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Abstract: Initially, pristine polymers were used to develop corrosion-resistant coatings. Later,
the trend shifted to the use of polymeric nanocomposites in anti-corrosion materials. In this
regard, graphene has been identified as an important corrosion-resistant nanomaterial. Consequently,
polymer/graphene nanocomposites have been applied for erosion protection applications. Among
polymers, conducting polymers (polyaniline, polypyrrole, polythiophene, etc.) and nonconducting
polymers (epoxy, poly(methyl methacrylate), etc.) have been used as matrices for anticorrosion
graphene nanocomposites. The corrosion-resistant polymer/graphene nanocomposites have found
several important applications in biomedical fields such as biocompatible materials, biodegradable
materials, bioimplants, tissue engineering, and drug delivery. The biomedical performance of the
nanomaterials depends on the graphene dispersion and interaction with the polymers and living
systems. Future research on the anti-corrosion polymer/graphene nanocomposite is desirable to
perceive further advanced applications in the biomedical arenas.

Keywords: polymer; graphene; nanocomposite; anti-corrosion; biomedical

1. Introduction

Corrosion or erosion is a serious technological issue in metal-related materials and
industries [1]. To deal with the corrosion issue, several corrosion-resistant coatings, in-
hibitors, additives, etc. have been developed [2–4]. Anticorrosion technologies are used to
enhance the lifetime of metal-based parts and materials employed in various industries [5].
The corrosion resistance can be enhanced using carbon nanoparticles such as graphene,
carbon nanotube, and carbon black [6]. Polymer/carbon nanocomposites possess superior
anticorrosion features relative to neat polymers [7]. The performance of anticorrosion
polymer/carbon nanocomposites depends on the nanofiller dispersion and compatibil-
ity with the polymer [8]. Graphene has been recognized as a unique nanomaterial with
erosion-protective properties [9]. Polymers with graphene nanofiller have been applied
to develop the anticorrosion coatings [10]. Conjugated and nonconjugated polymers have
been employed to fabricate graphene-based nanocomposites. Graphene in polymers offers
tortuous pathways to hinder the diffusion of corrosive species [11,12]. Such nanocomposites
have been casted using various techniques such as solution casting, dip coating, spraying,
spin coating, and printing [13–15]. Corrosion-resistant polymer/graphene nanocompos-
ites have found wide-ranging potential in the biomedical fields [16]. The biomedical
application of anticorrosion polymer/graphene nanomaterials relies on graphene’s better
dispersion, interfacial interactions, and bio-miscibility properties. Hence, the biomedical
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fields explored include bioimplants, tissue engineering, and drug delivery. Parenthetically,
the physical/chemical functionalization of graphene may further enhance the dispersion,
interactions, anticorrosion, and biomedical properties of nanocomposites.

Hence, this review focuses on anticorrosion polymer/graphene nanocomposites, cov-
ering the essential design and property aspects. This article proposes a groundbreaking
and innovative review on anticorrosion polymer/graphene nanomaterials for biomedical
applications. The review is no doubt revolutionary in portraying practical advancements in
the field of anticorrosion polymer/graphene nanocomposites. Graphene incorporated
into polymeric nanocomposites can considerably augment the biomedical properties.
The main objective of this manuscript is to create a comprehensive understanding of
the physical properties and mechanisms behind the anticorrosion efficiency of graphene
and polymer/graphene nanocomposites. Future efforts in the field of anticorrosion poly-
mers/fullerenes are not possible before obtaining prior knowledge on existing studies on
relevant biomedical nanocomposites.

2. Polymers in Corrosion Resistance

The corrosion process has been known to seriously damage the metal surface through
chemical/electrochemical reactions, as a result of environmental changes [17]. During
rusting, metal surfaces are bonded to chemical species such as nitrates, sulfides, and oxides,
thus destroying their form. In this regard, several mechanisms have been suggested for
metal protection [18]. Accordingly, corrosion has been identified as a serious issue for
electronic, automotive, aircraft, and aerospace parts [19,20]. To prevent corrosion, metal
parts can be coated with various materials to prevent the erosion process [21,22]. Polymer
coatings have been applied for the erosion inhibition of mild steel [23]. Polymers with
additives have also been used as corrosion inhibitors [24,25]. Polymer-based coatings have
been used to prevent chemical reactions from occurring at the metal surface [26]. In this
regard, conducting polymers have been employed as corrosion-resistant materials on metal
surfaces [27]. Conjugated polymers such as polyaniline and polypyrrole have been utilized
to protect the carbon steel and stainless-steel metallic surfaces [28–30]. Among nonconduct-
ing polymers, epoxy, poly(ethylene glycol), etc. have been used to develop anticorrosion
coatings [31]. Table 1 shows few important corrosion-resistant polymers. Anticorrosion
polymer coatings have revealed outstanding relevance for corrosion prevention [32].

Table 1. Examples of polymers for corrosion defense.

Polymer Abbreviation Structure Ref.

Polyaniline PANI
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Table 1. Cont.

Polymer Abbreviation Structure Ref.

Poly(acrylic acid) PAA
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4. Polymer/Graphene Nanocomposite in Corrosion-Resistant Coats

Corrosion-resistant materials/nanomaterials and coatings have been used to prevent
metals from corrosion [49]. Various mechanisms have been proposed for the anticorrosion
process such as the barrier effect and corrosion reserve processes [50]. Usually, an optimum
amount of nanomaterial is desirable to form a protective layer on the metals [51]. Different
nanofillers have been added to enhance the anticorrosion of base materials [52].

A single defect-free graphene layer (two dimensional nanosheet) showed outstanding
defending performance against corrosion-causing molecules [53]. Graphene nanosheets
have the ability to prevent corrosion-causing water or oxygen molecules from reaching the
metal surface. Thus, graphene has been recommended as the thinnest known corrosion
defense material [54]. Moreover, the electrical, mechanical, and tribology properties of
graphene make it the most ideal anticorrosion coating.

Advanced polymer/graphene nanocomposites have been developed with light weight,
inexpensiveness, and fine processability [55]. The nanofiller type controls the anti-rusting
properties of metals through coatings [56]. Consequently, graphene has been consid-
ered as an important nanofillers in anticorrosion materials [57,58]. The performance and
the mechanism of the corrosion resistance material depend on the graphene dispersion,
coating thickness, porosity, and formation of circuitous diffusion paths for the corrosive
agents [59–61]. Using epoxy resin and waterborne polyurethane, efficient anticorrosion
coatings were developed in [62–64]. The epoxy/graphene-based nanomaterials revealed
high toughness, adhesion, thermal stability, and chemical resistivity in addition to anticorro-
sion [65–67]. Similar to graphene, graphene oxide has also been used in anti-rusting epoxy
coatings [68]. Graphene and graphene oxide may form a twisting diffusion path to hinder
the permeation of corrosive molecules [69]. Zhang et al. [70] designed corrosion-resistant
epoxy/graphene nanocomposite coatings. A five-layered epoxy coating was developed by
the addition of graphene and alumina (Figure 2).
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For corrosion measurements, the samples were dipped in the 3.5% NaCl solution
for 5 days. According to EIS measurements, the impedance of pure epoxy resin coating
was 6.4 × 106 Ω·cm2 after 26 days (Figure 3). The inclusion of nanofillers decreased
the impedance to 106 Ω·cm2, showing an improvement in the corrosion resistance of the
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nanocomposite. Figure 4 shows the anticorrosion mechanism of the multilayer nanocom-
posite coating. The barrier effect of the epoxy resin was enhanced severalfold using the
graphene nanofiller. Qi et al. [36] proposed a poly(methyl methacrylate)/graphene oxide
nanocomposite through atom transfer radical polymerization. The poly(methyl methacry-
late)/graphene oxide nanocomposite was solution-processed with homogeneous thickness,
permeation resistance to corrosive molecules, and improved physical properties [71].
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Among conjugated polymers [72], polyaniline has been applied in anti-rusting
coats [73]. Kraljić and coworkers [74] industrialized polyaniline/graphene nanocomposite
coatings. Figure 5 demonstrates the development of the polymer/graphene coating through
the aniline monomer and in situ polymerization [75,76]. Graphene nanoparticle cause a fine
dispersion and barrier effect, preventing the infiltration of water/oxygen molecules [77].
Sun et al. [78] formed an anticorrosion pernigraniline/graphene nanocomposite with fine
scratch resistance features. The improved dispersion and interaction of graphene nanopar-
ticles with polymers have been studied for nanocomposite coatings [79,80]. In this way,
graphene has been combined with both conjugated and nonconjugated polymeric matrices
for corrosion resistance properties.
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Figure 5. Formation of polyaniline/graphene nanocomposite.

According to the electrochemical parameters of various anticorrosion polymer/
graphene nanocomposites coated on mild steel under similar conditions, interesting results
have been observed [69,81–83]. Among epoxy, polyaniline, polypyrrole, and polyurethane,
the use of epoxy matrix with graphene was found to be ideal to attain high Ecorr, Icorr, and
Rcorr parameters for anticorrosion application. The corrosion resistance efficiency of the
coatings was dependent on factors such as graphene modification, polymer type, coating
technique, and adhesion to substrate. It can be stated that epoxy offered a better matrix for
graphene nanosheets to offer an enhanced barrier against the corrosive species.



J. Compos. Sci. 2022, 6, 362 7 of 14

5. Corrosion-Resistant Polymer/Graphene in Biomedical Applications

The use of polymers, in various commercial and industrial sectors, has been shifted to
the development and employment of composite materials [84]. For high-performance mate-
rials, graphene has been used to reinforce polymeric nanocomposites for an improvement
in strength, thermal resistance, thermal conductivity, electron transport, and biomedical
application [85–87]. In the biomedical field, graphene-based materials have been used
to enhance drug/gene delivery, cell proliferation, and tissue engineering [88–90]. Poly-
mer/graphene nanocomposites have had a special impact in the biomedical field [90–92],
such as in bioimplants, tissue engineering, and drug delivery [93–96].

5.1. In Bioimplants

Polymer graphene nanocomposites have been efficiently applied in bioimplants [97].
These nanomaterials have biodegradability and biocompatibility properties with essen-
tial functionalities to facilitate the development of efficient and affordable biomedical
implants. Wen et al. [98] reported an anticorrosion hydroxyapatite/graphene oxide bio-
nanocomposite. The nanocomposite coating was biodegradable and coated on a magne-
sium alloy to design the bioimplants. Li et al. [99] developed a biocompatible/biodegradable
hydroxyapatite/graphene/graphene oxide nanocomposite coating using the hydrothermal
method. The nanocomposite was used as the bone repair material. The nanocompos-
ite coating enhanced the corrosion resistance of the magnesium alloy by approximately
28.53-fold with respect to the neat sample. This coating was used to enhance the an-
ticorrosion of Mg alloys for clinical applications. Catt et al. [100] prepared a poly(3,4-
ethylenedioxythiphene)/graphene oxide (PEDOT/GO) nanocomposite coating to form a
corrosion-resistant biodegradable implant with magnesium metal. The coating was pre-
pared through electro-polymerization on Mg metal. The Mg samples (coated/noncoated)
were introduced to cultured neurons, where reduced toxicity was observed for the PEDOT/
GO-coated sample. Moreover, the PEDOT/GO coating was biocompatible. Figure 6 shows
the cracked plate-like morphology of the PEDOT/GO coating, along with the amorphous
regions. Moreover, the EDX analysis of the cracked and amorphous morphology exhibited
a high percentage of oxygen/phosphorus in cracked areas, relative to the amorphous
regions. Figure 7 shows the percentage cytotoxicity of neurons (24 h exposure) in neuronal
medium for the coated and noncoated samples. In 10% corrosion solution, the coated
samples were seemingly less toxic compared with the noncoated samples.
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5.2. Tissue Engineering

In tissue engineering applications, the worth of polymer/graphene nanocomposites
has been recognized [101]. These nanomaterials have received considerable attention re-
garding their design, biocompatibility, and degradable properties for fabricating the desired
biomedical scaffolds. The potential of anticorrosion polymer/graphene nanomaterials can
further enhance the stability and efficiency of the engineered bio-tissues. However, further
in vivo studies have been found desirable to validate the polymer/graphene nanocompos-
ite scaffolds. Rikhari et al. [102] fabricated a polypyrrole (PPy) and polypyrrole/graphene
oxide (PPy/GO) nanocomposite for tissue engineering. The nanocomposite was deposited
on Ti metal using electro-polymerization. The corrosion protection efficiency of neat PPy
and PPy/GO nanocomposite coatings, as well as their porosity, on Ti metal are depicted
in Figure 8. The nanocomposite coating revealed a higher corrosion protection efficiency
than the neat PPy coating. The porosity of the nanocomposite coating also displayed the
same trend. Figure 9 shows the proliferation assay (MTT) for MG-63 cells on the surface of
coated and noncoated Ti metal. A 7 day time interval was allowed for cell proliferation
in the presence of PPy and the PPy/GO nanocomposite. The Ppy/GO nanocomposite
facilitated the adhesion/proliferation of MG-63 cells without any cytotoxicity or corro-
sion phenomena. Therefore, the nanocomposite coatings were found to be effective. De
Armentia et al. [103] prepared photopolymerizable acrylic resin/graphene oxide nanocom-
posites as anticorrosion materials for dentistry and tissue engineering applications. The
graphene oxide content and number of layers in the nanocomposite determined the corro-
sion resistance performance of the nanomaterials. In summary, various polymer/graphene
nanomaterials have been successfully designed and applied in anticorrosion biomedical
tissue engineering applications.
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5.3. Drug Delivery

In biomedicine applications such as drug transfer and tissue manufacturing, poly-
mer/graphene nanomaterials have been effective [92]. Graphene and graphene-derived
nanomaterials have been found promising for designing advanced drug delivery systems
for a range of therapeutics. Studies have revealed observed that graphene/graphene oxide-
based nanocomposites may cause dose-dependent toxic effects in living systems (cells of
liver, kidney, lungs, etc.) [104]. For example, a low dose of 0.1 mg graphene nanocomposite
was found to be nontoxic. At low graphene nanocomposite content, the material behaved
as a biocompatible and miscible nanomaterial with living cells. However, increasing the
dose loading to 0.25–0.4 mg produced serious toxic effects in the living cells. Therefore,
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the threshold level for the dose must be taken into the consideration, while using the
graphene-based nanocomposites in drug delivery or tissue engineering applications.

6. Encounters and Conclusions

In this review, an all-inclusive evaluation of the design, features, and potential of
anticorrosion polymer/graphene nanocomposite coatings was presented. These coat-
ings unusually have a high surface area, inexpensiveness, light weight, conductivity, and
corrosion resistance [105]. The worth of anticorrosion polymer/graphene nanocompos-
ites in biomedical applications has been observed. Amongst nanocarbon nanoparticles,
graphene nanofillers have gained special research attention [106,107]. For corrosion protec-
tion, graphene nanofillers have been successfully employed. Numerous mechanisms have
been proposed for the anticorrosion properties of graphene-based nanomaterials [108]. In
the biomedical field, efficient corrosion protection coatings have been developed using
polymer/graphene nanocomposites [109].

Relative to other anticorrosion polymer/nanocarbon nanocomposites, polymer/
graphene nanomaterials have been found advantageous [110]. Graphene has a nanosheet-
like structure, relative to elongated nanotube or spherical nanocarbon nanoparticles [111].
Owing to the unique two-dimensional graphene nanostructure, graphene nanosheets upon
dispersion offer a better barrier compared with carbon nanotube fillers in polymeric ma-
trices [112]. These efficient barrier properties have been observed through the formation
of tortuous pathways (using nanosheets) for the restrictive diffusion of corrosive species
or gases. Higher graphene nanofiller loading may even improve the resistance to corro-
sive molecules.

However, this field is still in a transitory stage, and future efforts are needed for its de-
velopment. For advanced polymer/graphene nanocomposite-based biomedical materials,
it has been found challenging to control the surface defects, porosity, and fragility of the
coatings. Thermoplastics, thermosets, and conjugated matrices have been applied for the
development of anticorrosion coatings related to the biomedical field. The better disper-
sion and interaction of graphene with polymers can be used to enhance the anticorrosion
performance of nanocomposites. Moreover, graphene functionalization can enhance the
matrix–nanofiller interactions in coatings. Nevertheless, several polymer and graphene
combinations are still unexplored for anticorrosion purposes and can be used to develop
coatings of biomedical interest. These coatings need to be further designed using modified
processes to improve the conductive and barrier properties toward corrosive media. In
brief, this review summarized the industrialization of corrosion-resistant coatings while
considering the worth of polymer/graphene nanocomposite systems for bioimplants, tissue
engineering, and other biomedical uses.
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