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Abstract: In this paper we introduce a bulk-surface reaction-diffusion (BS-RD) model in three space
dimensions (3D) that extends the so-called DIB morphochemical model to account for the electrolyte
contribution in the application, in order to study structure formation during discharge-charge processes
in batteries. Here we propose to approximate the model by the bulk-surface virtual element method
(BS-VEM) on a tailor-made mesh that proves to be competitive with fast bespoke methods for PDEs
on Cartesian grids. We present a selection of numerical simulations that accurately match the classical
morphologies found in experiments. Finally, we compare the Turing patterns obtained by the coupled
3D BS-RD model with those obtained with the original 2D version.

Keywords: batteries; metal electrode; electrodeposition; bulk-surface reaction-diffusion systems;
bulk-surface virtual element method; Turing patterns

1. Introduction

The formation of spatio-temporal structures in electrodeposition is a relevant physical phenomenon,
as it impacts several applications, ranging from the durability and efficiency of batteries to
electroplating [1]. The onset of spatio-temporal structures on the cathodic surface was proven to
be initiated by a Turing morphogenetic mechanism, where the physics are modeled by a suitable
reaction-diffusion system (RDS), called DIB model after the authors [1, 2], whose spatial domain is
the electrodic surface. In the DIB model, the spatial domain is assumed to be fixed and does not
change over time, as the growth/corrosion effects are fully modeled by the dynamics of the system.
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By tweaking the parameters of the DIB model, it is possible to successfully simulate spatial [1] or
spatio-temporal patterns [2] of various morphological classes that are experimentally observed under
appropriate physical and chemical conditions; these include spatial patterns such as spots, holes,
stripes, labyrinths, and spiral waves. The effectiveness of the DIB model has justified the development
of extensions and ameliorations, such as the introduction of cross-diffusion [3] and the generalization
of the spatial domain to be a curved surface [4, 5].

As it stands, one of the limitations of the DIB model is that it does not fully accounts for the effects
of non-uniform electrolyte concentration in a neighborhood of the electrode. Experimentally, such non
uniform concentration is induced by the spatial structures arising on the electrode and, in turn, affects
further structure development. In this regard, the electrode-electrolyte system has a two-way coupling
that, in the long run, can drastically affect the resulting morphological class. In this paper we propose
the bulk-surface DIB (BS-DIB) model in three space dimensions to fill this gap. In the proposed model,
the surface represents the electrode (where the electrodeposition takes place), while the 3D bulk models
the electrolyte. The physical two-way coupling mentioned above causes the proposed model to take
the form of a coupled bulk-surface reaction-diffusion system (BS-RDS) [6–8].

For domains of general shape, different numerical methods were developed for the spatial
approximation of BS-RDSs, such as the Bulk-Surface Finite Element Method (BS-FEM) [7], the Cut
Finite Element Method [9], unfitted finite element methods [10], and meshless kernel methods [11],
just to mention a few. In all of these methods, the spatially discrete problem takes the form of a large
ODE system, whose dimension is equal to the number of spatial degrees of freedom. Thus, the high
level of spatial resolution required by RDSs and BS-RDSs, together with the curse of dimensionality
(3D), makes the numerical approximation of the BS-DIB model a challenging computational task. In
the present context, where the bulk domain is a cube, a bespoke tensorized technique called Matrix-
Oriented Finite Element Method (MO-FEM) [12, 13] can be exploited to take advantage of the special
geometry and drastically reduce the computational execution times. However, it is worth noting that
the BS-DIB model can exhibit spatial patterns only in a neighborhood of the surface, hence a uniform
spatial discretization is computationally inefficient. For this reason, we exploit the geometric flexibility
of the bulk-surface virtual element method (BS-VEM) [8] to adopt a graded cubic mesh that is highly
refined close to the surface and much coarser away from the surface. Such a mesh is simultaneously
graded and entirely composed of cubic-shaped elements. Such a combination entails the presence of
hanging nodes and edges, that are naturally handled by the BS-VEM and are not admissible in the
BS-FEM. Compared to the MO-FEM, we show that the BS-VEM on such mesh exhibits a much lower
number of degrees of freedom on equal level of spatial refinement in a neighborhood of the surface,
where high spatial accuracy is actually required and produces patterns of the same morphological class.
It needs to be noted that Turing patterns are highly sensitive to initial conditions, which are bound to
be different between MO-FEM ad BS-VEM since the spatial meshes are different, hence obtaining the
same morphological class with both methods is a sensible benchmark.

We present a wide range of numerical simulations for both the 2D DIB and the 3D BS-DIB models
on equal parameters, to showcase the effect of the bulk-surface coupling. From the experiments we
draw the following conclusions. First, the BS-DIB model appears to have a larger Turing region in
the parameter space compared to the DIB model. In fact, for several choices of the parameters outside
the Turing region of the DIB model, only the BS-DIB model exhibits spatial patterns. Second, when
the DIB model exhibits spatial patterns, the BS-DIB model still exhibits patterns, but of different

Mathematics in Engineering Volume 6, Issue 2, 363–393.



365

morphological class, thereby further highlighting the impact of the bulk-surface coupling. A rigorous
analysis of the Turing instability for the BS-DIB model will be addressed in future work.

The structure of the paper is as follows. In Section 2 we introduce the BS-DIB model, we give its
physical interpretation and we analyse the stability of a relevant spatially uniform equilibrium in the
absence of diffusion. In Section 3, we recall from [14] the BS-VEM and we present a bespoke graded
polyhedral mesh that allows the BS-VEM to outperform the MO-FEM when solving the BS-DIB
model. In Section 4, we present an extensive list of numerical experiments that empirically demonstrate
the effect of the bulk-surface coupling on pattern formation. Conclusions are drawn in Section 5.

2. The bulk-surface DIB model on the cube

In this section, we present for the first time the morpho-chemical bulk-surface DIB (BS-DIB) PDE
system for battery modeling. For simplicity, we consider a cube Ω for the 3D bulk that represents the
electrolyte, and its bottom face Γ as the surface representing the electrode where the electrodeposition
process takes place, see Figure 1.

Figure 1. Bulk-surface DIB model: domain geometry and BCs for the bulk variables b, q.

Hence, let Ω = [0, L]3 be a cube of edge L > 0, let Γ := [0, L]2 × {0} be the bottom face of Ω, let
ΓT = [0, L]2 × {L} be the top face of Ω and let ΓL = ∂Ω \ (Γ ∪ ΓT ) be the union of the lateral faces of
Ω. Let T > 0 be the final time. For the diffusion operators, ∆ will indicate the 3D Laplace operator in
Ω, while ∆Γ the Laplace-Beltrami operator on Γ (which in this case coincides with the 2D Laplacian
since Γ is flat). We recall that the morpho-chemical DIB-model has been originally introduced in [1]
on a 2D rectangular spatial domain, say Q ⊂ R2, in the framework of reaction-diffusion PDEs, with
the original feature of coupling one equation for the morphology η(x, y, t) with one for the surface
chemistry θ(x, y, t), and takes the form:

η̇ − ∆Γη = f (η, θ) in Q;
θ̇ − dθ∆Γθ = g(η, θ) in Q;
∇η · n = 0, ∇θ · n = 0 on ∂Q;
η(x, 0) = η0(x), θ(x, 0) = θ0(x) in Q,

(2.1)
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where n : ∂Q → R2 is the outward unit normal vector on ∂Q. Essentially, here we consider
that this system lives on the bottom face of the cube, i.e., Q ≡ Γ and suitable modifications of
the source terms are needed to describe the new physico-chemical features, as explained in the
following. Concerning the unknown variables, also here we suppose that on the (flat) surface Γ,
η ∈ R expresses the instantaneous increment of the electrodeposit thickness during an electrochemical
process and θ ∈ [0, 1] is the surface coverage with an adsorbed chemical species, that influences
the electrodepostion and corrosion processes. In the last ten years several theoretical and numerical
results have been published on the 2D-DIB model (2.1), as reported in the Introduction and in the
bibliography. Moreover, a wide range of experimental demonstrations of electrochemical pattern
formation, has been documented. In most of the papers, the existence of the so-called Turing patterns
has been proved theoretically, demostrated by numerical simulations and validated through comparison
with experiments, also in the case of 3D surfaces (see [4]). Hence, to account for the more realistic
presence of the battery electrolyte, the bulk-surface (BS)-DIB model seeks to find four functions:
b, q : Ω × [0,T ] → R in the bulk and η, θ : Γ × [0,T ] → R on the surface that fulfil the following
systems of PDEs: ḃ − ∆b = f1(b) in Ω;

q̇ − dΩ∆q = f2(q) in Ω;
(2.2a)η̇ − ∆Γη = f3(b, η, θ) on Γ;

θ̇ − dΓ∆Γθ = f4(q, η, θ) on Γ,
(2.2b)

and are coupled through the boundary conditions (BCs) for the bulk variables b and q given by
∇b · n = − f3(b, η, θ)ψη on Γ;
∇q · n = − f4(q, η, θ)ψθ on Γ;
∇b · n = 0, ∇q · n = 0, on ΓL;
b = b0, q = q0, on ΓT .

(2.3)

Moreover, zero Neumann BCs for (2.2b) for the surface variables η and θ are considered, inherited by
the original 2D-DIB model (2.1) ∇η · n = 0 on ∂Γ;

∇θ · n = 0 on ∂Γ.
(2.4)

The initial conditions are prescribed by:

b(x, 0) = b0 ∈ R; q(x, 0) = q0 ∈ R; η(x, 0) = η0(x); θ(x, 0) = θ0(x), x ∈ Ω. (2.5)

In (2.2), dΩ > 0 and dΓ > 0 are adimensional diffusion coefficients. It is worth noting that the constants
ψη ≥ 0 and ψθ ≥ 0 are responsible of the strength of the BS coupling, in fact when they are equal to
zero the two systems in (2.2) will be independent and the 2D DIB model (2.1) must be recovered by
Eqs (2.2b)–(2.4).

In the bulk Eq (2.2a), b(x, t) represents the concentration of the electroactive cations (precursors
of metal that is electrodeposited during the recharge cycle of the battery), present exclusively in the
bulk and q(x, t) represents the bulk concentration of an additive species that is adsorbed at the cathode
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as a way of controlling shape change with the coverage degree expressed by the variable θ in (2.2b).
Concerning the source terms for the bulk species b and q, the kinetics f1, f2 are defined by:

f1(b) := −kb(b − b0); (2.6)
f2(q) := −kq(q − q0); (2.7)

where b0 = bbulk ∈ R and q0 = qbulk ∈ R, represent the “bulk concentrations” and kb, kq ≥ 0 are reaction
rates.

For the surface variables η and θ, in (2.2b) the kinetics f3 and f4 are defined by:

f3(b, η, θ) := ρ
[
b|Γ · A1(1 − θ)η − A2η

3 − B(θ − α)
]

; (2.8)

f4(q, η, θ) := ρ
[
q|Γ ·C(1 + k2η)(1 − θ)(1 − γ(1 − θ)) − D(1 + k3η)θ(1 + γθ)

]
, (2.9)

and correspond to the source terms of the DIB model (2.1), but this time including the bulk
contributions, as described in details below and such that

f (η, θ) = f3(1, η, θ); g(η, θ) = f4(1, η, θ),

see [1]. In (2.6)–(2.9), the model parameters kb, kq, k2, k3, ρ, α, A1, A2, B,C,D are positive constants,
and γ ≥ 0.

2.1. Physical meaning of source terms

In the kinetics f1, f2:

• b0 = bbulk ∈ R and q0 = qbulk ∈ R, represent the “bulk concentrations”, that prevail at
equilibrium, when the bulk is homogeneous. The physical meaning of the terms (b − b0) and
(q − q0), with kb, kq ≥ 0 is first-order homogeneous reaction kinetics describing the tendency of
the reagent to re-establish the equilibrium concentration. This can be considered a very simple
model of a situation in which b, q are the concentrations of the species involved in the electrodic
reaction in the electroactive form, that is generated by the decomposition of some precursor (e.g.,
metallic ion with a ligand that keeps the ion in solution in non-electroactive form, from which the
electroactive species forms by decomposition of the complexed one). A lower-than-equilibrium
local concentration of b, q (e.g., by cathodic consumption) generates new b, q (by decomposition
of the complexed form); while a higher-than-equilibrium concentration (e.g., by anodic injection)
generates a consumption (e.g., by reaction with the ligand, yielding the non-electroactive form).

For aim of completeness, here we recall and update the meaning of the kinetics of the DIB modeling
(i.e., f , g, f3, f4). The physical meaning of the terms in f3 in (2.8) can be described as follows:

• As in [1], the Butler-Volmer type electrokinetic term A1(1 − θ)η is the charge-transfer rate at sites
free from adsorbates, but here this is scaled by the concentration of the electroactive species at the
surface b|Γ. This corresponds to first-order phenomenological kinetics and it includes naturally
mass-trasport effects from the bulk to the surface (i.e., the mass-transport of the electroactive
species b present in the bulk and reacting electrochemically at the surface).
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• The cubic term −A2η
3 in the original DIB model [1] represents collectively all “hindrances” to

η (growth) resulting from “the establishment of high values of η”. The most straightforward
interpretation of such hindrances is mass-transport limitation that–in a Gileadi-type framework–
can be approximately accounted for with a negative cubic correction to the I-V curve. As
expounded above, in the new bulk-surface context mass-transport limitations can be naturally
accounted for by multiplying the term linear in η by the surface concentration b|Γ of the reactant b
present in the bulk and describing the electroactive species. Nevertheless, in the bulk-surface
version of DIB it is worth retaining the cubic term in η, because this can account for other
hindrances to metal growth (i.e., beyond mass-transport from the bulk to the reactive surface)
appearing at high metal plating rates, such as cathodic passivation.
• The term −B(θ−α) quantifies the effect of adsorbates on the electrodeposition rate. The parameter

0 < α ≤ 1 takes into account the fact that adsorbates can have both inhibiting and enhancing
effects on the growth rate.
• Concerning the equation for the chemical coverage θ, in the original DIB model (2.1) the source

term can be regarded as
g(η, θ) = C gads(η, θ) − D gdes(η, θ)

and features adsorption (parameter C) and desorption (parameter D) terms including both
chemical (expanded to second order) and electrochemical (first order) contributions. Here, the
physical meaning of the modified kinetics f4 in (2.2b) is that–coherently with the Langmuir
adsorption model with monomolecular adsorption reaction–the adsorption term is directly
proportional to the amount of the bulk species. In the case of a heterogeneous bulk phase, the
relevant value of the bulk form is that in a neighborhood of the surface (commonly, referred to as
the “catholyte”) that is given by q|Γ .

2.2. Physical meaning of boundary conditions

The coupling BCs for the bulk equations at the interface between the “growing surface Γ” and the
“bulk Ω” can thus naturally be written as the first two equations in (2.3) indicating that the flux of
bulk species to the surface is opposite to their consumption rates at the surface. More specifically, the
physical meaning of the form of the first two equations in (2.3) is that, even though b and q coming
from the bulk are consumed at the interface (i.e., in correspondence of their values b|Γ and q|Γ) to yield
η and θ only in a specific term of f3 and f4, the negative terms of these equations have the effect of
injecting b and q into the bulk. Cases in which θ > α (i.e., the adsorbate enhances electrodeposition,
e.g., by resonant tunnelling effects), can be regarded as a special case of interfacial b consumption,
accounted for through the BCs. Thus the net formation rate of η and θ is proportional to the fluxes of
b and q to the surface.
∇b · n,∇q · n denote the gradients normal to the boundary (surface) Γ, while ψη, ψθ are constants

the role of which is to adjust the dimensionality of the equations and the physical meaning of which
is explained below. ψη converts adatoms (i.e., the surface species generated by the consumption of b
at the surface) into morphological units (the quantities actually described by η). Thus one can write:
η = ψηb and ψη can be regarded as a constant as far as the density of morphological units (ca. step)
is proportional to the adatom density. ψθ expresses an isotherm, since it connects a bulk concentration
(q) into a surface density (θ), hence, in as far as the isotherm can be linearised, we can write: θ = ψθq.

To synthesize, the BCs for b and q in (2.3) are:

Mathematics in Engineering Volume 6, Issue 2, 363–393.



369

i) non-linear coupling BCs on the surface Γ, implying coupling with η and θ;
ii) Dirichlet BCs on the face of Ω opposite to Γ that is located far enough from the “bottom face”

where reaction takes place, so that concentration gradients induced by reactivity have died out here;
iii) zero Neumann BCs (zero flux) on the residual faces of Ω (see Figure 1). The values of the bulk

variables are thus set to their equilibrium values b0, q0 respectively.
For the morpho-chemical unknowns η and θ, the BCs for the 3D BS-DIB model on ∂Γ are still zero

Neumann BCs in (2.4).

2.3. Stability in the absence of diffusion

First of all, given the physical meaning of the BS-DIB model (2.2)-(2.3), it would make sense to
consider spatial domains of more general shape. However, since the BS-DIB model is being introduced
here for the first time, we have confined the presentation to the case of a cubic domain, in order to
focus on the exploration of Turing patterns. A necessary condition to investigate diffusion-driven or
Turing instability in the new BS model is that at least a homogeneous equilibrium of the PDE system
exists and in the absence of diffusion it must be stable. In this section, we present this analysis, while
the complete derivation of Turing conditions guaranteeing the existence of pattern formation in the
presence of diffusion is deferred to another paper.

Hence, if F = ( f1, f2, f3, f4) accounts for all source terms involved and ξ = (b, q, η, θ)T , it is easy to
show that

F(ξ∗) = 0 if ξ∗ = (b∗, q∗, η∗, θ∗) = (b0, q0, 0, α), (2.10)

when in the BS-DIB model all parameters in (2.8)-(2.9) different from (B,C) are kept fixed after [2] as
follows: 

k2 = 2.5;
k3 = 1.5;
ρ = 1;
α = 0.5;
A1 = 10;
D = q0

C(1−α)(1−γ+γα)
α(1+γα) .

(2.11)

In fact, kb, kq do not influence the result in (2.10), (B,C) are still considered as bifurcation parameters as
e.g., in [2] and the (η, θ) components of the equilibrium ξ∗ coincide with the homogeneous equilibrium
of the original 2D-DIB model. Here we analyze the stability of such equilibrium in the special case
γ = 0, when the condition on the parameter D in (2.11) boils down to

γ = 0, D = q0
C(1 − α)

α
. (2.12)

To study the arising of the diffusion-driven or Turing instability in the BS-DIB model, it is necessary
to prove that the equilibrium (2.10) is stable in absence of diffusion. In fact, the model (2.2), deprived
of diffusion and linearized around the equilibrium in (2.10), is

ξt = J(ξ∗)(ξ − ξ∗), (2.13)
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where J is the Jacobian of the kinetics evaluated at the equilibrium (2.10). The matrix J has the
following structure

J =

(
JΩ 0
Jh JΓ

)
, (2.14)

where, if γ = 0, the blocks of J are as follows:

JΩ :=
(

f1,b f1,q

f2,b f2,q

)
=

(
−kb 0
0 −kq

)
; (2.15)

Jh :=
(

f3,b f3,q

f4,b f4,q

)
= ρ

(
A1(1 − θ)η 0

0 C(1 + k2η)(1 − θ)

)
; (2.16)

JΓ :=
(

f3,η f3,θ

f4,η f4,θ

)
= ρ

(
b0A1(1 − α) −B

q0C(k2 − k3)(1 − α) −q0C
α

)
. (2.17)

Thanks to the diagonal structure of JΩ it holds that

det(J − λI) = (λ + kb)(λ + kq) det(JΓ − λI). (2.18)

It follows that two eigenvalues of J are λ1 = −kb < 0 and λ2 = −kq < 0. We are left to determine when
the eigenvalues of JΓ are negative. This happens if and only if TraceJΓ < 0 and det JΓ > 0. Now:

TraceJΓ = ρ
(
b0A1(1 − α) −

q0C
α

)
< 0⇐⇒ C >

b0

q0
A1α(1 − α), (2.19)

and
det JΓ = ρ2

(
BCq0(k2 − k3)(1 − α) − A1Cb0q0

1 − α
α

)
> 0⇐⇒ B >

A1b0

α(k2 − k3)
. (2.20)

We obtain the following result.

Theorem 1. If γ = 0, the equilibrium (2.10) is stable in the absence of diffusion if and only if

B >
A1b0

α(k2 − k3)
∧ C >

b0

q0
A1α(1 − α). (2.21)

In addition, if A1, k2, k3, α are as in (2.11), the condition (2.21) specializes to

B > 20b0 ∧ C > 2.5
b0

q0
. (2.22)

Of course, as far as the conditions for Turing pattern formation are concerned, a specific study has
to be carried out considering the full Jacobian J of Eq (2.14). This is an important study topic in its
own right, that–nevertheless–has no impact on the analysis presented in this research. Since treating
this problem exhaustively would be beyond the scope of the present work, we leave it to a subsequent
publication.

Our present approach is to solve numerically the BS-DIB model for the diffusion coefficients dΩ = 1
and dΓ = 20 and for a representative selection of parameter couples (B,C) generating the whole set of
Turing pattern morphologies, as described in [15, 16]. In fact, this value of dΓ was that used in [2, 15]
to build a Turing region for the 2D-DIB model (2.1), that we will use as reference to investigate
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numerically the Turing pattern formation for the new BS-DIB model (2.2). Moreover, we shall fix the
model parameters in the bulk as  b0 = 1; q0 = 1;

kb = 1; kq = 1;
(2.23)

such that such that the spatially homogeneous equilibrium for the system (2.2)-(2.3) is

ξ∗ = (b∗, q∗, η∗, θ∗) = (1, 1, 0, α), (2.24)

that is stable in absence of diffusion if B > 20 and C > 2.5. To approximate Turing patterns as steady
state solutions of the BS-DIB model, we choose the initial conditions as:

b(x, 0) = b0; q(x, 0) = q0;
η(x, 0) = rη(x); θ(x, 0) = rθ(x), (2.25)

where rη and rθ are random spatial data defined as

rη(x) = η∗ + 1e-2 ∗ rand(x); (2.26)
rθ(x) = θ∗ + 1e-2 ∗ rand(x), (2.27)

where η∗ and θ∗ are defined in (2.24) and rand is the Matlab built-in function for generating uniform
random numbers in (0, 1).

In this scenario, our aim is to tune the coupling parameters ψη, ψθ to study from the numerical
point of view the effect of coupling with the bulk on the morphological structure of the Turing
patterns in the classes studied in [15]. We recall that the numerical approximation of RDSs in 3D
is not straightforward because the pattern requires a very fine 3D mesh that provides sufficient spatial
resolution and a long time integration to reach the asymptotic steady state. We shall apply the BS-VEM
method studied in [8], for the space discretization of the 3D domain and surface and the IMEX Euler
method as time solver. Hence, in the 3D case, if the cubic domain is approximated with a Cartesian
grid, at least a million of unknowns at each time iteration are required. The usual implementation will
thus end up to a sequence of linear systems where the coefficient matrix for each species is sparse,
but prohibitively large. An efficient alternative to deal with this issue is the Matrix-Oriented Finite
Element Method (MO-FEM) [12, 13] where, thanks to the Cartesian structure of the numerical grid,
the fully discrete problem is transformed to a sequence of Sylvester matrix equations, that can be solved
efficiently in the spectral space. However, since the BS-DIB model produces spatial patterns only in
a neighborhood of the surface Γ, we devise a tailor-made graded polyhedral bulk-surface mesh where
the BS-VEM proves to be a competitive alternative, since such a graded mesh avoids unnecessary
refinement (and degrees of freedom) away from the surface Γ. One of the major advantages of this
choice is that the BS-VEM, thanks to the flexibility of polyhedral meshes, can still be used on domains
of general shape, where MO techniques might not apply.

3. The bulk surface virtual element method for the BS-DIB model

Formulating a BS-VEM [8] for the model (2.2) requires several steps. We start by rewriting the
model (2.2) in such a way that the BCs lend themselves to a BS-VEM discretization.
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3.1. Step 1: rewriting the model with homogeneous boundary conditions

In the presence of non-zero Dirichlet BCs, it is well-known [17] that it is first necessary to rewrite
the PDE problem in such a way that the Dirichlet conditions are homogeneous. To this end, we define
the following auxiliary variables and kinetics:

b̃ := b − b0; (3.1)
q̃ := q − q0; (3.2)

f̃1(̃b) := f1(̃b + b0); (3.3)

f̃2(̃q) := f2(̃q + q0); (3.4)

f̃3(̃b, η, θ) := f3(̃b + b0, η, θ); (3.5)

f̃4(̃q, η, θ) := f4(̃q + q0, η, θ). (3.6)

With the above definitions, the model becomes



˙̃b − ∆b̃ = f̃1(̃b) in Ω;
˙̃q − dΩ∆q̃ = f̃2(̃q) in Ω;
η̇ − ∆Γη = f̃3(̃b, η, θ) on Γ;
θ̇ − dΓ∆Γθ = f̃4(̃q, η, θ) on Γ,

(3.7)

which, this time, is conveniently endowed with completely homogeneous BCs:



∇b̃ · n = − f̃3(̃b, η, θ)ψη on Γ;
∇q̃ · n = − f̃4(̃q, η, θ)ψθ on Γ;
∇b̃ · n = 0 on ΓL;
∇q̃ · n = 0 on ΓL;
b̃ = 0 on ΓT ;
q̃ = 0 on ΓT .

(3.8)

3.2. Step 2: weak formulation

To write a discrete formulation of the auxiliary problem (3.7)-(3.8), we define the space of trivariate
spatial functions that ensure the well-posedness of the model (3.7) and fulfil the BCs (3.8):

H1
B(Ω) := {u ∈ H1(Ω) | u|ΓT = 0 ∧ u|Γ ∈ H1(Γ)}. (3.9)

The dual space of H1
B(Ω) will be denoted by H−1

B (Ω). Following [8], the weak formulation of (3.7)-

(3.8) is: find b̃, q̃ ∈ L2([0,T ]; H1
B(Ω)) and η, θ ∈ L2([0,T ]; H1(Γ)) with ˙̃b, ˙̃q ∈ L2([0,T ]; H−1

B (Ω)) and
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η̇, θ̇ ∈ L2([0,T ]; H−1(Γ)) such that

∫
Ω

˙̃bϕ +

∫
Ω

∇b̃ · ∇ϕ =

∫
Ω

f̃1(̃b)ϕ − ψη

∫
Γ

f̃3(̃b, η, θ)ϕ;∫
Ω

˙̃qϕ + dΩ

∫
Ω

∇q̃ · ∇ϕ =

∫
Ω

f̃2(̃q)ϕ − dΩψθ

∫
Γ

f̃4(̃q, η, θ)ϕ;∫
Γ

η̇φ +

∫
Γ

∇Γη · ∇Γφ =

∫
Γ

f̃3(̃b, η, θ)φ;∫
Γ

θ̇φ + dΓ

∫
Γ

∇Γθ · ∇Γφ =

∫
Γ

f̃4(̃q, η, θ)φ,

(3.10)

for all ϕ ∈ L2([0,T ]; H1
B(Ω)) and φ ∈ L2([0,T ]; H1(Γ)). The weak formulation (3.10) is well-posed for

sufficiently short times thanks to the following result.

Lemma 1 (Well-posedness and stability estimates for the weak formulation). There exist c,T > 0
depending on the parameters of the model (2.2) such that the solution (̃b, q̃, η, θ) of the weak
problem (3.10) exists and is unique for t ∈ [0,T ] and fulfills the estimates

sup
t∈[0,T ]

‖(̃b, q̃)‖L2(Ω) + ‖(η, θ)‖L2(Γ) +

∫ T

0

(
|(̃b, q̃)|H1(Ω) + |(η, θ)|H1(Γ)

)
≤ c

(
1 + ‖(̃b0, q̃0)‖L2(Ω) + ‖(η0, θ0)‖L2(Γ)

)
;

(3.11)

∫ T

0

(
‖( ˙̃b, ˙̃q)‖L2(Ω) + ‖(η̇, θ̇)‖L2(Γ)

)
+ sup

t∈[0,T ]

(
|(̃b, q̃)|H1(Ω) + |(η, θ)|H1(Γ)

)
≤ c

(
1 + ‖(̃b0, q̃0)‖H1(Ω) + ‖(η0, θ0)‖H1(Γ)

)
.

(3.12)

Proof. The weak problem (3.10) falls in the class of BS-RDSs considered in [8], with the difference
that in the BS-DIB model considered here, the kinetics f1, f2, f3, f4 are polynomials and are therefore
only locally Lipschitz, rather that globally Lipschitz as in [8]. This lemma is thus proven exactly as [8,
Lemma 4.1], with the difference that the resulting estimates (3.11)-(3.12) hold only for sufficiently
small final time T . �

Remark 1 (Long time existence). Lemma 1 proves existence of a weak solution only for short times.
When the kinetics are nonlinear as in the BS-DIB model (2.2), one way to prove long time existence
is proving that the model possesses an invariant region, see [18]. The existence and the size of an
invariant region might depend on the parameters of the considered BS-RDS model. For the BS-DIB
model (2.2), a study of its invariant regions -if any- is one of our future research directions.

3.3. Step 3: spatially discrete formulation

We will now describe the spatial formulation obtained by the BS-VEM following [8]. The choice
of the BS-VEM to solve the model (2.2) is motivated by the possibility of using graded meshes that
make the BS-VEM particularly competitive in this case by avoiding unnecessarily refinement away
from the surface Γ. The choice of a convenient mesh will be illustrated in the next Section. For now,
we illustrate the BS-VEM for arbitrary meshes.

Mathematics in Engineering Volume 6, Issue 2, 363–393.



374

Let us decompose the bulk Ω as the union of non-overlapping polyhedra, Ω = ∪E∈Eh E. If F f is the
set of the faces of Eh that are contained in Γ, then we can write Γ = ∪F∈Fh F. For a face F ∈ Fh, the
boundary space B(∂F) is defined by

B(∂F) := {v ∈ C0(∂F) | ve ∈ P1(e) ∀e ∈ edges(F)}. (3.13)

The preliminary space of a face F is defined by

Ṽ(F) := {v ∈ H1(F) | v|∂F ∈ B(∂F) ∧ ∆v ∈ P1(F)}. (3.14)

The H1 projector on faces Π∇F : Ṽ(F)→ P1(F) is defined, for any v ∈ Ṽ(F) by∫
F
∇(v − Π∇Fv) · ∇p = 0 ∀p ∈ P1(F) ∧

∫
F
(v − Π∇Fv) = 0. (3.15)

Then, the enhanced VEM space on the face F is defined by

V(F) :=
{

v ∈ Ṽ(F)
∣∣∣∣∣ ∫

F
(v − Π∇Fv)p = 0 ∀p ∈ P1(F)

}
. (3.16)

For a polyhedron E ∈ Eh, the boundary space B(∂E) is defined by

B(∂E) := {u ∈ C0(∂E) | u|F ∈ V(F) ∀F ∈ faces(E)}. (3.17)

At this point, the preliminary VEM space on E is defined by

Ṽ(E) := {u ∈ H1(E) | u|∂E ∈ B(∂E) ∧ ∆u ∈ P1(E)}. (3.18)

The H1 projector Π∇E : Ṽ(E)→ P1(E) on the polyhedron E is defined, for each u ∈ Ṽ(E), by∫
E
∇(u − Π∇Eu) · ∇p = 0 ∀p ∈ P1(E) ∧

∫
E
(u − Π∇Eu) = 0. (3.19)

Finally, the enhanced VEM space on the polyhedron E is defined by

V(E) :=
{

u ∈ Ṽ(E)
∣∣∣∣∣ ∫

E
(u − Π∇Eu)p = 0 ∀p ∈ P1(E)

}
. (3.20)

It is well-known that the degrees of freedom in V(F) and V(E) are the pointwise values on vertexes,
see [19]. The global VEM spaces are defined by matching the degrees of freedom across elements. To
this end, let SΓ and SΩ be the 1-skeleton of Γ and the 2-skeleton of Ω, respectively, defined by

SΓ :=
⋃
F∈Fh

∂F, SΩ :=
⋃
E∈Eh

∂E. (3.21)

The global VEM spaces VΓ and VΩ are then defined as

VΓ := {v ∈ H1(Γ) | v ∈ C0(SΓ) ∧ v|F ∈ V(F) ∀F ∈ Fh}; (3.22)
VΩ := {u ∈ H1(Ω) | u ∈ C0(SΩ) ∧ u|E ∈ V(E) ∀E ∈ Eh ∧ u(x, y, L) = 0 ∀(x, y) ∈ [0, L]2}. (3.23)
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Notice that the space VΩ reflects the homogeneous Dirichlet BCs of the continuous counterpart H1
B(Ω).

To obtain a spatially discrete counterpart of the weak formulation (3.10), we need suitable discrete
bilinear forms. Following [8], for all F ∈ Fh, E ∈ Eh, v,w ∈ V(F) and u, z ∈ V(E), we define

mF(v,w) :=
∫

F
Π0

FvΠ0
Fw + h2

F〈dof(v − Π0
Fv), dof(w − Π0

Fw)〉; (3.24)

aF(v,w) :=
∫

F
∇Π∇Fv · ∇Π∇Fw + 〈dof(v − Π0

Fv), dof(w − Π0
Fw)〉; (3.25)

mE(u, z) :=
∫

E
Π0

EuΠ0
Ez + h3

E〈dof(u − Π0
Eu), dof(z − Π0

Ez)〉; (3.26)

aE(u, z) :=
∫

E
∇Π∇Eu · ∇Π∇Ez + hE〈dof(u − Π0

Eu), dof(z − Π0
Ez)〉, (3.27)

where hF and hE are the diameters of F and E, respectively. In (3.24)–(3.27), the simplest form of
stabilization was chosen, the so-called dofi-dofi stabilization [20], for two reasons. First, this choice
is the most implementation-friendly, see [21]. Second, the dofi-dofi stabilization is known to perform
well when the mesh is composed of elements that are not distorted and with very regular shapes [20],
which is exactly our case as we will see.

Let mΓ
h , a

Γ
h : VΓ × VΓ → R and mΩ

h , a
Ω
h : VΩ × VΩ → R be the corresponding global forms.

Furthermore, let IΓ : C0(Γ) → VΓ and IΩ : C0(Ω) → VΩ be the Lagrangian interpolant operators. The
spatially discrete formulation is finally given by: find B,Q : VΩ × [0,T ] and Λ,Θ : VΓ × [0,T ] → R
such that

mΩ
h

(
Ḃ,Φ

)
+ aΩ

h (B,Φ) = mΩ
h

(
IΩ f̃1(B),Φ

)
− ψηmΓ

h

(
IΓ f̃3(B,Λ,Θ),Φ

)
;

mΩ
h

(
Q̇,Φ

)
+ dΩaΩ

h (Q,Φ) = mΩ
h

(
IΩ f̃2(Q),Φ

)
− dΩψθmΓ

h

(
IΓ f̃4(Q,Λ,Θ),Φ

)
;

mΓ
h

(
Λ̇,Ψ

)
+ aΓ

h (Λ,Ψ) = mΓ
h

(
IΓ f̃3(B,Λ,Θ),Ψ

)
;

mΓ
h

(
Θ̇,Ψ

)
+ dΓaΓ

h (Θ,Ψ) = mΓ
h

(
IΓ f̃4(Q,Λ,Θ),Ψ

)
,

(3.28)

for all Φ : VΩ×[0,T ]→ R and Ψ : VΓ×[0,T ]→ R. If NΓ := dimVΓ and NΩ := dimVΩ, let {ψi}
NΓ

i=1 and
{ϕi}

NΩ

i=1 be the Lagrangian bases of VΓ and VΩ, respectively. The spatially discrete formulation (3.28) is
well-posed for sufficiently short times thanks to the following result.

Lemma 2 (Well-posedness and stability estimates for the spatially discrete formulation). There exist
c,T > 0 depending on the parameters of the model (2.2) and on the shape regularity of the mesh such
that the solution (B,Q,Λ,Θ) of the spatially discrete problem (3.28) exists and is unique for t ∈ [0,T ]
and fulfills the estimates

sup
t∈[0,T ]

‖(B,Q)‖L2(Ω) + ‖(Λ,Θ)‖L2(Γ) +

∫ T

0

(
|(B,Q)|H1(Ω) + |(Λ,Θ)|H1(Γ)

)
≤ c

(
1 + ‖(B0,Q0)‖L2(Ω) + ‖(Λ0,Θ0)‖L2(Γ)

)
;

(3.29)

∫ T

0

(
‖(Ḃ, Q̇)‖L2(Ω) + ‖(Λ̇, Θ̇)‖L2(Γ)

)
+ sup

t∈[0,T ]

(
|(B,Q)|H1(Ω) + |(Λ,Θ)|H1(Γ)

)
≤ c

(
1 + ‖(B0,Q0)‖H1(Ω) + ‖(Λ0,Θ0)‖H1(Γ)

)
.

(3.30)
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Proof. This result was proven in [8] in the case when the kinetics f1, f2, f3, f4 are globally Lipschitz.
Here, f1, f2, f3, f4 are only locally Lipschitz, therefore the resulting estimates (3.29)-(3.30) hold only
for sufficiently small final time T . �

Remark 2 (Long time existence for the spatially discrete solution). Lemma 2 proves existence of a
spatially discrete solution only for short times. To prove long time existence, a sufficient condition
would not only involve an invariant region as for the continuous problem (2.2), see Remark 1, but also
a spatial method that preserves the invariant regions of the continuous model, see for instance [22]
for the case of surface-only RDSs. To the best of our knowledge, a BS-VEM that preserves invariant
regions under discretization is an open problem. It must be noted, however, that in our numerical
experiments in Section 4, long time numerical solutions are found.

We express the numerical solution (B,Q,Λ,Θ) in the Lagrange bases:

B(x, t) =

NΩ∑
i=1

bi(t)ϕi(x), (x, t) ∈ Ω × [0,T ]; (3.31)

Q(x, t) =

NΩ∑
i=1

qi(t)ϕi(x), (x, t) ∈ Ω × [0,T ]; (3.32)

Λ(x, t) =

NΓ∑
i=1

λi(t)ψi(x), (x, t) ∈ Γ × [0,T ]; (3.33)

Θ(x, t) =

NΓ∑
i=1

θi(t)ψi(x), (x, t) ∈ Γ × [0,T ], (3.34)

where bi(t), qi(t), λi(t), θi(t) are unknown time-dependent coefficients, which are collected in column
vectors b(t),q(t) ∈ RNΩ , η(t), θ(t) ∈ RNΓ . Following [8], we substitute (3.31)–(3.34) into the spatially
discrete formulation (3.28), and we obtain the following ODE system in vector form:

MΩḃ + AΩb = MΩ f̃1(b) − ψηRMΓ f̃3(b, η, θ);

MΩq̇ + dΩAΩq = MΩ f̃2(q) − dΩψθRMΓ f̃4(q, η, θ);

MΓη̇ + AΓη = MΓ f̃3(b, η, θ);

MΓθ̇ + dΓAΓθ = MΓ f̃4(q, η, θ),

(3.35)

where the stiffness matrices AΩ ∈ R
NΩ×NΩ , AΓ ∈ R

NΓ×NΓ , the lumped mass matrices MΩ ∈ R
NΩ×NΩ ,

MΓ ∈ R
NΓ×NΓ and the reduction matrix R ∈ RNΩ×NΓ are defined as follows:

(AΩ)i j := aΩ
h (ϕi, ϕ j), (MΩ)i j := mΩ

h (ϕi, ϕ j), i, j = 1, . . . ,NΩ; (3.36)
(AΓ)i j := aΓ

h(ψi, ψ j), (MΓ)i j := mΓ
h(ψi, ψ j), i, j = 1, . . . ,NΓ; (3.37)

R =

[
INΓ

0

]
, (3.38)

where INΓ
is the identity of dimension NΓ.
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3.4. Step 4: fully discrete formulation in vector form

Following [8], we discretize in time the ODE system (3.35) with the IMEX Euler scheme, which is
first-order accurate. Let τ > 0 be the time stepsize and let NT =

⌈
T
τ

⌉
be the number of timesteps. For

all n = 0, . . . ,NT − 1, the fully discrete solution (b(n),q(n), η(n), θ(n)) at time tn := nτ is found as follows:

(MΩ + τAΩ)b(n+1) = MΩb(n) + τ
(
MΩf(n)

1 − ψηRMΓf(n)
3

)
;

(MΩ + dΩτAΩ)q(n+1) = MΩq(n) + τ
(
MΩf(n)

2 − ψθdΩRMΓf(n)
4

)
;

(MΓ + τAΓ)η(n+1) = MΓη
(n) + τMΓf(n)

3 ;

(MΓ + dΓτAΓ)θ(n+1) = MΓθ
(n) + τMΓf(n)

4 ,

(3.39)

where

f(n)
1 := f̃1(b(n)); f(n)

2 := f̃2(q(n)); f(n)
3 := f̃3(b(n), η(n), θ(n)); f(n)

4 := f̃4(q(n), η(n), θ(n)).

The fully discrete formulation (3.39) is composed of four linear algebraic systems that can be solved
independently of each other at each time step. Of these four linear systems, two have dimension NΩ,
while the other two have dimension NΓ. If the cube Ω is discretised with a Cartesian mesh with Nx ∈ N

gridpoints along each dimension, then NΩ = N2
x (Nx − 1) due to the boundary conditions, which makes

the linear systems in (3.39) computationally expensive to solve. An extremely efficient approach to
address this issue is the so-called Matrix-Oriented Finite Element Method (MO-FEM) [12, 13], which
exploits the Cartesian structure of the grid to translate the linear systems in (3.39) into tensor equations
of much lower size. We will show a numerical solution to our problem carried out with MO-FEM in
Section 4. However, we will show that, given the particular nature of the considered PDE problem, an
even more efficient solver is given by the BS-VEM on a bespoke mesh.

3.5. Bespoke BS-VEM mesh for the BS-DIB model

Since the domain of the model problem (2.2) is a cube, then it would be natural to choose an
efficient numerical method that exploits the structure of Cartesian grids, such as the Matrix-Oriented
Finite Element Method (MO-FEM) [12,13]. This gives us the opportunity to show the competitiveness
of BS-VEM in solving the BS-DIB model (2.2) and thus further motivates the choice of a cube as
spatial domain. For this reason, we choose the cubic spatial domain Ω = [0, L]3 with L = 50. We
choose the model parameters, the final time and and the timestep as follows: B = 66, C = 3, A2 = 1,
γ = 0.2, ψη = ψθ = 0.2, T = 50 and τ = 2e-3. The other parameter values are as in (2.11). To
demonstrate that the numerical solution tends to a stationary Turing pattern, as for instance in [2] we
show, as an indicator, that the increment ‖η(tn+1) − η(tn)‖L2(Ω) of the η component of the numerical
solution tends to zero.

In this section, we consider a Cartesian grid with Nx = 129, i.e., of 129 × 129 × 129 ≈ 2.15e+6
equally spaced nodes (corresponding to 128 × 128 × 128 equally spaced intervals), and we show that
MO-FEM produces the numerical solution shown in Figure 2. In keeping with the physical meaning
of the parameter choice, we can observe that the bulk components (b, q) exhibit spatial patterns only
in the proximity of the surface Γ, and become approximately constant away from Γ. This suggests that
a uniform Cartesian cubic grid would be unnecessarily fine away from Γ. For this reason, we apply
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the BS-VEM with a graded cubic mesh that is highly refined close to Γ and gradually becomes coarser
as the distance from Γ increases. Such graded polyhedral mesh is depicted in Figure 3(a). This grid
is composed of two layers of 128 × 128 cubic elements close to Γ, and five layers of gradually larger
“false cubes”, where the size of such false cubes doubles at each layer. For this reason, in the first
two layers (closest to Γ) the number of cubes along each dimension is 128, a power of 2. One of the
aforementioned false cubes is depicted Figure 3(b) and is actually an ennahedron: a polyhedron with
nine faces and thirteen vertices. Specifically, such ennahedron is a cube the bottom face of which is
split into four smaller square faces as shown in Figure 3(b). The proposed graded mesh provides a
discretisation for the surface Γ as refined as the Cartesian grid used for the MO-FEM (129× 129 nodes
on Γ) and, at the same time has much less nodes (approximately 5.56e+4 versus 2.15e+6), resulting in
a discrete problem of much smaller size and shorter computational times (approximately 89 minutes
for MO-FEM and 39 minutes for BS-VEM) when the linear systems are solved with Matlab’s built-
in direct solver \ (backslash). It must be noted that, if we applied BS-VEM on the same Cartesian
mesh used for MO-FEM, the latter method would be much quicker as it is specifically designed to
exploit the tensor structure of Cartesian grids. Specifically, BS-VEM would require prohibitively large
computational times and memory, at least for our limited machine. On the other hand, MO-FEM
(nor classical FEM) cannot be applied on graded or adaptive meshes with hanging nodes. All in all, the
reduced number of degrees of freedom of the BS-VEM mesh outweights the efficiency of MO-FEM on
Cartesian grids, resulting in shorter computational times. On domains of more general shapes, where
tensorized methods like MO-FEM are not generally applicable, BS-VEM on a graded mesh would be
even more competitive.

(a) Bulk component b and surface component η at the final
time T = 50.

(b) Increment of surface component η over time.

Figure 2. 3D BS-DIB model (2.2), B = 66,C = 3, ψη = ψθ = 0.2, final time T = 50:
simulation obtained with the MO-FEM approach described in Section 3.5. The BS-DIB
model (2.2) shows a reversed spots pattern, the bulk component b exhibits a spatial pattern
only in a neighborhood of the surface Γ. A similar result arises for the variables θ on the
surface and q in the bulk, respectively. This suggests the usage of a graded mesh that is
highly refined close to Γ and much coarser away from Γ, which we will apply in the next
simulations (see Figure 3 and Section 4).
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(a) Nodes of the graded mesh. (b) Cubic element with hanging nodes.

Figure 3. Graded polyhedral mesh used in the BS-VEM approximation of the model (2.2).

By comparing Figure 2 and Simulation D3 in Section 4 we observe that, for the BS-DIB model (2.2),
MO-FEM and BS-VEM produce patterns of the same morphological class, i.e., reversed spots. The
positioning of the patterns, however, is different, and that is to be expected because RDSs are
highly sensitive to initial conditions. This implies that a small perturbation resulting from applying
a different numerical method on equal initial conditions (as in (2.25)) is enough to significantly
affect the positioning of the asymptotic spatial patterns, but not their morphological class [23].
Having ascertained the competitiveness of BS-VEM in solving the BS-DIB model, all the numerical
experiments in Section 4 will be carried out using BS-VEM.

4. Numerical experiments

We shall present eight numerical experiments to compare the DIB model (2.1) with the novel BS-
DIB model (2.2). The eight experiments differ from each other for appropriate choices of the model
parameters. The first four experiments, called T1 through T4, suggest that the BS-DIB model (2.2)
has a larger Turing space than the DIB model (2.1), meaning that on equal parameters, the BS-DIB
model might exhibit Turing patterns while the DIB model does not. The latter four experiments, called
D1 through D4, explore the effect of BS coupling on the morphological class of Turing patterns,
meaning that on equal parameters, the DIB (2.1) and BS-DIB (2.2) models can exhibit Turing patterns
of different morphological classes. All the experiments are carried out on a cubic domain of edge length
L = 50 on the polyhedral mesh described in Section 3.5. The final time T and the timestep τ also differ
for each experiment according to the stiffness of the problem and the timescale of the dynamics. A
recap of the numerical experiments and the respective parameters is given in Table 1. As discussed in
Section 3.5, we recall that the BS-VEM on a suitable graded mesh is more computationally efficient
than MO-FEM in solving the BS-DIB model (2.2). For this reason, all the experiments presented in this
Section will be carried out with BS-VEM. It must be noted that the dynamics of both the DIB (2.1) and

Mathematics in Engineering Volume 6, Issue 2, 363–393.



380

BS-DIB (2.2) models are affected by the parameters, therefore the convergence towards the asymptotic
steady state can be more or less quick depending on the model parameters. For this reason, also in the
next experiments, we present a plot of the increment ‖η(tn+1) − η(tn)‖L2(Γ) over time. We assume that if
the increment at the chosen final time T is substantially lower than the peak increment corresponding
to the end of the reactivity transient regime [24], then the final time solution is a good approximation
of the asymptotic steady state [25].

Table 1. Recap of the numerical experiments in Section 4.

Experiment A2 B C γ ψη = ψθ T τ Pattern BS-DIB Pattern DIB

T1 1 50 10 0 0.5 200 2e-3 Thin worms Homogeneous (2.24)

T2 1 75 5 0 0.3 200 2e-3 Stripes Homogeneous (2.24)

T3 1 35 15 0 0.5 100 5e-3 Reversed spots Homogeneous (2.24)

T4 1 30 20 0 0.5 50 5e-3 Homogeneous (, ξ∗ in (2.24)) Homogeneous (2.24)

D1 1 66 3 0.2 0.1 200 5e-3 Reversed spots & worms Labyrinth

D2 1 66 3 0.2 0.15 50 2e-3 Reversed spots & small worms Labyrinth

D3 1 66 3 0.2 0.2 50 2e-3 Reversed spots Labyrinth

D4 1 30 3 0.2 0.1 200 5e-3 Reversed spots (smaller than in DIB) Reversed spots

4.1. Experiments T1–T4: exploration of the Turing space

In this Section, we compare the DIB (2.1) and BS-DIB (2.2) models in four experiments, called T1
through T4, where the model parameters (C, B) are chosen outside -but close to- the Turing space of the
DIB model (2.1), i.e., the region in the parameter space (C, B) where the DIB model undergoes Turing
instability and exhibits patterns, see [15]. Therefore, the DIB model does not produce patterns in these
experiments as expected, and the numerical solutions early attain the stable equilibrium η∗ = 0, θ∗ = α

in (2.24) of which the initial condition (2.25) is a small perturbation. On the other hand, the BS-DIB
model (2.2) exhibits spatial patterns in all experiments T1–T4. This suggests that the BS-DIB model
has a larger Turing space than the DIB model. As mentioned before, a theoretical analysis of the Turing
instability for the BS-DIB model is outside the scope of this work and is one of our current research
directions. In particular, the numerical solutions η and θ on the surface Γ of the BS-DIB model have
the following behaviors:

T1. Slow convergence to a thin worm pattern, where the worms slowly merge into longer worms
over time, see Figure 4;

T2. Slow convergence to a stripe pattern. The transient solution exhibits spots that slowly merge
into stripes over time, see Figure 5;

T3. Convergence to a reversed spots (holes) pattern, see Figure 6;

T4. Quick convergence to a homogeneous steady state different from (2.24), see Figure 7.
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(a) Surface component η at the final time T = 200.

(b) Surface component θ at the final time T = 200.

(c) bulk component b and surface component η at final
time.

(d) Increment of surface component η over time.

Figure 4. Simulation T1. BS-DIB model (2.2), C = 10, B = 50, ψη = ψθ = 0.5, see
also Table 1. The 3D-BS-DIB solution shows a slow-to-stabilize worm pattern for η and
θ on the surface Γ, while the 2D-DIB model (2.1) reaches the homogeneous steady state
(η∗, θ∗) = (0, 0.5). In fact, in panel (d) the 3D model (blue line) appears to converge very
slowly towards an asymptotic steady state. In panel (c), the z-axis is not in scale to help
visualization.
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(a) Surface component η at the final time T = 200.

(b) Surface component θ at the final time T = 200.

(c) Bulk component b and surface component η at the final time. (d) Increment of surface component η over time.

Figure 5. Simulation T2. BS-DIB model (2.2), C = 5, B = 75, ψη = ψθ = 0.3, see
also Table 1. The 3D-BS-DIB solution at T = 200 shows a slow-to-stabilize stripe pattern
for η and θ on the surface Γ, while in the 2D-DIB model (2.1) the solution reaches the
homogeneous steady state (η∗, θ∗) = (0, 0.5).
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(a) Surface component η at the final time T = 200.

(b) Surface component θ at the final time T = 200.

(c) Bulk component b and surface component η at the final time. (d) Increment of surface component η over time.

Figure 6. Simulation T3. BS-DIB model (2.2), C = 15, B = 35, ψη = ψθ = 0.5, see also
Table 1. The 3D BS-DIB components η and θ at T = 100 attain a reversed spots pattern,
while in the 2D DIB model (2.1) they reach the homogeneous equilibrium (η∗, θ∗) = (0, 0.5).
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(a) Surface component η at the final time T = 50.

(b) Surface component θ at the final time T = 50.

(c) Increment of surface component η over time.

Figure 7. Simulation T4. BS-DIB model (2.2), C = 20, B = 30, ψη = ψθ = 0.5, see
also Table 1. In the 2D-DIB model η and θ come back to the homogeneous equilibrium
(η∗, θ∗) = (0, 0.5) of which the initial condition (2.25) is a small perturbation, while the 3D
BS-DIB solution departs from ξ∗ in (2.24) and reaches a different homogeneous steady state,
say (η∗∗, θ∗∗) ≈ (1.4713, 0.5933). This behaviour of the 3D model is also evident looking at
the increment in panel (c) for short times.
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4.2. Experiments D1–D4: effect of bulk-surface coupling on pattern formation

In this Section, we compare the DIB model (2.2) and the BS-DIB model (2.2) in four more
experiments, called D1 through D4, that are devised to study the effect of coupling in the 3D model,
measured by increasing the coefficients ψη = ψθ in (2.3). As opposed to Experiments T1–T4 in the
previous Section, the parameters here are chosen inside the Turing space of the 2D-DIB model (2.1),
in particular those for the reference labyrinth and reversed spots Turing patterns studied in [15]. The
proposed simulations explore the effect of bulk-surface coupling on the morphological class of Turing
patterns in the BS-DIB model, as follows.

In particular, we will show that the labyrinth breaks into more fragmented structures such as worms
and holes/reversed spots: the stronger the coupling, i.e., the higher ψη = ψθ, the more fragmented
the pattern, up to the limit case when the BS-DIB pattern is composed by holes/reversed spots in
Experiment D3. Moreover, Experiments D1–D3 indicate that the range and size of the bulk patterns
increases with ψη = ψθ as illustrated below. Experiment D4 instead will show that when the 2D DIB
model (2.1) exhibits holes/reversed spots, the effect of coupling is only a reduction in size of the holes.

To sum up, the outcome of Experiments D1 through D4 is as follows:

D1. For B = 66,C = 3 as in [15], ψη = ψθ = 0.1, the DIB model (2.1) at T = 200 attains a labyrinth,
while the 3D BS-DIB model (2.2) converges to a reversed spots & worms pattern, see Figure 8, as it is
also evident by the behaviour of the η-increment in Figure 8;

D2. Same (B,C) as in Experiment D1, ψη = ψθ = 0.15, the 3D BS-DIB model (2.2) attains at T = 50
the same morphological structure, but with shorter worms than in Experiment D1, see Figure 9;

D3. Same (B,C) as in Experiment D1, ψη = ψθ = 0.2, the 3D BS-DIB model (2.2) converges to a
holes/reversed spots pattern, see Figure 10;

D4. For B = 30,C = 3 as in [15], ψη = ψθ = 0.1, at T = 200 both the 2D-DIB (2.1) and the
3D- BS-DIB (2.2) models converge to a holes/reversed spots pattern, where the holes are larger for the
original DIB model, see Figure 11.

These results and more numerical details are reported in Table 1.
Moreover, for the Experiments D1–D3, we compare a (x, z) section of the bulk component

b(x, y, z,T ) at the final time of integration for y = 12.5. In Figure 12, we show that by increasing the
coupling parameters ψη = ψθ (left to right), the amplitude of the bulk-pattern increases (as indicated
by the colorbars) and length along the z-direction, that is the morphology structures venture more
significantly into the electrolyte.
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(a) Surface component η at the final time T = 200.

(b) Surface component θ at the final time T = 200.

(c) Bulk component b and surface component η. (d) Increment of surface component η over time.

Figure 8. Simulation D1. BS-DIB model (2.2) B = 66,C = 3, ψη = ψθ = 0.1, see also
Table 1. Spot-and-worm patterns for the η and θ components of the 3D-BS-DIB model (2.2)
are attained at T = 200, while a labyrinth is attained for the 2D DIB model (2.1) on the same
interval. The spots of the spot-and-worm pattern in the coupled model (2.2) tend to slowly
merge into worms over time.
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(a) Surface component η at the final time T = 50.

(b) Surface component θ at the final time T = 50.

(c) Increment of surface component η over time.

Figure 9. Simulation D2. B = 66,C = 3, ψη = ψθ = 0.15, see also Table 1. With a larger
BS coupling amount, the BS-DIB model (2.2) at T = 50 attains a spot & worm pattern, with
worms of smaller length compared to Simulation D1. For these (B,C) parameters, at T = 50
the 2D DIB model (2.1) still exhibits a labyrinth pattern.
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(a) Surface component η at the final time T = 50.

(b) Surface component θ at the final time T = 50.

(c) Increment of surface component η over time.

Figure 10. Simulation D3. B = 66,C = 3, ψη = ψθ = 0.2, see Table 1. By further increasing
the BS coupling amount, at T = 50 both surface components η and θ of the 3D BS-DIB
model (2.2) exhibit a reversed spots pattern, compared with the labyrinths for the uncoupled
2D DIB model (2.1). These results found by the BS-VEM method are in good agreement
with those obtained with the MO-FEM approach in Figure 2, since both methods produce
spatial patterns of the same morphological class.
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(a) Surface component η at the final time T = 200.

(b) Surface component θ at the final time T = 200.

(c) Increment of surface component η over time.

Figure 11. Simulation D4. B = 30,C = 3, ψη = ψθ = 0.1, see Table 1. For these parameters,
at the final time T = 200 the η and θ components attain reversed spots patterns in both DIB
and BS-DIB models. However, the coupled BS-DIB model (2.2) shows reversed spots of
smaller size with higher spatial density than the 2D DIB model (2.1).
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Figure 12. Comparison of a section of the bulk component b of Experiments D1–D3 (see
Table 1) for y = 12.5. By increasing the coupling parameters ψη = ψθ (left to right), the bulk
patterns increase in range (as indicated by the colorbars) and length along the z-direction.

5. Conclusions

We have introduced a BS-RD model in 3D, which we have called BS-DIB model, for
electrodeposition and battery modeling. Compared to the previous DIB model in 2D, the new model
fully accounts for the non-uniform electrolyte concentration in a neighborhood of the electrodic
surface. The two-way coupling between bulk and surface substantially influences the long-term
behavior of the system and in particular the morphological class of the Turing patterns obtained as
asymptotic steady state solutions. Specifically, we find that the bulk-surface coupling has two main
effects. First, we observe empirically that the BS-DIB model possesses a large Turing region in the
parameter space, compared to the 2D DIB model. Second, when the parameters are chosen in the
Turing space of the DIB model, the BS-DIB model still exhibits spatial patterns, but of a different
spatial structure, i.e., the bulk-surface coupling affects the morphological class of the attained patterns.
A theoretical Turing instability analysis of the BS-DIB model is beyond the scope of this work. These
aspects form part of our current investigations.

The BS-DIB model is posed on a cubic domain, so it lends itself to efficient numerical solvers
specifically devised for Cartesian grids, such as the MO-FEM [12]. Moreover, since the BS-DIB
model exhibits spatial patterns only in a neighborhood of the surface, we have adopted the BS-VEM on
a graded mesh that is highly refined close to the surface and much coarser away from the surface. Such
a graded mesh combines the advantages of (i) being composed by equal elements of cubic shape, which
significantly speeds up matrix assembly and improves matrix structure and (ii) has far less degrees of
freedom than a uniform Cartesian grid with the same level of refinement close to the surface. For this
reason, the BS-VEM on a graded mesh proves to be more computationally efficient than the MO-FEM
(see discussion in Section 3.5) and is thus the spatial method of choice throughout this work. Moreover,
as opposed to the MO-FEM, which is confined to structured geometries such as Cartesian grids, the
BS-VEM can handle domains of general shape, thereby facilitating the simulation of real case studies.
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