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Abstract: Microplastic pollution constitutes a serious environmental problem that requires more
effective scientific research to describe its potential impacts on marine fauna. The interaction between
microplastics and marine biota can have significant negative effects through the trophic chain, up
to human health. To date, several steps forward have been made in our understanding of this
phenomenon; however, large knowledge gaps still exist for several taxa and areas. In particular, the
pattern of spatial and temporal distribution of microplastics in marine sediments and their interaction
with benthic detritivore species still needs to be addressed. The Mediterranean Sea is one of the
most impacted areas of the world, and its biota is deeply affected by microplastic pollution. To
investigate the effects of the presence of microplastics in the sediments in this area, the echinoderm
Holothuria tubulosa was chosen as a model species, and specimens were collected along the Salento
peninsula in Apulia, Southern Italy. This peculiar geographic area extends between two ecoregions of
the Mediterranean Sea, the Northern Ionian and the Southern Adriatic seas, characterized by peculiar
and distinct currents and submarine topologies, resulting in a complex and dynamic ecosystem
affected by seasonal fluctuations that make the Salento peninsula an interesting natural laboratory for
predictions of future dispersion events on a wider scale. Microplastics were analyzed by investigating
the gut contents of H. tubulosa individuals, and the SEM/EDX method was used to confirm the
plastic material extracted. Results revealed microplastics in all the specimens analyzed and with
a homogeneous pattern of distribution in time and some differences in space, suggesting that the
presence of this anthropogenic material is constant throughout the year and its quantity is only slightly
affected by the level of conservation and management strategies characterizing the sampling sites.

Keywords: SEM/EDX analysis; marine pollution; marine invertebrates; Holothuria tubulosa; conservation

1. Introduction

Microplastics are particles smaller than 5 mm obtained from the chemical, physical,
and mechanical degradation of plastics in contact with the environment [1]. The pollution
caused by microplastics in the environment is a topic of increasing interest because as a
result of their slow degradation and small size, these particles can be ingested by different
animal species, including, ultimately, humans. The ingestion of microplastics may cause
complications at a physiological level, with the possibility of transport to different organs
and tissues of the organism and along the trophic network, giving rise to bioaccumulation
processes [2]. The routes for plastics to reach the marine environment are numerous, as
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they can enter through inadequate plastic waste management, illegal dumping into the
water, unintentional or accidental releases from vessels, and/or from litter left behind
on beaches [3]. A significant proportion settles in the sediments [4]. Recently, several
studies have shown that plastic litter affects different marine species [5–8] and that easily
enters the marine trophic webs [9,10]. Exposure to microplastics has been associated
with a number of negative health effects, including an increased immune response [11],
decreased food consumption and weight loss [2,12], reduced growth rate [13], decreased
fecundity [14], energy depletion [2], and negative impacts on subsequent generations [14].
Microplastics have also been shown to readily accumulate persistent organic pollutants,
including pesticides, solvents, and pharmaceuticals, which can lead to additional health
effects such as endocrine disruption and mobility impairments [15–17]. Microplastic
pollution is thus a serious problem that acts on all living compartments and through
different biological levels of the trophic chain in different ways. Such a problem is even
more relevant if particular marine conditions occur, such as in the case of semi-closed
basins with reduced seawater exchange.

Studying the pattern of distribution of microplastics in the Mediterranean Sea is
particularly important due to the specific characteristic of this marine basin, which is
connected to the Atlantic Ocean only through the Gibraltar strait and to the Red Sea by the
Suez Canal. The Mediterranean Sea is one of the most impacted areas of the world due
to the intense human activity and concentration of people along its coasts [18]. Indeed,
improving the knowledge gap on this complex topic could provide important insights that
would help predict and manage possible future scenarios, even at a larger geographic scale,
and could aid in optimizing conservation strategies. Located in the Central Mediterranean
basin and between two different ecoregions, the Northern Ionian and the Southern Adriatic
seas, is the Salento peninsula (Apulia, Italy) (Figure 1), a strip of land characterized by
peculiar and distinct currents and submarine topography. It is exposed to the Western
Adriatic current and to the anticyclonic Northern Ionian Gyre, the intersection of which
may lead to a high accumulation of microplastics in the Salento coastal waters [19]. This
peninsula is considered a highly complex and dynamic ecosystem affected by seasonal
fluctuations and is thus an interesting natural laboratory that may provide insight for wider
geographical scales.
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It seems that microplastics are more abundant in the western Mediterranean Sea than
in the eastern basin, reaching minimum values in the Adriatic Sea [20]. However, recent
studies have revealed the presence of microplastics in 45% of Adriatic Sea habitats [5]
and in up to 95% of the benthic flatfish Solea solea (Linnaeus, 1758) [21], suggesting that
benthic species can be strongly influenced by microplastics stored in sediments [22] and
thus calling for studies focusing on these seabed-related communities.

To date, several methodologies have been proposed to detect and quantify microplas-
tics in marine samples. However, all of them involve, as a first common step, the extraction
of microplastic polymers from the environmental and/or biological matrices in question.
At present, the most commonly used procedures to extract microplastics from biological
tissues can be classified as acidic, alkaline, oxidative, and enzymatic methods [5]; however,
new innovative methods (such as visual identification using polarized light or electron
microscopy) are continuously being proposed and evaluated [23]. After microplastics are
isolated from biological tissues, the most frequently used techniques for their confirmation
and characterization are FTIR and Raman spectroscopy [24]. These methods allow the
recording of spectra for the correct identification of debris and, to a certain extent, the
quantitative description of its morphology [25]. Each spectrum of an unknown element is
then compared with spectra of known standard polymers if they are present in a public
database [26]. The Raman analysis allows for the identification of microplastics directly on
filters without extensive visual pre-sorting; however, any remaining biotic material must
be removed to avoid fluorescence quenching the signal [27]. Even if these two method-
ologies are considered very effective in determining microplastic materials, they suffer
some important limitations such as the impossibility of obtaining detailed pictures of the
surface morphology of the studied material, which could be very useful for confirming
identification, for providing information on weathering degradation processes [28], and
for a decrease in the identification power if a reference spectrum is lacking [29]. These
drawbacks can be overcome using SEM-EDX analysis, which merges information from the
external morphology with the microanalysis of the elementary composition [29]. Scanning
electron microscopy (SEM) can provide rapid information on the morphology, aging, and
origin of the samples examined as it provides high-resolution surface-state data and quali-
tative information on chemical composition. Furthermore, the use of electron microscopy
combined with energy-dispersive X-ray spectroscopy provides detailed information on
the elemental composition of microplastics, with additional information on the inorganic
additives they can contain [28,29]. Thus, this methodology is as complementary and as
effective as the Raman to quantify MPs.

Several studies have been conducted on microplastics floating in the water column,
transported through surface seawater [30], or deposited in sediments, with a rich literature
demonstrating that the ingestion of microplastics by benthic organisms [31–34] can lead to
the impairment of their digestive systems [35–37] and their ability to feed [38] and repro-
duce or cause the potential transfer of harmful toxic substances and ultimately death [39].
However, less attention has been given to the interactions between the microplastics present
in the sediment and the benthic organisms that inhabit the seabed [22]. Among marine
benthic species, the echinoderms are a group of invertebrates that are particularly diversi-
fied in terms of morphology and ecology. They are distributed worldwide, and they are
widespread from the shoreline to the deep sea. These include the benthic holothurians,
which demonstrate a detritivore trophic habitus and are also interesting because of their
commercial purposes. Previous studies have been conducted on sea cucumbers and their
interactions with microplastics present in the sediments [22,40], confirming the presence of
a plastic percentage in the gut content of the animals analyzed and the positive correlation
existing between it and the amount of plastic present in the sediment, confirming this group
as a good descriptor of environmental status. Detritivore holothurian species may thus be
good sentinels of microplastic pollution in a specific zone due to their low mobility and
trophic behavior [41]. It is clear that the specimens collected for the present study are repre-
sentative of the potential pollution by microplastics in the study area. Species belonging
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to the lower trophic levels, which are indiscriminate feeders, are not able to differentiate
between plastics and prey, ingesting high levels of these pollutants [22]. Holothurians,
as nonselective feeders, ingest large quantities of sediment into their mouths to extract
nutrients from biofilms, organic debris, and microorganisms [42]. The transit through their
digestive tract could allow for the absorption of plastic leachates and adhered contami-
nants, representing a possible risk for potential transfer to higher trophic levels [22,42,43].
The translocation of the ingested plastic could produce significant damage to these ani-
mals, affecting their reproductive success and reducing population abundance in marine
ecosystems [22]. However, studies linking the presence of microplastics in holothurian
species with their potential physiological or biochemical effects are still scarce and were
developed mainly in controlled laboratory conditions that generally do not reflect envi-
ronmental settings and expose the organisms to concentrations of pollutants higher than
the concentrations normally found in the animals’ habitats [44,45]. In these latter studies,
the spatial distribution of microplastics in the natural environment is completely lacking—
this is significant because understanding the pathways of distribution of environmental
microplastics eaten by organisms is the baseline step for planning effective conservation
actions. Here, Holothuria tubulosa Gmelin, 1791 (Figure 2) was selected as a benthic detriti-
vore species which is particularly interesting because it represents an initial step from the
detrital network towards the trophic network in shallow marine ecosystems [22] and also
because it is among the most common and widely distributed species in the Mediterranean
Sea [46], feeding continuously and indiscriminately upon the sediment [47] and taking
up microplastics through both respiration and feeding [48]. Moreover, in many countries,
H. tubulosa is a species of great commercial interest; in fact, in Apulia, it is irregularly fished
and trafficked outside the Italian jurisdiction.
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The main aims of the present study are to (i) investigate the possible presence of
microplastics in the gut content of H. tubulosa individuals collected along the Salento
peninsula in different seasons to elucidate potential changes in space and time, and (ii) to
extract, quantify, and classify the possible microplastics found, exploring the possibility of
a spatial pattern depending on the collecting zone.

2. Materials and Methods
2.1. Sampling Protocol

Two sampling campaigns were carried out in the spring and autumn of 2020, respec-
tively, along the Salento peninsula. In particular, four different sites located in the Ionian
Sea (Stations 1 and 2) and in the Adriatic Sea (Stations 3 and 4) were sampled (Figure 3). The
sampling stations are characterized by different degrees of anthropogenic impacts, from
areas that are influenced by high tourism to a Marine Protected Area. At least four adult
specimens of H. tubulosa were collected per station and in the two seasons through scuba
diving at a depth of 10 m and without using gloves to avoid possible contaminations. Each
individual was wrapped in aluminum foil directly underwater and placed in an aluminum
thermos bottle with a wide opening. Once collected, the samples were catalogued with
a tag indicating the station and sampling date and were finally stored at −20 ◦C at the
Department of Biological and Environmental Sciences and Technologies of the University
of Salento (DiSTeBA) for later anatomical dissection and subsequent laboratory analysis.
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Figure 3. Sampling stations along the Salento peninsula. SZ 1—“Chiapparo”, Santa Caterina,
Lecce (40◦08′28.2′′ N 17◦58′46.1′′ E); SZ 2—“Torre Vado”, Morciano di Leuca, Lecce (39◦49′46.3′′ N
18◦16′38.6′′ E); SZ 3—“Grotta Verde”, Marina di Andrano, Lecce (39◦57′48.1′′ N 18◦24′18.2′′ E); SZ
4—“Torre Guaceto” M.P.A., Brindisi (40◦42′48.2′′ N 17◦48′30.5′′ E).

2.2. Anatomical Dissection

The collected samples were photographed, thawed at 37 ◦C, and then measured for
both dimensions and weight. The dissection of the individuals was carried out by making a
longitudinal incision on the dorsal side to keep the digestive system intact. Each digestive
tract, isolated from each specimen, was placed in a biological glass tube with ethanol EtOH
96% until further analysis. To avoid possible contamination [23,49,50], all glassware was
washed with filtered deionized water and rinsed with ethanol. Cotton lab coats, nitrile
gloves, and face masks were worn throughout the experiment. The work surface was
thoroughly cleaned with 70% ethanol and analyzed under a stereomicroscope to remove
any contamination.
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2.3. Microplastic Extraction and Analysis

From the total individuals collected and analyzed, six of the most representative
digestive systems (three per each collecting season) from each station were selected for the
following microplastic analysis. The selection was made extracting the digestive systems
from individuals that were as similar as possible in terms of size and the quantity of
material in the swallowed content to avoid variables that could alter the results. Each
digestive tract was analyzed using a Leica MZ12 stereomicroscope. All fragments and
plastic fibres were carefully hand-collected using laboratory forceps, transferred to separate
sterile glass plates, and coded for subsequent confirmation by SEM/EDX analysis. To
optimize the microplastic isolation process and to avoid possible misidentifications, an
enzymatic digestion method was used. Five hundred microliters of distilled water and
20 µL of proteinase K were added to each sample and incubated overnight at 56 ◦C to
optimize the digestion. Successively, microplastic samples were removed from the digestive
solution, rinsed in clean distilled and filtered water, and finally counted and classified
according to structure (fibres or fragments) and color.

To confirm the validity of the stereomicroscope observations and the identity of the
microplastic material, a scanning electron microscopy–energy-dispersive X-ray analysis
(SEM/EDX) was used. The selected particles were placed on aluminum stubs using double-
sided carbon tape and subsequently analyzed using a Gemini 300 SEM (Carl Zeiss AG,
Jena, Germany) equipped with an XFlash 6-60 EDS system (Bruker Nano GmbH, Berlin,
Germany) at the LIME (Electron Microscopy Interdepartmental Laboratory, Rome, Italy)
of the University of Roma Tre. Plastic microparticles were identified by analyzing both
their external features and elemental composition. Finally, an SEM/EDX analysis was also
carried out on fragments of dubious nature in order to provide EDX spectra useful for
future comparisons.

2.4. Statistical Analysis

For statistical comparison, we first considered two periods: spring and autumn. The
four sites were also considered for comparisons in the initial analysis. The dependent
variables were fibers, fragments, and total microplastics (the sum of the previous two
variables). A two-way ANOVAs test was used to test the potential differences, but the
limited number of samples (three per season and location) made this approach not viable.
The preliminary ANOVA results provided no significant differences between the locations
and seasons. We thus considered only the four locations to carry out a one-way ANOVA
with Scheffer’s post hoc. The data were not distributed normally and had different variances
but met both criteria for a parametric analysis after logarithmic transformation (Brown–
Forsythe test and Levene test, p = 0.05; Shapiro–Wilk test, p = 0.1), thus permitting the use
of an ANOVA [51]. The program used was the STATISTICA 7.1 software package. Seasonal
average values of the fibers, fragments, and the total microplastics, taken at each individual
station, were represented with their respective standard deviations in three separated
histograms with clustered columns. Particle coloration data were also represented in a
grouped column histogram.

3. Results

During the two sampling campaigns that occurred in the spring and autumn of
2020, 24 scuba dives were carried out at the four sampling stations along the Salento
peninsula (Figure 3). A total number of 47 H. tubulosa specimens was collected, with 25
individuals obtained during the spring sampling and 22 in the autumn campaign. All
the collected specimens were weighted, measured (length and width), and their digestive
systems were extracted (Table S1, Figure 4). Within this group, the digestive systems of six
representatives per each station (three per each sampling seasons) were selected for the
following microplastic extraction and analysis.
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Figure 4. Anatomical dissections. (A) H. tubulosa individual on the scale for quantifying weight.
(B) Longitudinal incision of a sea cucumber. (C) The entire digestive system extracted from an
individual. (D) Detail of the debris found in the gut contents.

3.1. Statistical Analysis

The microplastic extraction analysis revealed a total of 741 microparticles. Of these
microparticles, 406 were fibers and 335 were fragments. The list of all the microplastic
samples obtained from each analyzed digestive system is reported in Table 1.

Table 1. Stations and mean ± standard deviation of all the microplastic relative data with respective
standard deviation. SZ 1—“Chiapparo”, Santa Caterina, Nardò; SZ 2—“Torre Vado”, Morciano di
Leuca, SZ 3—“Grotta Verde”, Tricase; SZ 4—“Torre Guaceto” M.P.A., Brindisi.

Station Average Fibers/Indiv. Average Fragments/Indiv. Average MPs/Indiv.

SZ 1 23 ± 10 27 ± 10 50 ± 17
SZ 2 12 ± 8 12 ± 2 23 ± 8
SZ 3 15 ± 6 12 ± 4 27 ± 8
SZ 4 18 ± 10 6 ± 3 24 ± 10

The total number of microplastics per individual in the different zones showed signifi-
cant differences (one-way ANOVA, F3,20 = 0.729; p < 0.002); Chiapparo (SZ 1) was different
from all the other areas, with the highest differences between the “Torre Guaceto” M.P.A.
(SZ 4) (mean of 24 microplastics) and Chiapparo (mean of 50 microplastics). When fibers
were considered, no significant differences between zones were found (one-way ANOVA,
F3,20 = 42.12; p = 0.1289). There were, however, significant differences for the fragments
(one-way ANOVA, F3,20 = 15.13; p < 0.0001); in this case, Chiapparo was also different from
the other three locations, with the maximum amount of fragments found in holothurians
from Chiapparo (mean of 27) and the minimum from “Torre Guaceto” M.P.A. (mean of six)
(Figure 5).
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Figure 5. (A) Comparison of the sampling sites’ potential variation in microplastics in Holothuria
tubulosa. Bars represent mean ± standard deviation. (B) Analyses of the colors of all the extracted
microplastics grouped according to stations. SZ 1—“Chiapparo”, Santa Caterina, Nardò; SZ 2—“Torre
Vado”, Morciano di Leuca; SZ 3—“Grotta Verde”, Tricase; SZ 4—“Torre Guaceto” M.P.A., Brindisi.
The colors of the different rectangles reflect the real colors of the microplastics analyzed.

3.2. SEM/EDX Microanalyses

Thirty-four high resolution SEM images and EDX spectra were obtained from plastic
fibers and fragments and from other biotic and abiotic materials that were similar in their
external shape to plastic materials. The spectra obtained from the present study were
compared with some reported by published studies [29], and the results matched with
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those from the morphological identifications. The resulting SEM images and the relative
EDX spectra of a typical plastic fiber and fragment are shown in Figure 6.
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Figure 6. SEM/EDX example of images and microanalysis from canonical microplastic. (A,C) SEM
images and (B,D) EDX spectra from (A,B) a typical microplastic fibers and (C,D) typical microplastic
debris extracted from the gut content of H. tubulosa from Salento peninsula.

In addition to the canonical spectra, spectra belonging to another important class of
plastic material, fiberglass, were found. Fiberglass is characterized by Carbon (C), Oxygen
(O), and Silicon (Si) [29,52,53] (https://www.nrc.gov/docs/ML0530/ML053040493.pdf
(accessed on 30 March 2023), and it results from the addition of glass fibers that are
commonly added to reinforce plastic structures [54,55].

Finally, samples that were deemed to be doubtful when observed with the optical
microscope were checked with SEM/EDX method and confirmed to be non-plastic. In
fact, among these dubious samples were cotton fibers, characterized by a typical twisted
morphology [29], and also the presence of peaks resembling those reported for cellulose
(Figure 7A,B) [29,56–58], gastropod shells, and tubes of polychaetes (Figure 7C,D), all
containing a high concentration of calcium carbonate (CaCO3), which is coherent with
spectra from the literature [29,59–63].
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images and (B,D) EDX spectra from (A,B) a natural cotton fiber and (C,D) possible part of a mollusk
shell made mainly of Calcium Carbonate.

4. Discussion

Results from the present study revealed microplastic fibers and fragments in all the
Holothuria tubulosa individuals investigated and a pattern of MP distribution that was
equivalent in the four studied sites except for the “Chiapparo” station (SZ 1) (Figure 3),
which proved to have the highest number of microplastics with respect to the other areas
investigated. In fact, microplastics were widely distributed along the Salento peninsula
regardless of the level of anthropogenic impact acting on the particular investigated stations.
This corroborates the evidence that microplastics are widespread all over the peninsula.
This finding is a bit disturbing, considering that highly disturbed areas may have more
microplastics, but sites that are considered of low anthropogenic impact or under special
conservation protocols (such as the “Torre Guaceto” Marine Protected Area, SZ 4) also
have a non-negligible concentration of these pollutants. Such a presence, even in MPAs,
represents a potential threat for marine species [64,65]. The presence of microplastics in the
digestive systems of all Holothuria specimens investigated herein suggests that microplastics
could enter the trophic chain, beginning their long journey through primary consumers to
the upper-level predators. For this reason, the present study could become a baseline for
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future studies on the possible presence of microplastics in other compartments of the body
of holothurians, further improving our knowledge on the ways microplastics spread.

The results reported here are worrying and stimulate new questions regarding guide-
lines to be adopted for the management of natural marine environments in terms of plastic
pollution, the need to find new effective directions to somehow reduce the amount of
plastic entering the marine system, and the need for more effective and rapid conservation
strategies in the case of such pollutants. The statistical analysis revealed that the only single
significant difference was observed at the “Chiapparo” SZ1 (Ionian Sea) site, where the
microplastics were even more abundant than in the other sites. This unexpected result
is interesting and requires further studies to be better understood, although we can hy-
pothesize that the great influence of tourism in that area causes an increase in the human
impact on the local environment. It has been shown that in areas heavily frequented by
humans, especially tourists, the presence of microplastics is significantly different [66]. In
coastal areas, multiple anthropogenic factors can affect the accumulation and dispersion of
microplastics [67,68]. As we already know, different anthropogenic activities (e.g., coastal
tourism, recreational boating, agriculture, ports, industrial activities, fishing, and aquacul-
ture), proximity to large cities [68–72], and natural factors can significantly contribute to
the amount of marine litter and to the variability of its concentration and distribution in
the environments. The fragmentation and degradation of macro-, meso-, and microplastics
drive the production of the smaller plastics that are found in different areas. Although
the presence of environmental microplastics and their flow through the food chain are
beginning to be understood, grey areas remain to be investigated. Plastic fragments break
down into smaller pieces and degrade further when exposed to UV radiation, oxygen,
temperature, and physical stress [73]. A combination of the properties of the polymer and
sunlight and temperature influence the disintegration of macroplastic debris [74]. Ultra-
violet radiation causes the oxidation of the polymer matrix, which leads to the cleavage
of bonds. This process is most effective on beaches due to the high UV light, physical
abrasion, and turbulence [75–78]. A range of variability in the transport and fragmentation
of plastics may be caused by seasonal changes in river outflows, currents, mechanisms of
degradation and fragmentation, changes in litter size, shape, buoyancy, and movement
to and from other compartments [70,79–82], but it also can be associated with events of
different time durations, such as tidal conditions, short-term wind and rain events, and
seasonal extremes [81].

The microplastics analyzed in the present study showed characteristic abrasion grooves,
which are considered indicative signs of the degradation process due to external environ-
mental agents [29,83,84]. This determination was made possible by the method of MP
determination that was adopted here. In fact, contrary to what is seen in other methods
of MP identification (such as FTIR and Raman spectroscopy), SEM/EDX analysis allowed
for the identification of an environmental microplastic even if it was degraded or mixed
with other pollutants. Moreover, the addition of the enzymatic step during the phase of
microplastic extraction was revealed to be powerful in removing non-plastic materials and
avoiding misidentifications due to the enzyme’s ability to digest biological tissues without
damaging the plastic. This improvement in protocol was also confirmed by the absence of
Nitrogen (N) in all the EDX spectra analyzed. Bearing in mind that the applied methods of
extraction and identification of microplastics can influence the density, size, morphology,
and polymer composition, ultimately negatively affecting the results [85], the power of the
present method is even more consistent when considering that environmental microplastics
and not virgin material were the main focus of the present study [29].

Considering that the area of study, the Salento peninsula, is characterized by an ex-
treme heterogeneous environment that includes two different seas (Adriatic and Ionian
seas), each of which are subject to completely different natural and anthropogenic condi-
tions, it may be hypothesized that the presence of such a large quantity of microplastics
could be explained as the consequence of a chain of multiple causes affecting the study area,
as reported by other authors for similar contexts [86,87]. Previous studies that were focused
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on the composition, quantity, and spatial distribution of microplastics in Italian coastal and
offshore areas showed that microplastics were widespread and without seasonal differ-
ences in concentration [86], agreeing with the results presented here. The results herein
reported provide an additional demonstration of the high level of microplastic pollution
characterizing marine environments and in the study area in particular. In fact, the Salento
peninsula is a very resilient area due to the different dominant marine currents, which can
move plastic materials away, and/or due to the presence of several underwater canyons
that could act as deep plastic accumulation sites. A future study of the possible sources
of microplastics in the environment should be the next step, with the goal of reducing the
continuous release of plastic into the sea. In this regard, previous studies have reported
household textile recycling and wastewater treatment plants as the most common pathway
for the release of fibers into the environment [88,89], considerations that should stimulate
further in-depth analyses.

The complexity of natural environments and communities and the interconnections
existing between organisms at different biological scales are the main challenges for de-
lineating the best conservation practices. The most effective practice of such conservation
studies is difficult and deserves to be investigated in each specific area. In this regard, it is
noteworthy to report that inside all the holothurian specimens collected in autumn from
“Grotta Verde” in Station 3 (SZ 3) (Figure 3), we found individuals of the commensal fish
Carapus acus (Brünnich, 1768) (Figure 8). This finding confirms the delicate and profound
association which is known to exist between two very distant taxa—the commensalism
between the H. tubulosa and the fish Carapus acus (Brünnich, 1768).
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plastics ingested by holothurians on C. acus. 

Figure 8. Ecological association between H. tubulosa and the commensal fish Carapus acus. (A) The
larva of C. acus is visible in the body cavity of the sea cucumber, with the small head of the fish and its
eye highlighted by a white arrow. (B) C. acus after dissection of the H. tubulosa specimen. (C) An adult
of C. acus extracted from a H. tubulosa collected in “Grotta verde”, SZ 3. (D) Detail of the cephalic
portion of the commensal fish.

Results from the present study add data on the ecology of this inconspicuous pearlfish
and its Apulian population that should be considered in future conservation strategies and
in planning actions aimed to protect H. tubulosa living in that region of Italy. Currently a
large gap of knowledge still exists on the possible negative effects of microplastics ingested
by holothurians on C. acus.
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5. Conclusions

Quantifying plastic pollution and understanding its negative effects on the marine
environment are two of the main goals of research groups all over the world. All the
information gathered thus far demonstrates the long-term impacts of microplastics on
marine fauna, the echinoderm studied herein being no exception. Most past studies did not
include an analysis of the distribution of MPs in study organisms from different areas, the
present study being an example of how to quantitatively approach the problem at a regional
level. Studying the distribution of microplastics in a particular geographic area is complex
and requires a considerable effort in terms of field sampling, laboratorial investigations,
analysis, and interpretation of the evidence obtained. Herein, we reported results from
an analysis of the spatial distribution of microplastics ingested by a detritivore benthic
species, Holothuria tubulosa, by extracting plastic fibers and debris from gut contents and
with the help of the SEM/EDX method of identification. Interestingly, all the specimens
had microplastics, and the statistical analysis showed no major differences among sampled
areas. This reinforces the hypothesis that microplastics are widespread and are found in
every part of our planet. The sediments of the Apulian region are contaminated by these
small debris, which are present even in protected areas such as the “Torre Guaceto” MPA,
highlighting the importance of a new perspective on management and conservation related
to the presence of microplastics.
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