ,αγ (x) = λφα,αγ(a)φγ,αγ (x) ∈ Iαγ ,

hence λa (x) ∈ I.
Vice versa, if I is an ideal of (S,+, ◦), since I is a dual weak brace too, it
follows by Theorem 1 and [27, Exercises III.1.9(ii)] that I = [Y ; Iα;ψα,β ],
with Iα = Bα ∩ I, for every α ∈ Y , ψα,β := φα,β |Iα

, for all α ≥ β, such that
φα,β(Iα) ⊆ Iβ , for any α > β. To get the claim, we prove the λ-invariance of
each Iα, i.e., Iα is an ideal of the skew brace Bα, for every α ∈ Y . Indeed,
we have that λa(x) ∈ Bα ∩ I = Iα, for all a ∈ Bα and x ∈ Iα. Therefore, the
claim follows. �



67 Page 10 of 22 F. Catino et al. MJOM

By Theorem 3, the ideals of any dual weak brace S = [Y ;Bα;φα,β ] are
strong semilattices Y of certain ideals Iα of each skew brace Bα. However, the
skew brace theory is not exhaustive for developing the theory of dual weak
braces. In fact, for instance, if we consider the ideal Soc(S), in general, it is
not the strong semilattice Y of the socles Soc (Bα) of Bα (see Example 1).

Lemma 4. Let S = [Y ;Bα;φα,β ] be a dual weak brace. Then, denoting by
φ−

α,β the inverse image of φα,β, we have

Soc(S) =
[
Y ;

⋂
α≥β

φ−
α,β (Soc(Bβ)) ;ψα,β

]
,

where ψα,β := φα,β |Soc(Bα)
, for all α ≥ β.

Proof. By the proof of Theorem 3, to prove the claim it is enough to show
that Soc(S)∩Bα =

⋂
α≥β

φ−
α,β (Soc(Bβ)), for every α ∈ Y . Let x ∈ Soc(S)∩Bα

and β ∈ Y such that α ≥ β. Then, if b ∈ Bβ ,

φα,β (x) + b = x + b = x ◦ b = φα,β (x) ◦ b

φα,β (x) + b = x + b = b + x = b + φα,β (x) ,

hence x ∈ ⋂
α≥β

φ−
α,β (Soc(Bβ)). Conversely, if x ∈ ⋂

α≥β

φ−
α,β (Soc(Bβ)) and

y ∈ Bγ , with γ ∈ Y , then x ∈ Bα and, since φα,αγ (x) ∈ Soc (Bαγ), we get

x + y = φα,αγ (x) + φγ,αγ (y) = φα,αγ (x) ◦ φγ,αγ (y) = x ◦ y

x + y = φα,αγ (x) + φγ,αγ (y) = φγ,αγ (y) + φα,αγ (x) = y + x,

therefore x ∈ Soc(S) ∩ Bα. �

As a direct consequence of Theorem 3 and Lemma 4, we have the following.

Proposition 4. Let S = [Y ;Bα;φα,β ] be a dual weak brace, ψα,β := φα,β |Soc(Bα)
,

for all α ≥ β, and assume that I := [Y ; Soc (Bα) ;ψα,β ] is an ideal of S. Then,
I = Soc(S).

According to [10, Theorem 21], ideals allow for obtaining quotient struc-
tures. Into the specific, if I is an ideal of a dual weak brace (S,+, ◦), then
the relation ∼I on S given by

∀ a, b ∈ S a ∼I b ⇐⇒ a0 = b0 and − a + b ∈ I

is an idempotent separating congruence of (S,+, ◦). Furthermore, S/I :=
S/ ∼I is a dual weak brace with semilattice of idempotents isomorphic to
E (S).
As it is natural to expect, we can consider the canonical epimorphism χ :
S → S/I, a �→ a + I and give the usual homomorphism theorems.

Theorem 4. Let φ : S → T be a homomorphism between two dual weak braces
(S,+, ◦) and (T,+, ◦). Then, the following statements hold:

1. Im φ is a dual weak sub-brace of (T,+, ◦);
2. ker φ = {a | a ∈ S ∃ e ∈ E(S) φ(a) = φ(e)} is an ideal of (S,+, ◦);
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3. there exists a monomorphism φ̃ : S/ker φ → T of dual weak braces such
that Im φ̃ = Im φ and the diagram

S T

S/ker φ

φ

χ
φ̃

commutes.

Remark 1. Let us observe that any ideal I of a dual weak brace S is the
kernel of the canonical epimorphism χ. Indeed, if a ∈ I, then a + I = a0 + I,
hence a ∈ ker χ. Conversely, if a ∈ ker χ, then there exists e ∈ E(S) such
that χ (a) = χ (e), hence a = a + a0 ∈ a + I = e + I ⊆ I.

Corollary 4. Let (S,+, ◦) be a dual weak brace, I an ideal of S, and H a dual
weak sub-brace of S. Then,

1. I + H is a dual weak sub-brace of S;
2. I is an ideal of I + H;
3. I ∩ H is an ideal of H;
4. H/(I ∩ H) is isomorphic to (I + H) /I.

Corollary 5. Let (S,+, ◦) be a dual weak brace and I, J ideals of S such that
J ⊂ I. Then, S/I is isomorphic to (S/J) / (I/J).

Corollary 6. Let I be an ideal of a dual weak brace (S,+, ◦). There is a one-
to-one correspondence between the set of ideals of S containing I and the set
of ideals of S/I. Moreover, ideals of S containing I correspond to ideals of
S/I.

4. Left Ideals of Dual Weak Braces

In this section, we provide a characterization of ideals of any dual weak brace
which makes use of the concept of left ideals and the operation ·.

Let us start by introducing the notions of the left ideal and strong left
ideal of a dual weak brace, consistently with [12] and [19, Definition 2.3].

Definition 5. Let (S,+, ◦) be a dual weak brace. Then, a subset I of S is a
left ideal of (S,+, ◦) if

1. I is a full inverse subsemigroup of (S,+),
2. λa(I) ⊆ I, for every a ∈ S.

A left ideal I is a strong left ideal if I is a normal subsemigroup of (S,+).

Note that any left ideal I of a dual weak brace S is a full inverse subsemigroup
of (S, ◦). Indeed, by Lemma 1, if a, b ∈ I, then a ◦ b = a + λa (b) ∈ I and
a− = λa− (−a) ∈ I.

Similar to Theorem3, we can describe the structure of any strong left
ideal, as follows.
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Proposition 5. Let S = [Y ;Bα;φα,β ] be a dual weak brace, Iα a strong left
ideal of each skew brace Bα, and set ψα,β := φα,β |Iα

, for all α ≥ β. If
φα,β(Iα) ⊆ Iβ, for any α > β, then I = [Y ; Iα;ψα,β ] is a strong left ideal of
S and, conversely, every strong left ideal of S is of this form.

Example 2. Let (S,+, ◦) be a dual weak brace. Every full endomorphism-
invariant subsemigroup I of (S,+), i.e., ϕ(I) ⊆ I, for every ϕ ∈ End(S,+),
is a strong left ideal (cf. [19, cf. Example 2.4]).

In skew braces theory [12], a known left ideal of a skew brace (B,+, ◦)
is Fix(B), that is the set of the elements of B that are fixed by the map λa,
for every a ∈ B. For a dual weak brace S, it can be defined similarly, as we
show below.

Proposition 6. Let (S,+, ◦) be a dual weak brace. Then, the following set

Fix(S) : = {b | b ∈ S, ∀ a ∈ S a + b = a ◦ b}
= {b | b ∈ S, ∀ a ∈ S λa(b) = a0 + b}

is a left ideal of S.

Proof. Initially, by (1), E(S) ⊆ Fix(S). Moreover, (Fix(S),+) is trivially
closed with respect to + and, by Lemma 1-2., a ◦ (−b) = a − a ◦ b + a =
a − b + a0 = a − b, for all a ∈ S and b ∈ Fix(S). Finally, if a, c ∈ S and
b ∈ Fix(S), it follows that

c + λa(b) = c + c0 + a0 + b b ∈ Fix(S)

= c + c0 ◦ a0 + b by (1)
= c − c ◦ a + c ◦ a + b

= c − c ◦ a + c ◦ a ◦ b b ∈ Fix(S)

= c + λc◦a(b)

= c ◦ λa(b) by Lemma 1 − 3.

Therefore, Fix(S) is a left ideal of S. �

Definition 6. If (S,+, ◦) is a dual weak brace, then we call the set Zl(S) :=
Fix(S) ∩ ζ(S,+) the left center (or right annihilator) of S, where ζ(S,+)
denotes the center of (S,+).

It is easy to check that Zl(S) is a strong left ideal of any dual weak brace S.
In general, Zl(S) is not an ideal as shown in the context of skew braces in
[2, Example 5.7].

In the following, if X and Y are subsets of a dual weak brace (S,+, ◦),
we denote by X · Y the additive inverse subsemigroup of S generated by the
elements of the form x ·y, with x ∈ X and y ∈ Y (cf. [27, Definition II.1.11]).

Proposition 7. Let (S,+, ◦) be a dual weak brace. Then, the following hold:
1. a full inverse subsemigroup I of (S,+) is a left ideal of S if and only if

S · I ⊆ I;
2. if I is an ideal of S, then S · I ⊆ I and I · S ⊆ I;
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3. a normal subsemigroup I of (S,+) is an ideal of S if and only if I ·S ⊆ I
and λa (I) ⊆ I, for every a ∈ S.

Proof. 1. If I is a left ideal of S, a ∈ S and x ∈ I, then a ·x = λa (x)−x ∈ I.
Conversely, if S · I ⊆ I, a ∈ S and x ∈ I, by (2), we obtain that λa (x) =
a · x + x ∈ I.
2. By 1., it is enough to see that if a ∈ S and x ∈ I, then

x · a = −x + a − a + a ◦ a− ◦ x ◦ a − a = −x + a + λa

(
a− ◦ x ◦ a

) − a︸ ︷︷ ︸
∈I

∈ I.

3. It is enough to show that if a ∈ S and x ∈ I, then by Lemma 1

a ◦ x ◦ a− = a + λa

(
x + λx

(
a−))

= a + λa (x) + λa◦x

(
a−)

+ a − a

= a + λa

(
x + λx

(
a−) − a−) − a = a + λa

(
x + x · a−)

︸ ︷︷ ︸
∈I

−a ∈ I,

which completes the proof. �

As a consequence of Proposition 7, one can characterize the ideals of a
dual weak brace as is usual in ring theory.

Corollary 7. Let (S,+, ◦) be a dual weak brace. Then, a normal subsemigroup
I of (S,+) is an ideal of S if and only if S · I ⊆ I and I · S ⊆ I.

To conclude this section, similarly to [4, Proposition 1.3], we show how
to obtain instances of left ideals starting from ideals. If X,Y are ideals of a
dual weak brace S, we denote by [X, Y ]+ =

〈
[x, y]+ | x ∈ X, y ∈ Y

〉
.

Proposition 8. Let (S,+, ◦) be a dual weak brace and I, J ideals of S. Then,
I · J , I · J + J · I, and [I, J ]+ are left ideals of S.

Proof. Initially, note that I ·J and I ·J+J ·I trivially contain E (S). Moreover,
I · J clearly is an inverse subsemigroups of (S,+) and if s ∈ S, x ∈ I, and
h ∈ J , then, by Lemma 1-2. and (3),

s · (x · h) = λs◦x (h) − λs (h) − x · h = λs◦x◦s−λs (h) − λs (h) − x · h

=
(
s ◦ x ◦ s−) · λs (h) − x · h ∈ I · J,

hence, by Proposition 7-1., I · J is a left ideal of S.
To prove that I · J + J · I is an inverse subsemigroup of (S,+), let us check
that J · I + I · J ⊆ I · J + J · I. If x, y ∈ I and h, k ∈ J , since (y · (h · x))0 =
y0 + y0 ◦ (h · x)0 +(h · x)0 = (h · x)0 + y0 and y · k = y0 + y · k, it follows that

h · x + y · k = (y · (h · x))0 + h · x + y · k + (h · x)0

= −y · (h · x) + y · (h · x + k) + h · x ∈ I · J + J · I,

where in the last equality we use Proposition 1-2.. Furthermore, by the first
part of the proof, we trivially get λa (I · J + J · I) ⊆ I · J + J · I, for every
a ∈ S.
Finally, [I, J ]+ trivially is a left ideal of S. Therefore, the claim is proved.
�
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5. Right Nilpotent Dual Weak Braces

Following [12,31], if (S,+, ◦) is a dual weak brace, set S(1) := S, we induc-
tively define

S(n+1) = S(n) · S,

for every n ≥ 1, and obtain that it is an ideal, whose proof can be proved
similarly to [12, Proposition 2.1]. However, unlike what happens for the socle,
here we can use the characterization of ideals in Theorem 3.

Proposition 9. If (S,+, ◦) is a dual weak brace, then S(n) is an ideal of S,
for every n ≥ 1.

Proof. Initially, by Theorem1, we have that S = [Y ;Bα;φα,β ] and one clearly
obtains S(n) ⊆⊍α∈Y B(n)

α . The claim follows by Theorem 3, by showing that
φα,β

(
B

(n)
α

)
⊆ B

(n)
β , for any α > β, by proceeding by an easy induction on

n. �

Definition 7. A dual weak brace (S,+, ◦) is said to be right nilpotent if S(n) =
E(S) for some n ≥ 1. The smallest positive integer m such that S(m+1) =
E(S) is called right nilpotency index of S.

It is easy to check that if S is a right nilpotent dual weak brace, then any
ideal I and quotient S/I are right nilpotent as well. At the present state of
our knowledge, we do not know whether the vice versa is true in general.
Surely, it is true when I is the socle of any dual weak brace, as we show in
the following result. At first, note that Soc (S) is right nilpotent since, using
Lemma 3, it can be rewritten in terms of the · operation, as

Soc (S) = {a | a ∈ S, ∀ b ∈ S a · b ∈ E(S) and a + b = b + a}.

Proposition 10. Let (S,+, ◦) be a dual weak brace such that S/Soc (S) is right
nilpotent. Then, S is right nilpotent.

Proof. Since there exists m ∈ N such that (S/Soc (S))(m) = E (S/Soc (S)),
it follows that S(m) ⊆ Soc (S). Hence, S(m+1) = S(m)·S ⊆ Soc (S)·S ⊆ E (S).
Thus, the claim is proved. �

Definition 8. Let (S,+, ◦) be a dual weak brace. Set Soc0 (S) := E (S), we
define Socn (S) to be the ideal of S containing Socn−1 (S) such that

Socn (S) /Socn−1 (S) = Soc (S/Socn−1 (S)) ,

for every positive integer n.

In particular, Socn (S) := {a | a ∈ S, ∀ b ∈ S a · b ∈ Socn−1 (S) , [a, b]+ ∈
Socn−1 (S)}, for every positive integer n (cf. [6, Remark 28]).

Definition 9. Let (S,+, ◦) be a dual weak brace. An s-series (or left annihi-
lator series) of S is a sequence of ideals of S

E(S) = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im = S

such that Ij/Ij−1 ⊆ Soc (S/Ij−1), for each j ∈ {1, . . . , m}.



MJOM Solutions of the Yang–Baxter Equation and Strong Semilattices Page 15 of 22 67

One can check that S admits an s-series if and only if there exists a positive
integer n such that S = Socn (S), as in the case of the skew braces (cf. [12,
Lemma 2.15]). In light of this fact, we give the following definitions.

Definition 10. A dual weak brace (S,+, ◦) is called left annihilator nilpotent
if S admits an s-series. Consequently, if S is left annihilator nilpotent, we
call socle series (or upper left annihilator series) the series introduced in
Definition 8. The smallest non-negative integer n such that S = Socn (S) is
called left annihilator nilpotency index of S.

Proposition 11. Let (S,+, ◦) be a left annihilator nilpotent dual weak brace.
Then, S is right nilpotent.

Proof. Let E(S) = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im = S an s-series of S. Let
k ∈ {1, . . . ,m}, we prove that S(k) ⊆ Im−k+1 by proceeding by induction on
k. If k = 1, then S = Im. Now, let k ∈ N and assume that S(k) ⊆ Im−k+1.
Then, considered the canonical epimorphism χ : S → S/Im−k, it holds that
χ (Im−k+1) · χ (S) ⊆ E (S/Im−k), and so Im−k+1 · S ⊆ Im−k. Hence,

S(k+1) = S(k) · S ⊆ Im−k+1 · S ⊆ Im−k

and the claim follows by induction. Therefore, S(m+1) = E (S) and so S is
right nilpotent of right nilpotency index less or equal to m. �
The converse of Proposition 11 is true in the particular case in which (S,+)
is a nilpotent Clifford semigroup. The notion of nilpotent Clifford semigroup
which we adopt in this work is consistent with the one given in [25].

Proposition 12. Let (S,+, ◦) be a dual weak brace such that (S,+) is nilpo-
tent. Then, S is right nilpotent if and only if S is left annihilator nilpotent.

Proof. The necessary condition follows by Proposition 11. The sufficient one
is similar to the proof of [12, Lemma 2.16] by using lower central series of
(S,+) in [25, Definition 3.4]. �

Below, we relate the left annihilator nilpotency of a dual weak brace
S = [Y ;Bα;φα,β ] with those of each skew brace Bα. It will be a direct
consequence of the following lemma.

Lemma 5. Let S = [Y ;Bα;φα,β ] be a dual weak brace. Then, Bα∩ Sock (S) ⊆
Sock (Bα), for all α ∈ Y and k ∈ N.

Proof. Let us check that Bα ∩ Sock (S) ⊆ Sock (Bα), by proceeding by in-
duction on k. If k = 1 the claim follows by Theorem 3. Now, suppose that
the statement holds for k ∈ N and let a ∈ Bα ∩ Sock+1 (S). Then, for any
b ∈ Bα, a · b ∈ Sock (S), [a, b]+ ∈ Sock (S), and a · b ∈ Bα, and so, by the
inductive hypothesis, a ∈ Sock+1 (Bα). �
Proposition 13. Let S = [Y ;Bα;φα,β ] be a left annihilator nilpotent dual weak
brace of index n. Then, for every α ∈ Y each skew brace Bα is left annihilator
nilpotent of index less or equal to n.
Vice versa, if each skew brace Bα is left annihilator nilpotent of index kα,
then S is left annihilator nilpotent of index equal to the maximum between
kα, for every α ∈ Y .
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6. Annihilator Nilpotency of Dual Weak Braces

Let us start by introducing a further ideal of a dual weak brace (S,+, ◦), that
is the annihilator of S. Denoted by ζ (S, ◦) the center of (S, ◦), it is the set

Ann (S) := Soc (S) ∩ ζ (S, ◦) ,

namely, Ann (S) = {a | a ∈ S ∀ b ∈ B a + b = b + a = a ◦ b = b ◦ a}. Note
that the definition is consistent with that given in [7, Definition 7] for skew
braces.

Proposition 14. Let (S,+, ◦) be a dual weak brace. Then, Ann (S) is an ideal
of S.

Proof. Clearly, E (S) is contained in Ann (S). Moreover, if x ∈ Ann (S) and
a ∈ S,

b ◦ (−a + x + a) = b − b ◦ a + b0 + b ◦ x − b + b ◦ a by Lemma 1 − 2.

= b − b ◦ a + x ◦ b − b + b ◦ a x ∈ ζ (S, ◦)

= b − b ◦ a + x + b0 + b ◦ a x ∈ Soc (S)

= b + x + (b ◦ a)0 x ∈ Soc (S)

= b + x + a0 + b0

= (−a + x + a) + b x ∈ Soc (S)

= (−a + x + a) ◦ b. −a + x + a ∈ Soc (S)

for every b ∈ S. Besides, one has that λa (x) = −a + x ◦ a = −a + x + a ∈
Ann (S). Finally, a− ◦ x ◦ a = a0 ◦ x = λa(x) ∈ Ann (S), which completes the
proof. �

As it happens for the socle, in general, the annihilator of a dual weak
brace S does not coincide with the union of the annihilators of each skew
brace Bα (see, for instance, Example 1). Similar to Proposition 4, we obtain
the following result.

Proposition 15. Let S = [Y ;Bα;φα,β ] be a dual weak brace, ψα,β := φα,β |Ann(Bα)
,

for all α ≥ β, and assume that I := [Y ; Ann (Bα) ;ψα,β ] is an ideal of S.
Then, I = Ann(S).

Remark 2. As a consequence of Lemma 3, if (S,+, ◦) is a dual weak brace, it
is also easy to see that

Ann (S) = {a | a ∈ S, ∀ b ∈ S a · b = b · a = [a, b]+ = a0 + b0}.

Similar to [20], as is usual in ring theory, we define the kth annihilator
of a dual weak brace (S,+, ◦).

Definition 11. Let (S,+, ◦) be a dual weak brace. Set Ann0 (S) := E (S), we
define Annk (S) to be the ideal of S containing Annk−1 (S) such that

Annk (S) /Annk−1 (S) = Ann (S/Annk−1 (S)) ,

for every positive integer k.
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Note that Annk (S) = {a | a ∈ S, ∀ b ∈ S a · b, b · a, [a, b]+ ∈ Annk−1 (S)},
for every positive integer k.

Definition 12. A dual weak brace (S,+, ◦) is said to be annihilator nilpotent
if there exists n ∈ N such that Annn (S) = S.

Clearly, any ideal I and quotient S/I of an annihilator nilpotent dual
weak brace S are annihilator nilpotent. The next example shows that, unlike
what happens in ring theory, the converse is not true.

Example 3. Let B := (Z6,+, ◦) be the brace having as an additive group the
cyclic group of 6 elements and multiplication defined by a◦b := a+(−1)a

b, for
all a, b ∈ B. Then, I := {0, 2, 4} is an ideal of B such that Ann (I) = I, so I is
annihilator nilpotent. Clearly, Ann (B/I) = B/I, so B/I also is annihilator
nilpotent. However, B is not annihilator nilpotent since Ann (B) = {0}.

Following [4, Definition 2.3], given a dual weak brace (S,+, ◦) and an
ideal I of S, set Γ0 (I) := I, we can inductively define

Γk (I) :=
〈
Γk−1 (I) · S, S · Γk−1 (I) , [Γk−1 (I) , S]+

〉
+
.

Observe that, set Γ (I) := Γ1(I), then Γk(I) = Γ (Γk−1(I)), for every k ∈ N.

Proposition 16. Let (S,+, ◦) be a dual weak brace and I an ideal of S. Then,
Γk(I) is an ideal of S, for every k ∈ N.

Proof. Assuming S = [Y ;Bα;φα,β ], by an easy induction, one can show that
φα,β (Γk(Bα)) ⊆ Γk (Bβ), for any α > β. Hence, the proof follows by Theo-
rem 3. �

One can show that if (B,+, ◦) is a skew brace and I an ideal of B, then
Γ (I) ⊆ [I,B], where [I,B] denotes the commutator introduced in [5], which
is the smallest ideal of B containing [I,B]+, [I,B]◦, and the set {i◦b−(i+b) |
i ∈ I, b ∈ B}. We can not establish whether Γ (I) = [I,B].
We give the following lemmas, which is useful to prove the main result of this
section and can be compared with [1, Proposition 15] regarding commutators
in the context of skew braces.

Lemma 6. Let M,N ideals of a dual weak brace (S,+, ◦) with M ⊆ N . The
following statements are equivalent:
(i) N/M ⊆ Ann(S/M),
(ii) Γ (N) ⊆ M .

Proof. Initially, assume that N/M ⊆ Ann(S/M). Hence, M + (n ◦ s) =
M + (n + s), for all n ∈ N and s ∈ S. Then,

n · s = −n + n0 + (n ◦ s)︸ ︷︷ ︸
M+(n◦s)

−s = (−n + m + n)︸ ︷︷ ︸
M

+s − s ∈ M,

for some m ∈ M . Similarly, s · n ∈ M . Furthermore, since M + (n + s) =
(s + n) + M ,

[n, s]+ = −n − s + n0 + n + s︸ ︷︷ ︸
M+(n+s)

= −n − s + s + n︸ ︷︷ ︸
M

+m ∈ M,
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for some m ∈ M . Therefore, Γ (N) ⊆ M . The rest of the claim directly follows
by Remark 2. �
Lemma 7. Let (S,+, ◦) be a dual weak brace and M,N ideals of S. Then, it
holds that Γ (M + N) = Γ (M) + Γ (N).

Proof. It is a direct consequence of the definition of Γ (I), for every ideal I
of S, and Proposition 1- 2 and 3. �
Definition 13. Let (S,+, ◦) be a dual weak brace. An ascending series

E(S) = I0 ⊆ I1 ⊆ · · · ⊆ Ik = S

of ideals of S is called an annihilator series of S if Ij+1/Ij ⊆ Ann (S/Ij), for
0 ≤ j ≤ k.

Theorem 5. Let (S,+, ◦) be a dual weak brace. If E(S) = I0 ⊆ I1 ⊆ · · · ⊆
Ik = S is an annihilator series of S, then

Γk−j(S) ⊆ Ij ⊆ Annj(S),

for 0 ≤ j ≤ k.

Proof. First, we set i := k − j and show that Γi(S) ⊆ Ik−i, by proceeding by
induction on i. If i = 0, then Γ0(S) = S = Ik. Now, let i ∈ N and assume
that Γi(S) ⊆ Ik−i. Thus, by Lemma 6,

Γi+1(S) = Γ (Γi(S)) ⊆ Γ (Ik−i) ⊆ Ik−(i+1),

which completes the first part of the proof.
Now, we prove that Ij ⊆ Annj(S) by induction on j. If j = 0, then I0 =
E(S) = Ann0(S). Now, let j ∈ N and assume that Ij ⊆ Annj(S). By Lemma 7
and Lemma 6, we have that

Γ (Ij + Annj−1(S)) = Γ (Ij) + Γ (Annj−1(S)) ⊆ Ij−1 + Annj−1(S) ⊆ Annj−1(S),

where the last inclusion follows by the inductive hypothesis. Thus, since by
Lemma 6

(Ij + Annj−1(S)) /Annj−1(S) ⊆ Ann (S/Annj−1(S)) = Annj(S)/Annj−1(S),

we obtain that Ij + Annj−1(S) ⊆ Annj(S). Consequently, Ij ⊆ Annj(S) and
the claim follows. �

In light of Theorem5 we can give the following definitions.

Definition 14. Let (S,+, ◦) be a dual weak brace. The smallest non-negative
integer c such that Γc+1(S) = E(S) and Annc(S) = S is called nilpotency
index (or annihilator nilpotency index ) of S. The series

E(S) = Ann0(S) ⊆ Ann1(S) ⊆ · · · ⊆ Annc(S) = S

is called upper annihilator series of S. The series

E(S) = Γc+1(S) ⊆ Γc(S) ⊆ · · · ⊆ Γ0(S) = S

is named lower annihilator series of S.

Similarly to Lemma 5 and Proposition 13, one can prove the following
result.
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Proposition 17. Let S = [Y ;Bα;φα,β ] be an annihilator nilpotent dual weak
brace of nilpotency index n. Then, for every α ∈ Y each skew brace Bα is
annihilator nilpotent of index less or equal to n.
Vice versa, if each skew brace Bα is annihilator nilpotent of index kα, then S
is annihilator nilpotent of index equal to the maximum between kα, for every
α ∈ Y .
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