
Citation: Kausar, A.; Ahmad, I.;

Zhao, T.; Eisa, M.H.; Aldaghri, O.;

Gupta, M.; Bocchetta, P.

Green-Synthesized Graphene for

Supercapacitors—Modern

Perspectives. J. Compos. Sci. 2023, 7,

108. https://doi.org/10.3390/

jcs7030108

Academic Editor:

Francesco Tornabene

Received: 30 January 2023

Revised: 14 February 2023

Accepted: 1 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Green-Synthesized Graphene for Supercapacitors—
Modern Perspectives
Ayesha Kausar 1,2,3,* , Ishaq Ahmad 1,2,3, Tingkai Zhao 1,4, M. H. Eisa 5 , O. Aldaghri 5 , Meenal Gupta 6

and Patrizia Bocchetta 6,*

1 NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering,
Northwestern Polytechnical University, Xi’an 710072, China

2 UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129,
South Africa

3 NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering,
National Centre for Physics, Islamabad 44000, Pakistan

4 School of Materials Science & Engineering, Northwestern Polytechnical University, Xi’an 710072, China
5 Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh 13318, Saudi Arabia
6 Department of Innovation Engineering, University of Salento, Edificio La Stecca, via per Monteroni,

73100 Lecce, Italy
* Correspondence: dr.ayeshakausar@yahoo.com (A.K.); patrizia.bocchetta@unisalento.it (P.B.)

Abstract: Graphene is a unique nanocarbon nanostructure, which has been frequently used to form
nanocomposites. Green-synthesized graphene has been focused due to environmentally friendly
requirements in recent technological sectors. A very important application of green-synthesized
graphene-based nanocomposite has been observed in energy storage devices. This state-of-the-art
review highlights design, features, and advanced functions of polymer/green-synthesized graphene
nanocomposites and their utility in supercapacitor components. Green graphene-derived nanocom-
posites brought about numerous revolutions in high-performance supercapacitors. The structural
diversity of conjugated polymer and green graphene-based nanocomposites has facilitated the charge
transportation/storage capacity, specific capacitance, capacitance retention, cyclability, and durabil-
ity of supercapacitor electrodes. Moreover, the green method, graphene functionality, dispersion,
and matrix–nanofiller interactions have affected supercapacitance properties and performance. Fu-
ture research on innovative polymer and green graphene-derived nanocomposites may overcome
design/performance-related challenging factors for technical usages.

Keywords: green; graphene; nanocomposite; polymer; supercapacitor

1. Introduction

Graphene is a one-atom thick, two-dimensional nano-allotrope of carbon [1]. Graphite
is a common carbon structure consisting of layers of graphene [2–5]. The word ‘graphene’
is derived from graphite with the suffix ‘-ene’. Graphene nanosheets are stacked together
through weak dispersion forces. Owing to unique structure and exclusive properties,
graphene nanosheets have been considered as a remarkable candidate for functional
nanocomposites [6,7]. Graphene has been synthesized using numerous top-down and
bottom-up methods [8]. The most common, inexpensive, and facile method initially
used for the production of graphene include the mechanical and thermal exfoliation of
graphite [9–11]. Isolated graphene is a free-standing nanosheet. For large-scale synthesis
of graphene, due to its large surface area and superior chemical and physical properties,
advanced techniques like the chemical vapor deposition (CVD) technique have been fre-
quently adopted [12]. According to recent requirements of eco-friendly materials and
methods, green technologies have been used to develop graphene and graphene-based
materials [13]. Consequently, graphene has been investigated as an important material in
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supercapacitors [14]. Specifically, green-synthesized graphene and derived nanocomposites
have been applied in supercapacitor applications [15,16]. In supercapacitors, the conju-
gated polymers such as polyaniline, polypyrrole, polythiophene, etc., have been widely
used due to their high electrical conductivity, heat stability, and durability properties [17].
Particularly, conjugated polymer-based nanocomposites have been used for supercapacitor
components [18]. In this regard, carbon nanofillers have enhanced the electron transporta-
tion and physical properties of conjugated polymers for technical applications. Among
nanocarbons, graphene nanocomposites have been effectively investigated for energy stor-
age devices [19,20]. In supercapacitor electrodes, graphene-derived materials revealed high
surface area, electrical conductivity, and electrochemical properties [21].

In this review, the design of green-synthesized graphene, related nanocomposites, and
resulting supercapacitor components have been studied. Green methods have efficiently
contributed to the fabrication of green and ecologically safe graphene-based materials.
The electrical conductivity, specific capacitance, capacitance retention, recyclability, and
durability of supercapacitor electrodes/electrolytes depend upon the matrix–nanofiller in-
teractions, graphene contents, functionality, and dispersion in the matrix. Thus, using green
polymer/graphene nanomaterials has positively affected supercapacitor performances.
For high-performance supercapacitor devices, the design of advanced green-synthesized
graphene-based materials must be examined.

2. Graphene

Graphene is a nanosheet made up of sp2 hybridized carbon atoms [22]. It is a hon-
eycomb lattice nanostructure consisting of sp2 hybridized carbon atoms [23]. Graphene
can be considered as a derived form of graphite (having stacking graphene layers) [24].
Graphene possess van der Waals interactions, which may cause wrinkling and restack-
ing of the nanosheet [25]. Graphene has high surface area, electron transport, thermal
conductivity, Young’s modulus, and strength properties [26]. Due to its unique structure
and properties, graphene has gained a distinct position among nanocarbon nanoparti-
cles [27]. Graphene has been applied to synthesize various nanomaterials [28]. Moreover, it
can be functionalized or modified to form graphene oxide, reduced graphene oxide, and
functional graphene structures [29]. Graphene, graphene oxide, reduced graphene oxide,
and other graphene derivatives have been employed as effective nanofillers to form poly-
meric nanocomposites [30]. Numerous application areas have been identified for graphene
and derived materials such as energy devices, electronics, engineering, biomedical, and
nanocomposites [31–33].

3. Graphene in Supercapacitors

Supercapacitors have been identified as the most efficient energy storage devices [34–36].
Supercapacitors have the advantages of efficient charge storage, reversibly, and chemical
stability [37–39]. In these charge storage devices, nanocarbon nanomaterials have been used
due to their high electron transportation, optimum porosity, and durability properties [40].
Graphene has high surface area, electrical conductivity, and mechanical stability properties,
in addition to superior charge storage to be utilized in supercapacitor components [41]. Due
to optimum porosity and pore size distribution in graphene-based electrodes, electrolyte
has easy accessibility to the electrode surface. Yan et al. [42] developed highly corrugated
graphene sheets and thermally exfoliated graphene sheets for supercapacitor electrodes.
Graphene oxide was prepared using the green Hummer’s method using eco-friendly
reagents. The thermal reduction was adopted as a green method for the conversion of
graphene oxide to thermally exfoliated graphene sheets at a high temperature of 900 ◦C
(Figure 1). Liquid nitrogen treatment was used for the conversion of thermally exfoliated
graphene sheets to highly corrugated graphene sheets. The highly corrugated graphene,
synthesized using green method, has the least agglomeration and restacking tendencies.
Thus, in a supercapacitor electrolyte, the corrugated graphene has a high surface area
(517.9 m2 g−1), leading to high specific capacitance of 349 Fg−1, relative to the thermally
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exfoliated graphene (183 Fg−1) (Figure 2). It was observed that the capacitive performance
of the green-synthesized graphene was considerably higher than the environmentally
hazardous hydrazine vapor-reduced graphene (155 Fg−1) [43].
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4. Green Synthesis of Graphene

The industrial scale mass production of graphene has been focused due to its technical
applications [44]. In this regard, chemical reduction oxidation techniques have been
investigated for the large-scale synthesis of graphene. However, using hydrazine and
other toxic regents in graphene production has produced human health hazards and
environmentally harmful effects [45,46]. Alternatively, various facile, safe, green, and
low-cost methods have been focused upon for the graphene production. Most importantly,
micromechanical exfoliation [47] and chemical vapor deposition [48] have been adopted
as green synthesis approaches to form graphene. Green synthetic protocols have been
used to synthesize safe and green graphene [49]. Green techniques involve the use of
green synthesis routes following green chemistry, eco-friendly reagents and solvents,
and green energy consumption methods for graphene production [50,51]. Incidentally,
green, inexpensive, and effective biomass-reducing agents have been used to form reduced
graphene oxide (RGO) [52]. Green methods have the advantages of low-cost production
and ecofriendly processing [53]. Micromechanical exfoliation has been used as a low-cost
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and green methodology for graphene synthesis [54]. This method may involve using
graphite interlayer compounds for the exfoliation of graphene nanosheets [55]. This is not
only an inexpensive and eco-friendly technique, but also yields high-quality graphene [56].
However, micromechanical exfoliation has limitations for the large-scale production of
graphene. Moreover, chemical vapor deposition (CVD) synthesis has been used to form
green planar graphene nanostructures [57]. In CVD, transition metal catalysts have been
used to synthesize graphene with controlled thickness, low surface defects, and surface
properties [58]. This method has the advantages of low temperature processing and no use
of corrosive solvents [59].

Graphene has been prepared using renewable carbon sources [60]. The synthesis of
graphene and its derivatives usually requires expensive and toxic reagents. Consequently,
research efforts have been focused towards the use of sustainable routes [61]. The synthesis,
performance, and applications of graphene-derived nanomaterials prepared from renew-
able carbon sources and reduction by green alternatives have been of specific interest [62].
In this regard, the graphitization of waste carbon precursors has been used to attain high
purity graphene derivatives. Here, the graphitization of waste carbon precursors has been
performed using CVD, hydrothermal, laser ablation, etc. Green reduction of graphene oxide
has been carried out using plant extracts from fruits, leaves, etc., containing a high concen-
tration of phenolic compounds [63,64]. Green extracted phenolic compounds have been
used a as carbon source for graphene synthesis [65–67]. Renewable carbon sources are usu-
ally inexpensive, non-toxic, non-flammable, and environmentally friendly [68–70]. Different
hydrocarbon sources have been used for graphene synthesis [71–73]; Nasir et al. [61] pro-
duced graphene oxide using oil palm leaves, palm kernel shells, and empty fruit bunches.
Carbonization of the green materials was performed at 400–900 ◦C in furnace, under a
nitrogen atmosphere. The graphene oxide was synthesized from as-carbonized materials.
The surface area of graphene oxide, obtained by the Brunauer—Emmett—Teller technique,
was 117 m2 g−1. Salifairus et al. [74] used palm oil as a natural carbon precursor to prepare
graphene. The thermal chemical vapor deposition was applied to obtain graphene. Like-
wise, Qu et al. [75] performed the synthesis of graphene sheets from alfalfa plants. Kalita
and co-workers [76] synthesized large surface area graphene nanosheets using camphor
plant derivatives. Zhang Kalita and co-workers [77] prepared high-quality graphene using
glucose and ferric chloride. Nguyen and co-researchers [78] applied biscuits, chocolate,
grass, and plastic on copper foil in a CVD technique for graphene synthesis. However, these
techniques need further developments for the commercial-level production of graphene.

Graphene synthesis from biomass like sugars, Escherichia coli, microorganisms, etc.,
have gained noteworthy research attention [79]. Eco-friendly reducing agents have been
used for the safe production of graphene [80]. Upadhyay and co-workers [81] employed
grape (Vitis vinifera) extracts as a green reducing agent for the synthesis of reduced
graphene oxide. This method was proved inexpensive and feasible for large-scale produc-
tion. Graphene oxide was widely prepared using the modified Hummer’s method [82].
Graphene oxide was then converted to reduced graphene oxide using a green route employ-
ing Vitis vinifera with refluxing (95 ◦C), filtering, and drying (Figure 3). Figure 4 shows the
X-ray diffraction of graphite, graphene oxide, and reduced graphene oxide. The formation
of graphene oxide (from graphite) was identified by the appearance of a peak at 2θ = 10.4◦.
The reduced graphene oxide was characterized by the appearance of a broad peak at 23.7◦,
indicating the presence of few layered graphene. Transmission electron microscopy image
revealed a graphene structure with a few layers in the reduced graphene oxide sample. The
green-synthesized nanosheet was found to be slightly wrinkled and corrugated.
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Tavakoli et al. [83] used pomegranate juice to synthesize a graphene nanosheet from
graphene oxide. First, Hummer’s method was used to form graphene oxide from a graphite
precursor. Next, the graphene oxide was converted to reduced graphene oxide in the
presence of pomegranate juice (having anthocyanins as reducing agent). Consequently, the
anthocyanins reducing agent (electron deficient) removed the oxygen functional groups
from the graphene oxide surface to generate graphene nanosheets. Figure 5 presents a
mechanism for the formation of graphene from graphene oxide via a green route.

Vitamin C has been applied as a green bio-precursor for the reduction of graphene
oxide to graphene [84]. Vitamin C has been successfully used as a green alternative to
the environmentally hazardous hydrazine during graphene synthesis. This green and
pollution-free method yielded high-quality and wrinkle-free graphene, with high elec-
tronic conductivity [85]. L-ascorbic acid has been effectively used as a source of vitamin
C-based green reducing agent to form graphene. Gao et al. [86] adopted a green method
for graphene production using the eco-friendly Vitamin C (reductant) and amino acid (sta-
bilizer). Accordingly, this method avoids using any toxic reagents for graphene production.
The resulting graphene has high electron transportation. Thus, Vitamin C sources have
been found as safe reducing agents to yield high-quality graphene at a large scale, thus
avoiding the toxic reagents like hydrazine [87].
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5. Green-Synthesized Graphene-Based Nanocomposites for Supercapacitors

Flexible supercapacitors based on polymers and polymeric nanocomposites have been
explored for high-specific capacitance and power density performance [88–90]. Flexible
graphene-based supercapacitors have been applied in the advanced electronic devices [91–93].
Here, the mechanical flexibility of materials was desirable to form the graphene-based
flexible supercapacitors [94]. Bressi et al. [95] surveyed fossil resources for the development
of graphene and derivatives, according to growing environmental impacts. Several green
routes have been used for exploiting renewable resources towards facile, low-cost, and
eco-friendly synthetic processes [96,97]. Subramanya et al. [98] used a facile green one-
pot method for the synthesis of few-layered graphene nanosheets. In this green method,
graphene was obtained directly from graphite in an aqueous medium, using a regenerative
catalyst. The as-synthesized graphene had large capacitance of 219 Fg−1 and high energy
density of 83.56 W h kg−1. Excellent cyclability—over 3000 cycles—was observed for the
green-synthesized graphene-based electrodes. Liu et al. [99] used a facile green method for
the formation of graphene oxide and graphene oxide sheets—Prussian blue nanocomposite.
This green method involves using the redox reaction of FeCl3 and K3[Fe(CN)6] in an
aqueous solution. The cyclic voltammograms of graphene oxide are given in Figure 6. The
green-derived electrodes were tested in the electrochemical cell with H2O2. The cathodic
peak current and anodic peak current increased and decreased, respectively. The changes
were observed due to the electrochemical catalytic reaction between the electrode and
H2O2. The electrode had higher sensitivity toward the electro-catalytical reduction of H2O2.
The exceptional electrochemical properties and green preparation revealed potential in the
field of electrochemical sensors [100].
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Liu et al. [101] used the green electrochemical synthetic route with series of electro-
chemical processes to form an expandable graphene sheet and platinum nanoparticle-
deposited expandable graphene sheet. The conductive indium tin oxide glass electrode
was used as a substrate. The catalytic activity and stability of the synthesized electrodes
were measured using cyclic voltammetry. The as-synthesized nanocomposite had high
surface area, electrical conductivity, catalytic activity, and good stability. CV curves were
scanned to analyze the comparative performance of the Platinum/expandable graphene
sheet and Platinum/glass carbon composite electrode (Figure 7). The electrodes were
cycled repeatedly to achieve a steady state. The Platinum/expandable graphene sheet had
a forward peak current density of 7.41 mAcm−2 at 0.92 V. The more positive current density
of the Platinum/expandable graphene sheet was credited to the residual oxygen containing
functional groups on the surface.
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Conducting polymers have been efficiently applied as electrodes, revealing high
electrochemical performance [102–104]. Conducting polymer/graphene nanocomposites
have electroactive regions for the diffusion of ions in supercapacitor electrodes [105,106].
Polyaniline-based electrodes have a high specific surface area of 2600 m2 g−1 [107]. Wu
et al. [108] designed a polyaniline nanofiber/graphene nanocomposite-based supercapac-
itor electrode. The electrode had a high specific capacitance of 210 Fg−1. The specific
capacitance of the green-synthesized electrode was found to be comparable to that of the
non-green-synthesized electrode reported in the literature [109].

Graphene has gained increasing interest for the energy storage applications [110–112].
Graphene oxide and reduced graphene oxide have also been focused for charge storage
due to their low-cost, high surface area, and high conductivity properties [113–115]. Green-
synthesized graphene-based materials have been applied for eco-friendly energy storage
electrodes [116–118]. To form graphene using the green route, Cetraria Islandica L. Ach ex-
tract has been used to improve the dispersibility and chemical reduction of graphene oxide
nsnosheets [119–121]. The green method also has the advantages of cost-effectiveness and
producing high-quality graphene. Çıplak et al. [122] designed the polyaniline, graphene
oxide-gold@polyaniline, and reduced graphene oxide-gold@polyaniline nanocomposites
for supercapacitor application. In the green method, Cetraria Islandica L. Ach lichen ex-
tract was used for the reduction of graphene oxide to reduced graphene oxide. Through
in-situ polymerization, aniline monomer and gold nanoparticles were reacted to form
the graphene oxide-gold@polyaniline and the reduced graphene oxide-gold@polyaniline
nanocomposites (Figure 8).
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The π–π interactions were developed between the polyaniline graphene nanosheets.
Figure 9 shows CV curves for the polyaniline, reduced graphene oxide, and related
nanocomposites, at scan rate of 10 mV/s in 1 M H2SO4 electrolyte. The integrated area
in the CV curves was directly proportional to the specific capacitance of the electrode.
Moreover, the diagram shows the capacitance performance of neat polyaniline and the
related nanocomposites, in the range of a 5–200 mV/s sweep rate. It was observed that the
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reduced graphene oxide-gold@polyaniline nanocomposite had higher specific capacitance
of 212.8 Fg−1 (1 Ag−1) and capacitance retention of 86.9%, relative to graphene oxide-
gold@polyaniline nanocomposite and pristine polyaniline. The results suggested that the
use of green reduced graphene oxide has enhanced the contribution of polymer chains to
the charge diffusion, and so improved the rate capability of the supercapacitor electrode,
compared with the literature non-green-synthesized polyaniline/graphene supercapacitor
electrode [123].
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Figure 9. (a) CV curves of rGO, pristine PANI, rGO-Au@PANI, and GO-Au@PANI at scan rate of
10 mV/s in 1 M H2SO4 electrolyte; CV curves and (b) Variation of specific capacitance vs. scan
rate (5–200 mV/s) for rGO-Au@PANI, GO-Au@PANI, and PANI [122]. rGO = reduced graphene
oxide; rGO-Au@PANI = reduced graphene oxide-gold@polyaniline; GO-Au@PANI = graphene
oxide-gold@polyaniline; PANI = polyaniline. Reproduced with permission from Elsevier.

Arthisree et al. [124] prepared the polyacrylonitrile/polyaniline@graphene nanocom-
posite via green route for supercapacitor application. A graphene quantum dot was
prepared using a green approach (Figure 10). Afterwards, different graphene quantum dot
contents were reinforced in the nanocomposites. The nanocomposite electrode was fabri-
cated using eco-friendly drop casting and screen-printing techniques. In the nanocomposite,
the proton-coupled electron-transfer was observed between polyacrylonitrile, polyani-
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line, and the graphene quantum dot. According to current-voltage measurements, the
nanocomposite with 1.5 wt.% nanofiller contents had higher electrical conductivity of
2.362 × 10−6 Sm−1, relative to neat polymers and the nanocomposite with lower nanofiller
contents (Figure 11). The higher electrical conductivity led to enhanced carrier density
and specific capacitance properties. The CV analysis were performed to study the electro-
chemical characteristics of the prepared nanocomposites (Figure 12). The study was carried
out in 0.1 M H2SO4 electrolyte, at a scan rate of 50 mVs−1. The difference in the current
signals of the graphene nanostructure, polyacrylonitrile/polyaniline blend, and nanocom-
posites can be distinguished. The CV curve of the graphene nanostructure revealed an
excellent electrical double-layer capacitor [125]. The CV curve of the blend had a larger
conducting area than that of the pure graphene nanostructure. The reason seems to be the
high surface area and pseudocapacitance of the conjugated polymer [126]. The CV scans
of the nanocomposites revealed enhancement in the area of cathodic and anodic portions,
with increasing nanofiller loading. The results suggested the higher pseudocapacitance
mechanism of the nanocomposite material with increasing graphene loading levels [127].
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Figure 10. Illustration of PAN/PANI@G nanocomposite and its proton-coupled electron-transfer
reaction responsible for the pseudocapacitance activity [124]. PAN/PANI@G = polyacryloni-
trile/polyaniline@graphene; GQD = graphene quantum dot; PANI = polyaniline. Reproduced
with permission from Elsevier.

Li et al. [128] designed the cellulose/polyaniline and cellulose/graphene oxide
/polyaniline nanocomposite. A green method was used to form the nanocomposite us-
ing the in-situ polymerization, as illustrated in Figure 13. The areal specific capacitance
of the cellulose/polyaniline and cellulose/graphene oxide/polyaniline nanocomposite
is given in Figure 14. The cellulose/graphene oxide/polyaniline nanocomposite with
3.5 wt.% nanofiller formed a three-dimensional structure revealing high electrical conduc-
tivity of 1.15 Scm−1 and a significantly high areal specific capacitance of 1218 mFcm−2.
Moreover, the cellulose/graphene oxide/polyaniline nanocomposite had higher energy
density (258.2 µWh/cm2) and power density (1201.4 µW/cm2) for the high-performance
supercapacitors. Figure 15 depicts the CV performance of the cellulose/polyaniline, cel-
lulose/graphene oxide, and cellulose/graphene oxide/polyaniline nanocomposites. In-
clusion of 3.5 wt.% nanofiller contents in cellulose/graphene oxide/polyaniline nanocom-
posite revealed promising electrical properties. The enhanced performance was observed
due to the synergistic effect of the graphene oxide and polyaniline as conducting fillers
in the cellulose matrix [129]. A comparable supercapacitor electrode prepared by Luo
et al. [130], using a non-green route, had a lower specific capacitance of 645 Fg−1. The
higher capacitance indicated the effectiveness of the green method used. Similar other
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attempts of using non-green synthesis methods have revealed a lower specific capacitance
of 486 Fg−1 [131].
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duced with permission from Elsevier.
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Polypyrrole has been applied as an important conducting polymer in supercapaci-
tors [132–134]. Research attempts have been observed on polypyrrole/graphene nanomate-
rials for supercapacitor applications [135]. Sahoo and co-workers [136] designed polypyr-
role/graphene nanocomposites for a supercapacitor electrode. The polypyrrole/graphene
nanocomposite-based electrode revealed reasonable electrical conductivity (1.45 Scm−1)
and specific capacitance (466 Fg−1), due to the synergetic effect of conjugated polymer
and graphene nanofiller. Biswas and Drzal [137] reported on the polypyrrole/graphene
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nanocomposite electrode. The specific capacitance of 165 Fg−1 was attained along with
good electrochemical cyclic stability. Lim and co-researchers [138] fabricated the polypyrrole/
graphene-based electrode via electrochemical polymerization. The capacitance of polypyr-
role was found to improve with the graphene addition [139]. Zhou and co-workers [140]
used the electrochemical co-deposition technique for the polypyrrole/graphene oxide. The
electrode depicted an areal capacitance of 152 mFcm−2.
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In this regard, using the green synthesis approaches may overcome the challenges
for forming eco-friendly polypyrrole/graphene nanocomposites having high specific ca-
pacitance and cycle stability. Consequently, Pourbeyram et al. [141] synthesized the green
polypyrrole/graphene nanocomposite nanofiber. The green method involved the direct
interaction of polypyrrole and graphene without using the reducing/oxidative agents,
surfactants, and organic solvent. The green method was proved low cost and ecological
friendly. The electrode obtained using green route revealed high specific capacitance of
480 Fg−1 and capacitance retention of 94%, over 5000 charge-discharge cycles. Authors [141]
applied green one-step electro-polymerization to deposit polypyrrole on the graphene pa-
per. The supercapacitor electrode was developed using the eight deposition cycles. The
green-synthesized supercapacitor electrode revealed an areal capacitance of 128.9 mF/cm2.
After 5000 galvanostatic charge–discharge cycles, the cyclic stability of 85% was attained.
Moreover, the high energy density (16.1 mWh/cm2) and power density (180 mW/cm2)
were observed for the electrode. Liu et al. [142] prepared the green graphene oxide in an
aqueous solution. Then, graphene oxide was chemically reduced using ethylene glycol,
which is an ecologically safe material. The polypyrrole/ethylene glycol-reduced graphene
oxide exhibited a specific capacitance of 420 Fg−1, which was considerably higher than the
neat polymer electrode (159 Fg−1). Moreover, a capacitance retention of 93% was observed.
Zhang et al. [143] applied the one-pot green hydrothermal method to develop graphene
hydrogel. The oxidative polymerization of polypyrrole was carried out on graphene hy-
drogel through a green route without using any toxic reagents. The green-synthesized
polypyrrole/graphene hydrogel revealed a high specific capacitance of 375 Fg−1 and capac-
itance retention of 87% over 4000 charge–discharge cycles. Thus, the overall electrochemical
performance of the supercapacitor electrodes was enhanced due to the double layer capaci-
tance of green graphene and pseudo-capacitance of polypyrrole [144–146]. Contrarily, Xu
et al. [147] used a non-green method for the formation of polypyrrol/reduced graphene
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oxide nanocomposite electrode. The lower specific capacitance of 336 Fg−1 was attained.
The use of green synthesis methods for polypyrrol/graphene nanocomposites has been
found effective to enhance their capacitance properties due to better matrix–nanofiller
interactions and interface formation.

Green polymers such as biodegradable poly(vinylpyrrolidone) (PVP) binder [148]
and recyclable poly(ethyleneterephthalate) (PET) [149] have been preferred for the super-
capacitor electrodes. In addition, a green screen-printing technique was applied for the
deposition of graphene on these polymers to form the desired electrodes [150–152]. To
avoid the leakage of liquid electrolyte, phosphoric acid-doped biodegradable PVP has
also been used as a solid polymer electrolyte in the supercapacitors [153]. Consequently,
fine interactions and interface formation were observed between the PVP/electrode and
PVP electrolyte in the system [154–156]. Sudhakar et al. [157] adopted a green method to
form reduced graphene oxide using calcium carbonate. Then, an ecologically safe screen-
printing method was applied to form the supercapacitor electrodes using biodegradable
PVP binder and recyclable PET. The PVP was also used as an electrolyte in the system. The
low-cost environmentally friendly supercapacitor electrode exhibited a specific capacitance
of 201 Fg−1 and capacitance retention of 97% over 2000 cycles. The performance of green
electrodes was found comparable to the literature-reported electrodes prepared through
non-green method [158,159]. The specific capacitance of a green-synthesized PVP binder-
based electrode was found comparable to that of a non-green fabricated supercapacitor
electrode (~200 Fg−1) [160]. Table 1 shows specifications of important green synthesized
nanocomposites.

Table 1. Specifications of green synthesized nanocomposites.

Polymer Graphene Green Method Properties/Applications Ref

Polyaniline

Graphene
oxide-gold@polyaniline;

reduced graphene
oxide-gold@polyaniline

Cetraria Islandica L. Ach
lichen-based method

Specific capacitance
212.8 Fg−1 [122]

Polyacrylonitrile Polyaniline@graphene Green drop casting;
screen-printing techniques

Electrical conductivity
2.362 × 10−6 Sm−1 [124]

Cellulose/polyaniline Graphene/graphene
oxide Green in-situ method

Electrical conductivity
1.15 Scm−1;

specific capacitance
1218 mFcm−2

[128]

Polypyrrole Graphene paper Green one-step
electro-polymerization

Areal capacitance
128.9 mF/cm2;

cyclic stability 85%
[141]

Polypyrrole Reduced graphene oxide Green reduction method
using ethylene glycol

Specific capacitance
420 Fg−1;

capacitance retention 93%
[142]

Polypyrrole Graphene hydrogel

one-pot green
hydrothermal method;

green oxidative
polymerization without using

toxic reagents

Specific capacitance
375 Fg−1;

capacitance retention 87%
[143]

Poly(vinylpyrrolidone);
poly(ethyleneterephthalate) Graphene

Biodegradable
poly(vinylpyrrolidone);

recyclable
poly(ethyleneterephthalate);

green screen-printing
technique

Supercapacitors; electrode
binder [148]
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Table 1. Cont.

Polymer Graphene Green Method Properties/Applications Ref

Poly(vinylpyrrolidone) Reduced graphene oxide

Green method for reduced
graphene oxide;
ecologically safe

screen-printing method

Specific capacitance
201 Fg−1; capacitance

retention 97%
[157]

6. Prospects and Summary

Green-synthesized graphene, graphene oxide, and reduced graphene oxide have been
used as nanofillers for conjugated polymers like polyaniline, polypyrrole, and
poly(vinylpyrrolidone) [161]. Various green routes have been adopted to form green
graphene and modified graphene nanofillers. Using green reducing agents efficiently con-
verted the graphene oxide to reduce graphene oxide. Environmentally harmless reducing
agents have been used to prevent the toxic effects of chemicals like hydrazine. Moreover,
green in-situ polymerization, electro-polymerization, printing, hydrothermal, and other
methods have been used for developing polymer/graphene nanocomposite electrodes. The
ecofriendly polymer/graphene nanocomposite-derived supercapacitor electrode revealed
high electron transport, capacitance, durability, and overall enhanced electrochemical
performance [162–164]. In addition to the green-synthesized graphene, various green poly-
mers need to be applied for the fabrication of supercapacitor electrodes [165]. Moreover,
precise control over the processing parameters may further enhance the supercapacitor
performance. The morphology of green-synthesized graphene-based supercapacitor elec-
trodes must be investigated in detail to gain insight of the nanostructure. Consequently,
the formation of a homogeneous nanoporous structure may facilitate the high specific
capacitance, energy density, and cyclic performance of green electrodes [166].

In this article, various strategies have been reviewed for the formation of green-
synthesized graphene and green polymer/graphene nanocomposites. Low-cost, environ-
mentally friendly, and flexible polymer/graphene nanocomposite-based supercapacitors
have been designed. Using green-synthesized graphene, graphene oxide, and reduced
graphene oxide in the supercapacitor electrodes revealed high specific capacitance, electri-
cal conductivity, charge density, and cycling stability features. Specifically, the synergistic
effects of green-synthesized graphene and conjugated polymers promoted the electron
and charge transport properties in the supercapacitor electrodes. Future innovations in
green design strategies may reveal exclusive structure, morphology, and high performance
of polymer/graphene nanocomposites for supercapacitor electrodes, electrolytes, and
other components.
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