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Abstract We prove standard completeness for uninorm
logic extended with knotted axioms. This is done follow-
ing a proof-theoretical approach, based on the elimination of
the density rule in suitable hypersequent calculi.
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1 Introduction

In mathematical fuzzy logic, the intended or standard seman-
tics is based on algebraic structures over the real interval
[0, 1], see (Hajek 1998). Showing that a logic is standard
complete, i.e., complete with respect to the standard seman-
tics, is therefore of crucial importance to the field. Two main
approaches have been developed to tackle the problem: alge-
braic and proof-theoretical. The former was introduced for
proving standard completeness for monoidal t-norm logic
MTL (Jenei and Montagna 2002). The method has since been
extended to prove standard completeness for many axiomatic
extensions of MTL, see e.g., (Cintula et al. 2009; Esteva et al.
2002; Horcik 2011). However, no algebraic proof of standard
completeness has been found for uninorm logic UL (Metcalfe
and Montagna 2007) (MTL without weakening/integrality).
Only for a handful of its axiomatic extensions has standard
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completeness been proved algebraically (Wang 2012; Gab-
bay and Metcalfe 2007). In particular, Wang (2012) shows,
algebraically, standard completeness for any logic extend-
ing UL with both the n-mingle axiom αn → αn−1 and the
n-contraction axiom αn−1 → αn , for given n > 2. An alter-
native, proof-theoretic approach for proving standard com-
pleteness was introduced in Metcalfe and Montagna (2007).
This method has been used to establish standard complete-
ness for UL and a few axiomatic extensions, as well as many
axiomatic extensions of MTL (Baldi et al. 2012; Metcalfe and
Montagna 2007; Ciabattoni and Metcalfe 2008). The main
idea behind the proof-theoretic approach is that the addi-
tion of a special rule, called density, to any axiomatic exten-
sion of UL, makes the logic rational complete, i.e., complete
with respect to algebras over the rationals in [0, 1], see (Cia-
battoni and Metcalfe 2007, 2008; Metcalfe and Montagna
2007). Thus, showing the admissibility (or elimination) of
the density rule entails rational completeness for the original
logic. More precisely, given a logic L, the proof-theoretical
approach to standard completeness can be summarized as
follows:

(a) Define a cut-free proof system HL for L extended with
the density rule.

(b) Prove that the density rule is eliminable in HL (density
elimination), i.e., that it does not enlarge the set of prov-
able formulas. This shows rational completeness for L.

(c) Standard completeness may then be obtained from ratio-
nal completeness by means of the Dedekind–MacNeille
completion.

In this paper, we follow the above steps to prove standard
completeness for axiomatic extensions of UL with any set of
knotted axioms αk → αn , for n, k > 1. Knotted axioms were
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Table 1 Hypersequent calculus
HUL for UL G | �⇒α G | α,�⇒�

G | �,�⇒�
(cut) G | α⇒α

(ini t) G | �,⊥⇒�
(⊥)

G | �⇒� (�)
G | �⇒�

G | t,�⇒�
(tl) ⇒t (tr)

f ⇒ ( f l) G | �⇒
G | �⇒ f ( f r)

G | α,β,�⇒�
G | α·β,�⇒�

(· l) G | �⇒α G | �⇒β
G | �,�⇒α·β (· r)

G | �⇒α G | β,�⇒�
G | �,α→β,�⇒�

(→ l) G | α,�⇒β
G | �⇒α→β

(→ r)

G | α1,�⇒�
G | α1∧α2,�⇒�

(∧l) G | α2,�⇒�
G | α1∧α2,�⇒�

(∧l) G | �⇒α G | �⇒β
G | �⇒α∧β

(∧r)

G | α,�⇒� G | β,�⇒�
G | α∨β,�⇒�

(∨l) G | �⇒α1
G | �⇒α1∨α2

(∨r)
G | �⇒α2

G | �⇒α1∨α2
(∨r)

G | �⇒�
G | �⇒� | �⇒�

(ec) G
G | �⇒�

(ew)

G | �1,�1⇒�1 G | �2,�2⇒�2
G | �1,�2⇒�1 | �1,�2⇒�2

(com)

first introduced in Hori et al. (1994) and provide a general-
ization of both n-mingle and n-contraction. Thus, we gener-
alize the result in (Wang 2012) and simplify its proof, which
contains many hard-to-check case distinctions. The paper is
organized as follows: Sect. 2 contains a Gentzen-style calcu-
lus for any axiomatic extension of UL with knotted axioms
(step (a)). The calculus is based on hypersequents, a natural
generalization of Gentzen sequents. Following the approach
in (Ciabattoni and Metcalfe 2008), in Sect. 3 we prove density
elimination (step (b)). This shows the rational completeness
of our logics. Standard completeness can then be obtained by
Dedekind–MacNeille completion (step (c)). Results in (Cia-
battoni et al. 2011) ensure indeed that the knotted axioms are
preserved under this construction.

2 Proof theory for axiomatic extensions of UL
with knotted axioms

We present hypersequent calculi for axiomatic extensions of
UL with knotted axioms. We start recalling uninorm logic
UL, first introduced in (Metcalfe and Montagna 2007). UL
is based on a propositional language with propositional vari-
ables, the constants �,⊥, t, f and the connectives ·,∧,∨
and →. Propositional formulas are generated in the usual
way. An Hilbert system for UL is obtained by adding the pre-
linearity axiom ((α → β) ∧ t) ∨ ((β → α) ∧ t) to MAILL
(the multiplicative–additive fragment of intuitionistic linear
logic, see e.g., Galatos et al. 2007). A Gentzen-style calculus
for UL was introduced in (Metcalfe and Montagna 2007) as
well and is based on hypersequents.

Definition 1 (Avron 1987) A hypersequent is a finite mul-
tiset S1 | . . . | Sn where for i = 1 . . . n, each Si is a single-
conclusioned sequent, called a component of the hyperse-
quent; i.e., Si is an object of the kind �i ⇒ �i , where �i

is a multiset of formulas and �i is either empty or a single
formula.

The symbol “ | ” in a hypersequent is intended to denote
a disjunction of sequents. The formula-interpretation I of a
hypersequent H = �1 ⇒ �1 | . . . | �n ⇒ �n is defined
as follows, see, e.g., (Avron 1991; Ciabattoni et al. 2008;
Metcalfe et al. 2008):

– I(�1 ⇒ �1 | . . . | �n ⇒ �n) = I(�1 ⇒ �1) ∨ · · · ∨
I(�n ⇒ �n)

where the interpretation I of a sequent � ⇒ � is the usual
one, i.e.,

– I(� ⇒ �) = �� → β, if � is a formula β

– I(� ⇒) = �� → f , otherwise

�� stands for the multiplicative conjunction · of all the for-
mulas in �, and it is t when � is empty.

The hypersequent calculus HUL for UL is given in Table 1.
HUL is obtained by adding to the (hypersequent version of
the) calculus for MAILL, the rules (ec), (ew) and the com-
munication rule (com), which is equivalent to the prelinearity
axiom. The context G appearing in all rules in Table 1 stands
for an arbitrary hypersequent. With a slight abuse of nota-
tion, in the following we will denote multisets and formulas
with the same symbol as for the corresponding metavariables.
The notation �k stands for k comma-separated occurrence
�, . . . , � of a multiset �. By αk , we will denote both the
multiplicative conjunction α · · ·α of k occurrences of the
formula α, and k comma-separated occurrences α, . . . , α.
The meaning will be clear from the context. We will denote
repeated applications of a rule (r) by (r). Derivability in a
logic L (Hilbert style) and in a hypersequent calculus HL
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is defined as usual and is denoted by 	L and 	H L , respec-
tively. The calculus HUL is sound and complete for UL (see
Metcalfe and Montagna 2007), i.e., for any hypersequent H
we have that 	HU L H if and only 	U L I(H). Notice that,
although the rule (cut) is useful for proving the complete-
ness of HUL, it does not extend the set of provable hyperse-
quents. Indeed, as shown in (Metcalfe and Montagna 2007),
HUL admits cut-elimination, i.e., any derivation containing
applications of the rule (cut) can be converted into one which
does not contain any application of (cut) (a cut-free deriva-
tion). All the rule applications in a cut-free derivation enjoy
the subformula property, i.e., all formulas occurring in the
premises are subformulas of the formulas in the conclusion.
This is an essential property, that will be used for our proof of
density elimination. We present below hypersequent calculi
which admit cut-elimination and are sound and complete for
extensions of UL with knotted axioms.

Lemma 1 Let L be the logic UL + αk → αn and HL the
hypersequent calculus HUL + (knotk,n), where for n, k ≥ 1
(knotk,n) is the rule:

G | �,�n
1 ⇒ � . . . G | �,�n

k ⇒ �

G | �,�1, . . . �k ⇒ �
(knotk,n)

HL is sound and complete for L.

Proof Soundness and completeness of HUL with respect
to UL have been shown in (Metcalfe and Montagna 2007).
Thus, we just need to deal with the knotted axioms. Show-
ing that αk → αn is derivable in HL is easy (see e.g., the
derivation of αn−1 → αn in Theorem 6 in Ciabattoni et al.
2002). For the other direction, we reason by induction on the
length of the derivation of a hypersequent H in HL. Assume
that the last applied rule is (knotk,n). We limit ourselves to a
simple application of the kind:

�n
1 ⇒ β . . . �n

k ⇒ β

�1, . . . �k ⇒ β
(knotk,n)

Our aim is to show:

(∗) αn
1 → β, . . . , αn

k → β 	L α1, . . . , αk → β

where αi = ��i , for i = {1, . . . , k}. The proof can be
extended to a more general application of (knotk,n), contain-
ing a hypersequent context G. Indeed, from (∗) one easily
gets I(G) ∨ (αn

1 → β), . . . , I(G) ∨ (αn
k → β) 	L I(G) ∨

(α1, . . . , αk → β). For proving (∗), notice that we have
(αn

1 → β), . . . , (αn
k → β) 	L (αn

1 ∨ · · · ∨ αn
k ) → β. More-

over, by the axiom schema αk → αn and basic properties of
L, we get 	L (αk

1 ∨ · · · ∨αk
k ) → (αn

1 ∨ · · · ∨αn
k ). Hence, we

obtain (αn
1 → β), . . . , (αn

k → β) 	L (αk
1 ∨ · · · ∨ αk

k ) → β.
Finally, to complete our proof of (∗), it is sufficient to show
that L derives α1, . . . , αk → (αk

1 ∨· · ·∨αk
k ), which is already

the case for UL (see the proof in the Appendix). �

Lemma 2 Let R be any set of rules of the kind (knotk,n),
with n, k ≥ 1. The calculus HUL extended with the rules in
R admits cut-elimination.

Proof It is shown in (Metcalfe and Montagna 2007) that
HUL admits cut-elimination. We can easily check that any
rule (knotk,n) satisfies the syntactic conditions in (Ciabat-
toni et al. 2008) for preserving cut-elimination (i.e., in the
terminology of Ciabattoni et al. 2008, (knotk,n) is a com-
pleted rule). Therefore, the calculus HUL + R admits cut-
elimination as well, as a consequence of Corollary 8.6 in
(Ciabattoni et al. 2008). �

3 Density elimination

We now consider the extension of our hypersequent calculi
with the density rule. This rule, first introduced Hilbert style
in Takeuti and Titani (1984), in a hypersequent calculus has
the following form (Metcalfe and Montagna 2007):

G | � ⇒ p | 	, p ⇒ �

G | �,	 ⇒ �
(D)

where p is a propositional variable satisfying the eigen-
variable condition, i.e., it should not appear in the lower
hypersequent. We show density elimination for any hyper-
sequent calculus extending HUL with (D) and any knotted
rule (knotk,n), with n, k > 1. This means that each deriva-
tion containing an application of (D) can be transformed
into a derivation of the same end-hypersequent which does
not contain (D). We first recall the idea behind the density
elimination proof in (Ciabattoni and Metcalfe 2008). Assume
we have a derivation d ending in an application of density:

...
G | � ⇒ p | 	, p ⇒ �

G | �,	 ⇒ �
(D)

As our calculi admit cut-elimination, we can safely assume
d to be cut-free. We remove the application of (D) by substi-
tuting occurrences of p in d in an “asymmetric” way. More
precisely, each occurrence of p on the left-hand side of each
sequent is replaced by �, and each occurrence on the right-
hand side by a 	 on the left and a � on the right. The applica-
tion of (D) would then be simply replaced by (ec). However,
this procedure does not lead to a valid derivation, in general.
Indeed, d might contain, for instance, an axiom p ⇒ p, and
the application of the asymmetric substitution would return
�,	 ⇒ �, that is not an axiom anymore. The idea is then
to deal in a different way with sequents of kind �, pk ⇒ p,
replacing each of them by �,�k−1 ⇒ t . Thus, for instance,
the axiom p ⇒ p would be turned into the axiom ⇒ t .
This method is applied in (Ciabattoni and Metcalfe 2008) to
extensions of HUL with balanced rules, i.e., rules for which
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the number of occurrences of metavariables in the premises
and in the conclusion is the same. This is not the case of the
knotted rules, for which the asymmetric substitution might be
problematic. For instance, consider the following application
of the rule (knot2,3) (also known as 3-contraction):

�, p3 ⇒ p �, p3 ⇒ p

�, p2 ⇒ p
(knot2,3)

The substitution sketched above would give us

�,�2 ⇒ t �,�2 ⇒ t

�,� ⇒ t

which is clearly not an application of (knot2,3) anymore. We
show below how to overcome this problem for any knotted
rule with n, k > 1. The key observation is that the knotted
rules allow us to use a restricted form of contraction and
weakening on the left, when the right-hand side of a sequent
is equal to t .

Lemma 3 Let n, k > 1. The following rules are derivable
in the calculus HUL + (knotk,n):

G | �,�1 ⇒ t

G | �,�1, �1 ⇒ t
(wt )

G | �,�1, �1 ⇒ t

G | �,�1 ⇒ t
(ct )

Proof First, notice that in HUL, for any m > 1, the rule

G | �m ⇒ t

G | � ⇒ t
(∗m)

is derivable. We reason by induction on m. First, we show
that (∗2) is derivable, as follows:

G | � ⇒ t

G | � ⇒ t
(tl)

G | �, t ⇒ t
(cut)

G | �,� ⇒ t

Assuming that (∗m−1) is derivable, we derive (∗m) as fol-
lows

G | � ⇒ t

G | � ⇒ t
(∗m−1)

G | �m−1 ⇒ t
(tl)

G | �m−1, t ⇒ t
(cut)

G | �m ⇒ t

Similarly, we can prove that for any m > 1 the rule

G | �m ⇒ t

G | � ⇒ t
(∗m)

is derivable. The base case (∗2) can be derived as follows:

G | �,� ⇒ t

⇒ t
(ew)

G | ⇒ t
(com)

G | � ⇒ t | � ⇒ t
(ec)

G | � ⇒ t

Assuming (∗m−1) is derivable, we get:

G | �m ⇒ t

⇒ t
(ew)

G | ⇒ t
(com)

G | �m−1 ⇒ t | � ⇒ t
(∗m−1)

G | � ⇒ t | � ⇒ t
(ec)

G | � ⇒ t

Using (∗2) and (∗2), we can easily show that the two rules
(ct ) and (wt ) are interderivable. Indeed, if we have (wt ), we
can derive (ct ) as follows:

G | �,�1, �1 ⇒ t
(wt )

G | �,�,�1, �1 ⇒ t
(∗2)

G | �,�1 ⇒ t

And analogously:

G | �,�1 ⇒ t
(∗2)

G | �,�,�1, �1 ⇒ t
(ct )

G | �,�1, �1 ⇒ t

In what follows, it is therefore enough to prove that either
(ct ) or (wt ) is derivable. In particular, we show that (ct ) is
derivable in case the knotted rule (knotk,n) has n > k, and
that (wt ) is derivable, otherwise.

1. Assume n > k. Suppose that we are given a derivation
of G|�,�1, �1 ⇒ t . Consider the following application of
(knotk,n):

G | �,�1, �1 ⇒ t
(∗n) . . .

G | �n, �n
1 , �n

1 ⇒ t

G | �,�1, �1 ⇒ t
(∗n)

G | �n, �n
1 , �n

1 ⇒ t
(knotk,n)

G | �n, �k
1 , �k

1 ⇒ t

If 2k > n, then apply (knotk,n) with k identical premises
G1|�n, �2k−n

1 , �n
1 ⇒ t to obtain G1|�n, �2k−n+k

1 . Apply
the rule (knotk,n) once more using this sequent as the
premises. Repeat in this way until we get G1|�n, �l

1 ⇒ t , for
some l ≤ n. The proof that (ct ) is derivable is then completed
as follows

···
G | �n , �l

1 ⇒ t G | �,�1, �1 ⇒ t
(com)

G | �n , �l+1
1 ⇒ t | �,�1 ⇒ t

G | �,�1, �1 ⇒ t
(ew)

G | �,�1, �1 ⇒ t | �,�1 ⇒ t
(com)

G | �n , �l+2
1 ⇒ t | �,�1 ⇒ t | �,�1 ⇒ t

···
G | �n , �n

1 ⇒ t | �,�1 ⇒ t | . . . | �,�1 ⇒ t
(∗n)

G | �,�1 ⇒ t | . . . | �,�1 ⇒ t
(ec)

G | �,�1 ⇒ t

2. Consider now the case where n < k. Suppose that
we are given a derivation of G|�,�1 ⇒ t . We prove that
(wt ) is derivable in our calculus. First, consider the following
application of (knotk,n):
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G | �,�1 ⇒ t
(∗n) . . .

G | �n, �n
1 ⇒ t

G | �,�1 ⇒ t
(∗n)

G | �n, �n
1 ⇒ t

(knotk,n)
G | �n, �k

1 ⇒ t

We iterate similar application of (knotk,n), increasing the
occurrences of �1 by (k − n), until we get G | �n, �l

1 ⇒ t ,
for some l ≥ 2n.

The proof that (wt ) is derivable is then completed as fol-
lows:

···
G | �n , �l

1 ⇒ t G | �,�1 ⇒ t
(com)

G | �n , �l−1
1 ⇒ t | �,�1, �1 ⇒ t

G | �, �1 ⇒ t
(ew)

G | �, �1 ⇒ t | �, �1, �1 ⇒ t
(com)

G | �n , �l−2
1 ⇒ t | �, �1, �1 ⇒ t | �, �1, �1 ⇒ t

···
G | �n , �n

1 , �n
1 ⇒ t | �, �1, �1 ⇒ t | . . . | �, �1, �1 ⇒ t

(∗n)

G | �,�1, �1 ⇒ t | . . . | �, �1, �1 ⇒ t
(ec)

G | �, �1, �1 ⇒ t

�
We are now ready for the result on density elimination.

The proof follows closely that in (Ciabattoni and Metcalfe
2008).

Theorem 1 Let R be any set of rules of the kind (knotk,n),
with n, k > 1. The calculus HUL extended with (D) and the
rules in R admits density-elimination.

Proof It proceeds by induction on the length of the deriva-
tions. Consider a derivation d ending in a topmost application
of the density rule

...
G | � ⇒ p | 	, p ⇒ �

G | �,	 ⇒ �
(D)

By Lemma 2, we can safely assume d to be cut-free.
Let H be a hypersequent H = S1 | ... | Sn . We let H∗ =
G | �,	 ⇒ � | S′

1 | ... | S′
n where, for each component Si ,

the sequent S′
i is defined as follows:

(a) If Si = �, pk ⇒ p (with p �∈ �), k > 0, S′
i =

�,�k−1 ⇒ t .
(b) If Si = � ⇒ p (with p �∈ �), then S′

i = �,	 ⇒ �

(c) If Si = �, pk ⇒ �1 (with p �∈ �,�1), k > 0, then
S′

i = �,�k ⇒ �1

(d) Otherwise, S′
i = Si

Henceforth, we call a sequent �, pk ⇒ p a pp-
component.

We prove the following:
Claim: For each hypersequent H in d one can find a (D)-

free derivation of H∗.

The result on density elimination follows from this claim.
Just let H be G | � ⇒ p | 	, p ⇒ �. We get that
G | G | �,	 ⇒ � | �,	 ⇒ � is (D)-free derivable (note
that G∗ = G by the eigenvariable condition on p). The
desired (D)-free proof of G | �,	 ⇒ � follows then by
multiple applications of (ec).

For proving the claim, we reason by induction on the
length of the derivation of a hypersequent H in d. Notice
that, if H is an axiom of kind p ⇒ p, then H∗ is G | �,	 ⇒
� | ⇒ t , which is derivable by applying (ew) to the axiom
⇒ t . The claim is easily provable also in case the last applied
rule is (ew), (ec).

The cases for logical rules and communication (com) are
as in (Ciabattoni and Metcalfe 2008). Assume now that the
last applied rule is a rule (knotk,n) in R. We distinguish three
cases, according to the presence of pp-components in the
premises:

(i) None of the premises contains a pp-component. This
implies that neither the conclusion does: the claim hence
holds, by simply using the induction hypothesis and applying
the knotted rule again.

(ii) All of the premises contain pp-components, i.e., we
have a rule application as the following

G1 | �,�n
1 , pn1 ⇒ p . . . G1 | �,�n

k , pnk ⇒ p

G1 | �,�1, . . . , �k, pl ⇒ p
(knotk,n)

where each ni ≥ 1 is the number of p appearing in the left
hand side of the i th premise, for i = {1, . . . , k}, and l ≥ k
is the number of p appearing in the left-hand side of the
conclusion. By the induction hypothesis, we have density-
free derivations of G∗

1 | �,�n
1 ,�n1−1 ⇒ t, . . . , G∗

1 | �,�n
k ,

�nk−1 ⇒ t . Consider the following derivation:

G∗
1 | �,�n

1 ,�n1−1 ⇒ t

G∗
1 | �,�n

2 ,�n2−1 ⇒ t
(tl)

G∗
1 | �,�n

2 , t,�n2−1 ⇒ t
(cut)

G∗
1 | �2, �n

1 , �n
2 ,�n1−1,�n2−1 ⇒ t

Starting from the end-hypersequent above, we can iterate
similar applications of (cut) with each of the G∗

1 | �,�n
3 ⇒

t , . . . , G∗
1 | �,�n

k ⇒ t until we get:

G∗
1 | �k, �n

1 , �n
2 , . . . , �n

k ,�n1+···+nk−k ⇒ t

The desired hypersequent G∗
1 | �,�1, . . . , �k,�

l−1 ⇒ t
is then obtained by suitable repeated applications of (ct ) and
(wt ) to the hypersequent above.

(iii) Only some premises (say m, with m < k) are pp-
component, while others are not, namely w.l.o.g. we have a
rule application as the following:

G1 | �,�n
1 , pn1 ⇒ p . . . G1 | �,�n

m, pnm ⇒ p

G1 | �,�n
m+1 ⇒ p . . . G1 | �,�n

k ⇒ p

G1 | �,�1, . . . , �k, pl ⇒ p
(knotk,n)

By the induction hypothesis, we have density-free deriva-
tions of G∗

1 | �,�n
1 ,�n1−1 ⇒ t, . . . , G∗

1 | �,�n
m,�nm−1 ⇒
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t and G∗
1 | �,�n

m+1, 	 ⇒ �, . . . , G∗
1 | �,�n

k , 	 ⇒ �.
Recall that our aim is to obtain a derivation of

G∗
1 | �,�1, . . . , �k,�

l−1 ⇒ t

As in the previous case, we do repeated cuts, but only on
the m premises containing pp-components, thus obtaining:

G∗
1 | �m, �n

1 , . . . , �n
m,�n1+···+nm−m ⇒ t

We repeatedly apply (ct ) or (wt ) to the previous hyperse-
quent, to get:

G∗
1 | �m, �n

1 , . . . , �n
m,�(l−1)+(k−m) ⇒ t

We “remove” then extra occurrences of � from this hyper-
sequent, using applications of (com) as the following:

G∗
1 | �m , �n

1 , . . . , �n
m , �(l−1)+(k−m) ⇒ t G∗

1 | �,�n
m+1, 	 ⇒ �

(com)

G∗
1 | �m+1, �n

1 , . . . , �n
m+1, �(l−1)+(k−m−1) ⇒ t | �, 	 ⇒ �

(ec)
G∗

1 | �m+1, �n
1 , . . . , �n

m+1, �(l−1)+(k−m−1) ⇒ t

Similarly, by an application of (com) to the conclusion
above and the premise G∗

1 | �,�n
m+2, 	 ⇒ �, we get

G∗
1 | �m+2, �n

1 , . . . , �n
m+2,�

(l−1)+(k−m−2) ⇒ t . We can
iterate applications of (com) of this kind for all the (k − m)

premises of (knotk,n) which do not contain pp-components,
until we finally get:

···
G∗

1 | �k, �n
1 , . . . , �n

k ,�l−1 ⇒ t
(ct )

G∗
1 | �,�1, . . . , �k,�

l−1 ⇒ t

This concludes the proof of the main claim, thus showing
density elimination for our calculus. �

Standard completeness for our logics can finally be
obtained as a consequence of Theorem 1 and of known results
in (Ciabattoni et al. 2011; Metcalfe 2011; Metcalfe and Mon-
tagna 2007), which we summarize below.

Let us first recall the algebraic structures providing a
semantics for our logics.

Definition 2 An UL-algebra is a structure (A,∧,∨, ·,→,

�,⊥, t, f ) where

– (A,∧,∨,�,⊥) is a bounded lattice, with � and ⊥ the
maximum and minimum, respectively.

– (A, ·, t) is a monoid, f ∈ A.
– x · z ≤ y ⇔ z ≤ x → y for any x, y, z ∈ A (Residua-

tion).
– t ≤ ((x → y) ∧ t) ∨ ((y → x) ∧ t) for any x, y ∈ A

(Prelinearity).

Following common practice, given any logic L which
extends UL with an axiom α, we call L-algebras the class of

UL-algebras satisfying the corresponding algebraic equation
t ≤ α. Henceforth, we let L be a logic extending UL with a
set of knotted axioms αk → αn , with k, n > 1.

First we recall that, by density elimination, we can prove
the completeness of the logic L with respect to the class of lin-
early, densely ordered L-algebras (dense L-chains, for short).
This establishes rational completeness, i.e., the completeness
of L with respect to L-algebras with lattice reduct Q∩[0, 1].
In what follows, we assume that the reader is familiar with
the usual semantic notion of consequence relation |�K with
respect to a class of algebras K, see e.g., (Galatos et al. 2007;
Horcik 2011).

Theorem 2 Let T ∪ {γ } be any set of formulas in the lan-
guage of L. T 	L γ if and only if {t ≤ β | β ∈ T } |�K t ≤ γ ,
where K is the class of dense L-chains.

Proof By Theorem 1, the hypersequent calculus HL corre-
sponding to L admits density elimination. By Proposition
5.37 in (Metcalfe et al. 2008), density elimination for HL
is equivalent to the admissibility of the density rule in the
Hilbert-style calculus L. The claim then follows by Theorem
3.64 in (Metcalfe et al. 2008). �

We can now obtain the standard completeness for L, i.e.,
the equivalence between the consequence relations 	L and
|�K, when K is the class of L-algebras with lattice reduct
[0, 1]. In terms of universal algebra, this means that L-
algebras are generated as quasivarieties by their members
in [0, 1].

Theorem 3 (Standard completeness) Let T ∪{γ } be any set
of formulas in the language of L. T 	L γ if and only if
{t ≤ β | β ∈ T } |�K t ≤ γ , where K is the class of L-
algebras with lattice reduct [0, 1].

Proof By Theorem 2, the logic L is complete with respect
to L-algebras with lattice reduct Q∩[0, 1] (dense, countable
L-chains). To prove standard completeness, it is then enough
to show that any L-algebra A with lattice reduct Q ∩ [0, 1]
can be embedded into an L-algebra with lattice reduct [0, 1],
see e.g., (Cintula et al. 2009). Consider the embedding of A
into its Dedekind–Macneille completion DM(A), see e.g.,
(Galatos et al. 2007; Horcik 2011). The lattice reduct of
DM(A) is clearly [0, 1]. We just need to show that DM(A) is
an L-algebra. As A is a UL-algebra, DM(A) is a UL-algebra
as well, by Theorem 27 in (Metcalfe and Montagna 2007).
Furthermore, Theorem 2.7 in (Ciabattoni et al. 2011) shows
the preservation under DM-completion for a large class of
algebraic equations, which includes t ≤ αk → αn , for any
n, k ≥ 1. Hence, DM(A) is an L-algebra with lattice reduct
[0, 1]. This completes the proof. �
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Concluding remark

Our standard completeness proof does not apply to the knot-
ted axioms α → αn and αk → α. It can be easily shown
that, in presence of prelinearity, these axioms are equivalent
to α → α2 and α2 → α, respectively. For the corresponding
(hyper)sequent rules 2-mingle (mgl) and 2-contraction (c)
(Metcalfe et al. 2008), even though Lemma 3 trivially holds,
our proof of density elimination does not go through. Indeed,
it is not clear how to handle, for instance, an application of
(c), as below left. Our substitution would make it into the
rule below right, which is not a correct application of (c) and
cannot be handled just using Lemma 3 to change the number
of the occurrences of �, as done in the proof of Theorem 1.

�, p, p ⇒ p

�, p ⇒ p
(c)

�,� ⇒ t

� ⇒ t

Note that density elimination for HUL extended with both
(mgl) and (c) has actually been shown in (Metcalfe and Mon-
tagna 2007). However, this proof cannot be easily adapted to
show density elimination for HUL extended either with (c)
or with (mgl).

Acknowledgments I would like to thank the anonymous referees for
their comments, which helped me to substantially improve the final
form of the paper, and David Cerna, for linguistic advice. Furthermore,
I would like to thank my supervisor Agata Ciabattoni for her guidance
and advice throughout the whole preparation of this paper.

Appendix: Proof of the derivability of α1, . . . , αk → αk
1 ∨

· · · ∨ αk
k in U L

First, we show that HUL derives the hypersequent α1, . . . , αk

⇒ αk
1 | . . . | α1, . . . , αk ⇒ αk

k . We proceed by induction on
k. For k = 2, we have

α1 ⇒ α1 α1 ⇒ α1
(·r)

α1, α1 ⇒ α2
1

α2 ⇒ α2 α2 ⇒ α2
(·r)

α2, α2 ⇒ α2
2

(com)
α1, α2 ⇒ α2

1 | α1, α2 ⇒ α2
2

For the induction step, we assume to have a derivation
d of α1, . . . , αk−1 ⇒ αk−1

1 | . . . | α1, . . . , αk−1 ⇒ αk−1
k−1 in

HUL. First, we show that for any αi with i = {1, . . . , k −
1} we have a derivation di in HUL of the hypersequent
αk, α

k−1
i ⇒ αk

k | αk ⇒ αi .

αk ⇒ αk αi ⇒ αi
(com)

αi ⇒ αk | αk ⇒ αi

αk ⇒ αk αi ⇒ αi
(com)

αi ⇒ αk | αk ⇒ αi
(·r)

αi , αi ⇒ α2
k | αk ⇒ αi···

αk−1
i ⇒ αk−1

k | αk ⇒ αi αk ⇒ αk
(·r)

αk , α
k−1
i ⇒ αk

k | αk ⇒ αi

Consider now the following derivation. For space rea-
sons, we abbreviate the hypersequent α1, . . . , αk−1 ⇒
αk−1

2 | . . . | α1, . . . , αk−1 ⇒ αk−1
k−1 with H .

··· d

α1, ..., αk−1 ⇒ αk−1
1 | H

··· d1

αk , α
k−1
1 ⇒ αk

k |αk ⇒ α1

··· d

α1, ..., αk−1 ⇒ αk−1
1 |H

(·r)

αk , α
k−1
1 ⇒ αk

k | α1, ..., αk ⇒ αk
1 | H

(cut)
α1, ..., αk ⇒ αk

k | α1, ..., αk ⇒ αk
1 | H

Starting from the end-hypersequent above and repeating
similar derivations for any of the di , we eventually obtain the
desired derivation of

α1, . . . , αk ⇒ αk
1 | . . . | α1, . . . , αk ⇒ αk

k

From this, we get:

···
α1, . . . , αk ⇒ αk

1 | . . . | α1, . . . , αk ⇒ αk
k

(∨r)
α1, . . . , αk ⇒ αk

1 ∨ · · · ∨ αk
k | . . . | α1, . . . , αk ⇒ αk

1 ∨ · · · ∨ αk
k

(ec)
α1, . . . , αk ⇒ αk

1 ∨ · · · ∨ αk
k

Finally, by the completeness of HUL with respect to
UL (see Metcalfe and Montagna 2007), we have that 	U L

(α1, . . . , αk) → (αk
1 ∨ · · · ∨ αk

k ). This completes the proof.

References

Avron A (1987) A constructive analysis of RM. J Symb Log 52(4):939–
951

Avron A (1991) Hypersequents, logical consequence and intermediate
logics for concurrency. Ann Math Artif Intell 4:225–248

Baldi P, Ciabattoni A, Spendier L (2012) Standard completeness for
extensions of MTL: an automated approach. In: Ong L, de Queiroz
R (eds) Workshop on logic, language, information and computation
(WoLLIC 2012). LNCS 7456. Springer, Heidelberg, pp 154–167

Ciabattoni A, Esteva F, Godo L (2002) T-norm based logics with n-
contraction. Neural Netw World 12(5):441–452

Ciabattoni A, Galatos N, Terui K (2008) From axioms to analytic rules
in nonclassical logics. In: IEEE symposium on logic in computer
science (LICS 2008). IEEE, pp 229–240

Ciabattoni A, Galatos N, Terui K (2011) Macneille completions of FL-
algebras. Algebra universalis 66(4):405–420

Ciabattoni A, Metcalfe G (2007) Density elimination and rational com-
pleteness for first-order logics. In: Symposium on logical foundations
of computer science (LFCS 2007), LNCS 4514. pp 132–146

Ciabattoni A, Metcalfe G (2008) Density elimination. Theor Comput
Sci 403(2–3):328–346

Cintula P, Esteva F, Gispert J, Godo L, Montagna F, Noguera C
(2009) Distinguished algebraic semantics for t-norm based fuzzy
logics: methods and algebraic equivalencies. Annals Pure Appl Logic
160(1):53–81

Esteva F, Gispert J, Godo L, Montagna F (2002) On the standard and
rational completeness of some axiomatic extensions of the monoidal
t-norm logic. Studia Logica 71(2):199–226

Gabbay DM, Metcalfe G (2007) Fuzzy logics based on [0, 1)-continuous
uninorms. Arch Math Log 46(5–6):425–449

123



1470 P. Baldi

Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated lattices: an
algebraic glimpse at substructural logics: studies in logics and the
foundations of mathematics. Elesevier, Amsterdam

Hájek P (1998) Metamathematics of fuzzy logic. Kluwer, Dordrecht
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