
Probability Surveys
Vol. 21 (2024) 28–66
ISSN: 1549-5787
https://doi.org/10.1214/24-PS26

Differentiability in infinite dimension
and the Malliavin calculus

Davide A. Bignamini1 , Simone Ferrari2 , Simona
Fornaro3 and Margherita Zanella4

1Dipartimento di Scienza e Alta Tecnologia (DISAT),
Università degli Studi dell’Insubria, Via Valleggio 11, 22100 COMO, Italy

e-mail: da.bignamini@uninsubria.it
2Dipartimento di Matematica e Fisica “Ennio De Giorgi”,

Università del Salento, Via per Arnesano snc, 73100 LECCE, Italy
e-mail: simone.ferrari@unisalento.it

3Dipartimento di Matematica “Felice Casorati”,
Università degli studi di Pavia, via A. Ferrata 5, 27100 PAVIA, Italy

e-mail: simona.fornaro@unipv.it
4Dipartimento di Matematica “Francesco Brioschi”,

Politecnico di Milano, Via E. Bonardi 13, 20133 MILANO, Italy
e-mail: margherita.zanella@polimi.it

Abstract: In this paper we study two notions of differentiability intro-
duced by P. Cannarsa and G. Da Prato (see [28]) and L. Gross (see [56])
in both the framework of infinite dimensional analysis and the framework
of Malliavin calculus.

MSC2020 subject classifications: Primary 28C20; secondary 46G05.
Keywords and phrases: Malliavin calculus, Malliavin derivative, inter-
polation theory, Lasry–Lions approximation.

Received August 2023.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Differentiability along subspaces . . . . . . . . . . . . . . . . . . . . . 32

2.1 Differentiability in the sense of Gross . . . . . . . . . . . . . . . . 33
2.1.1 Gross differentiability for real-valued functions . . . . . . 37

2.2 Differentiability in the sense of Cannarsa and Da Prato . . . . . 38
2.3 Comparisons between R-differentiability and HR-differentiability 41
2.4 A Comparison with the classical notions of differentiability . . . 43

3 Malliavin calculus in Wiener spaces . . . . . . . . . . . . . . . . . . . . 44
3.1 The Gaussian Hilbert space H∗

γ . . . . . . . . . . . . . . . . . . . 44
3.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Malliavin derivative in the sense of Gross . . . . . . . . . . . . . 46
3.4 Malliavin derivative in the sense of Cannarsa and Da Prato . . . 47
3.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Application: Lasry–Lions approximation and an interpolation result . 48
28

https://imstat.org/journals-and-publications/probability-surveys/
https://doi.org/10.1214/24-PS26
https://orcid.org/0000-0002-4202-9712
https://orcid.org/0000-0002-2950-5841
https://orcid.org/0000-0001-6118-4219
mailto:da.bignamini@uninsubria.it
mailto:simone.ferrari@unisalento.it
mailto:simona.fornaro@unipv.it
mailto:margherita.zanella@polimi.it
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


Differentiability in infinite dimension and the Malliavin calculus 29

4.1 Hölder and Lipschitz functions along subspaces . . . . . . . . . . 48
4.2 Lasry–Lions type approximations . . . . . . . . . . . . . . . . . . 50
4.3 An interpolation result . . . . . . . . . . . . . . . . . . . . . . . . 53

A Malliavin calculus in an abstract framework . . . . . . . . . . . . . . . 55
A.1 Gaussian Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 Wiener Chaos Decomposition . . . . . . . . . . . . . . . . . . . . 57
A.3 Malliavin derivative operators and Sobolev spaces . . . . . . . . . 57

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1. Introduction

The problem of differentiability along subspaces arises in a natural way in the
study of differential equations for functions of infinitely many variables. Over
the years, regularity properties along subspaces, such as Hölderianity and Lip-
schizianity, have become increasingly central in the theory of infinite dimensional
analysis. Various authors have introduced many definitions for these regularity
properties, the most widely used are two. One introduced by L. Gross in [56]
and systematically presented by V. I. Bogachev in [22], the other one introduced
by P. Cannarsa and G. Da Prato in [28] and later developed by E. Priola in his
Ph.D. thesis, see [90]. The main purpose of this paper is to compare the Gross
and Cannarsa–Da Prato notions of differentiability. We will begin by relating
the two different notions of gradients along subspaces, introduced in [28] and
[56], when these operators act on a class of sufficiently smooth functions. We
will then turn to the specific case where the subspace along which to differen-
tiate is the Cameron–Martin space associated to a given Gaussian measure. In
this framework, it is possible to extend such operators to spaces of less regular
functions, i.e., Sobolev spaces with respect to the reference Gaussian measure.
Such extensions are called Malliavin derivatives. The central result of this paper
will be to rigorously show that the Gross and the Cannarsa–Da Prato Malliavin
derivatives are two different operators (although linked by a relationship that
we will clarify) that still have the same Sobolev space as their domain. This
work should therefore be understood as a review of existing results with the
specific purpose of relating them through rigorous proofs. Moreover we will also
provide the proofs of some results that, to the best of our knowledge, are not
present in the literature.

More in details, in Section 2 we recall the notions of differentiability given in
[28] and [56] and investigate their relation. In Subsection 2.1, given a separable
Hilbert space H0 continuously embedded in a separable Hilbert space H, we
recall the definition of differentiability along H0 presented by L. Gross in [56]
for functions with values in a Banach space Y . Over the years, this notion has
became essential to prove many regularity results for stationary and evolution
equations for functions of infinitely many variables both in spaces of continuous
functions and in Sobolev spaces, see for instance [1, 3, 4, 6, 7, 8, 10, 16, 17, 18,
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19, 31, 34, 70]. In Subsection 2.2, given a linear bounded self-adjoint operator
R : H → H we define the differentiability along the directions of HR := R(H)
(see Section 2.2) presented by P. Cannarsa and G. Da Prato in [28]. This notion
of differentiability has also been widely used over the years, see for instance
[2, 5, 15, 40, 41, 43, 44, 57, 76, 77, 90, 91, 92]. When H0 = HR one can compare
the above mentioned notions of differentiability, this is done in Subsection 2.3
where we provide the relationship between the Gross derivatives of order n
and the Cannarsa–Da Prato derivatives of order n. We highlight that a first
comparison between these two derivatives has been already presented in [89]
but in the specific case of a injective operator R. Subsection 2.4 is devoted
to the comparison of the above mentioned notions of differentiability with the
classical notions of Gateaux and Fréchet differentiability.

The results of Section 2 lay the ground for the comparison of the Malliavin
derivatives that naturally appear in the setting considered by L. Gross and P.
Cannarsa and G. Da Prato when a Gaussian framework comes into play. This is
the content of Section 3. On a separable Hilbert space H, endowed with its Borel
σ-algebra B(H), one considers a centered (that is with zero mean) Gaussian
measure γ with covariance operator Q, with Q : H → H a linear, self-adjoint,
non-negative and trace class operator. The subspace along which to differentiate
is the Cameron–Martin space associated to the Gaussian measure, that is H0 =
Q1/2(H) =: HQ1/2 . It is classical to prove (see e.g. [22] and [39]) that the gradient
operators ∇H

Q1/2 and ∇Q1/2 , in the sense of Gross and Cannarsa–Da Prato,
respectively, are closable operators in Lp(H,B(H), γ), p ≥ 1. Their extensions
are called Malliavin derivatives and the domain of their extension is a Sobolev
space with respect to the measure γ. We refer to these two Malliavin derivatives
as the Malliavin derivative in the sense of Gross and the Malliavin derivative in
the sense of Cannarsa–Da Prato, respectively. In Subsections 3.3, 3.4 and 3.5 we
recall the construction of these two Malliavin derivatives and prove that they
are indeed two different operators linked by the relation ∇H

Q1/2 = Q1/2∇Q1/2 .
Nevertheless these two derivatives, although different, have the same Sobolev
space as their domain.

In order to make a rigorous comparison between the Malliavin derivative in
the sense of Gross and Cannarsa–Da Prato, it is convenient to approach the
Malliavin calculus from a more abstract point of view, as done, for example, in
[86]. We briefly recall this approach to Malliavin calculus in Appendix A.

At first glance it might seem strange to refer to Malliavin derivatives that
are different, since one usually speaks of the Malliavin derivative. We point out
that in fact it would be more appropriate to speak of a (choice of) Malliavin
derivative rather than the Malliavin derivative. In fact, as explained in details
in Appendix A, one can construct infinitely many different Malliavin derivative
operators. On the other hand, it turns out that all these Malliavin derivatives
have the same domain when somehow the Gaussian framework is the same. In
a sense, the results of Section 3 can be considered as an example of this general
fact in a concrete situation: we deal with two particular Malliavin derivatives
that naturally appear in the literature for the study of various problems. How-
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ever, these Malliavin derivatives are just two possible choices among the infinite
possible ones that can be considered in that specific Gaussian framework.

We emphasize here that the general framework for Malliavin calculus con-
sidered in [86] not only proves useful in understanding the relationship between
different Malliavin derivatives that appear in the literature in various contexts
but also turns out to be particularly flexible for dealing with various prob-
lems. We mention, for example, the study of the regularity of solutions to
stochastic partial differential equations (see, e.g., [12, 37, 74, 75, 83, 87, 88]
for parabolic-type stochastic partial differential equations, [25, 26] for equations
with boundary noise, [81, 93, 94] for the stochastic wave equation, [51, 103, 82]
for fluid-dynamics stochastic partial differential equations, [32] for the stochas-
tic Cahn-Hilliard equation), the study of density formulae and concentration
inequalities (see e.g. [85]), the study of ergodic problems (see, among others,
[58]), or even the study of integration by parts formulas on level sets in infinite
dimensional spaces (see, e.g., [7, 24, 27, 42]). Moreover, there are applications
to finance, see e.g. [11], and to numerical analysis (see, e.g., [13, 14, 36, 101]).

Section 4 should be interpreted as an application of the results of Section 2.
We establish an interpolation result (see Theorem 4.12). In [18, Section 3] and
[28, Proposition 2.1], two interpolation results analogous to Theorem 4.12 are
proven. The one in [28, Proposition 2.1] is in the sense of Cannarsa–Da Prato
differentiability, while the one in [18, Section 3] is in the sense of Gross differ-
entiability. Theorem 4.12 covers the degenerate case, which is not included in
[18, Section 3] and [28, Proposition 2.1] (see Remark 4.13). This improvement
is possible due to some regularity results about Lasry–Lions type approximants
that are finer than those found in the literature (see, for example, [18, 28]).
These results can be found in Section 4.2 and are of interest regardless of Theo-
rem 4.12. Finally, we recall that interpolation theorems are useful for Schauder
regularity results for Ornstein–Uhlenbeck type operators in infinite dimensions,
see, for instance, [18, 33, 34, 38, 92].

Notations

In this section we recall the standard notations that we will use throughout
the paper. We refer to [48] and [95] for notations and basic results about linear
operators and Banach spaces. Throughout the paper, all Banach and Hilbert
spaces are supposed to be real.

Let K1 and K2 be two Banach spaces equipped with the norms ‖·‖K1
and

‖·‖K2
, respectively. Let H be a Hilbert space equipped with the inner product

〈·, ·〉H and associated norm ‖·‖H .
For any k ∈ N, let L(k)(K1;K2) be the space of continuous multilinear map-

pings from Kk
1 to K2 endowed with the norm

‖T‖L(k)(K1;K2) := sup
h1,...,hk∈K1\{0}

‖T (h1, . . . , hk)‖K2

‖h1‖K1 · · · ‖hk‖K1

.

If K2 = K1 we use the notation L(k)(K1). If k = 1 we write L(K1;K2) and L(K1),
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respectively. If K2 = R and k = 1 we use the standard notation K∗
1 := L(K1;R)

to denote the topological dual of K1. By convention we set L(0)(K1) := K1. We
denote by IdK1 the identity operator from K1 to itself.

We say that Q ∈ L(H) is a non-negative (positive) operator if 〈Qx, x〉H ≥
0 (> 0), for every x ∈ H \ {0}. Q ∈ L(H) is a non-positive (negative) operator
if the operator −Q is non-negative (positive). Let Q ∈ L(H) be a non-negative
and self-adjoint operator. We say that Q is a trace class operator, if

Trace[Q] :=
+∞∑
n=1

〈Qen, en〉H < +∞, (1)

for some (and hence for all) orthonormal basis {en}n∈N of H. We recall that the
definition of trace is independent of the choice of the orthonormal basis in (1).

We denote by B(K1) the family of the Borel subsets of K1. Bb(K1;K2) is the
set of the bounded and Borel measurable functions from K1 to K2. If K2 = R
we simply write Bb(K1). Cb(K1;K2) (BUC(K1;K2), respectively) is the space
of bounded and continuous (uniformly continuous, respectively) functions from
K1 to K2. If K2 = R we write Cb(K1) (BUC(K1), respectively). Both Cb(K1;K2)
and BUC(K1;K2) are Banach spaces if endowed with the norm

‖f‖∞ = sup
x∈K1

‖f(x)‖K2 .

2. Differentiability along subspaces

In this section we present the notions of differentiability along subspaces consid-
ered in [28] and [56]. In Subsection 2.1, we present the notion of differentiability
along a Hilbert subspace first considered by L. Gross in [56, 61] for vector valued
functions. This notion often appears in the literature, in particular in the study
of transition semigroups associated with stochastic partial differential equations.
For example, in [10], a Harnack-type inequality is investigated. In [17, 18, 34, 70],
results regarding Schauder regularity are explored, and in [3, 4, 16, 30, 31], the
Sobolev theory is examined. It is also worth mentioning [6, 7, 8], where integra-
tion by parts formulas on open convex domains are studied.

For the sake of clarity, in Subsubsection 2.1.1 we rewrite some definitions of
Subsection 2.1 in the special case of real-valued functions. In Subsection 2.2 we
recall the notion of differentiability along a particular subspace H0 of a Hilbert
space H given by P. Cannarsa and G. Da Prato in [28] and later revised by E.
Priola in [90, Sections 1.2 and 1.3]. This approach is also widely employed in the
literature. For example, in [49, 50, 57, 76, 77, 91, 92], it is applied to study the
regularity properties of transition semigroups in Banach spaces. Additionally,
in [5, 78, 79], applications to the regularization by noise theory can be found.

Subsection 2.3 focus on the comparison between the two above mentioned
notions of differentiability. Finally, in Subsection 2.4 we make clear their relation
with the classical notions of Fréchet and Gateaux differentiability.
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2.1. Differentiability in the sense of Gross

Here we introduce the notion of Gross differentiability. We thought it appropri-
ate to prove some results concerning differentiability in the sense of Gross in
a rather general setting, since these results are used in many papers [3, 4, 10,
16, 17, 18, 30, 31, 34, 70]. Throughout this subsection X and Y will denote two
separable Banach spaces endowed with the norm ‖·‖X and ‖·‖Y , respectively,
and H0 will denote a separable Hilbert space equipped with the inner product
〈·, ·〉H0 and associated norm ‖·‖H0

. We assume H0 to be continuously embedded
in X, namely there exists C > 0 such that

‖h‖X ≤ C‖h‖H0
, h ∈ H0. (2)

Let us start by recalling the notions of H0-continuity and H0-Lipschitzianity.

Definition 2.1. We say that a function ϕ : X → Y is H0-continuous at x ∈ X
if

lim
‖h‖H0

→0
‖ϕ(x + h) − ϕ(x)‖Y = 0.

ϕ is H0-continuous if it is H0-continuous at any point x ∈ X. We say that
ϕ : X → Y is H0-Lipschitz if there exists a positive constant LH0 such that for
any x ∈ X and h ∈ H0 it holds

‖ϕ(x + h) − ϕ(x)‖Y ≤ LH0‖h‖H0
. (3)

The infimum of all the possible constants LH0 appearing in (3) is called H0-
Lipschitz constant of ϕ.

We now introduce the notions of Fréchet and Gateaux differentiability
along H0.

Definition 2.2. We say that a function ϕ : X → Y is H0-Fréchet differentiable
at x ∈ X if there exists Lx ∈ L(H0;Y ) such that

lim
‖h‖H0

→0

‖ϕ(x + h) − ϕ(x) − Lxh‖Y
‖h‖H0

= 0.

The operator Lx is unique and it is called H0-Fréchet derivative of ϕ at x ∈ X.
We set DH0ϕ(x) := Lx. We say that ϕ is H0-Fréchet differentiable if it is H0-
Fréchet differentiable at any point x ∈ X.

We say that ϕ is twice H0-Fréchet differentiable at x ∈ X if ϕ is H0-Fréchet
differentiable and the mapping DH0ϕ : X → L(H0;Y ) is H0-Fréchet differen-
tiable. We call second order H0-Fréchet derivative of ϕ at x ∈ X the unique
D2

H0
ϕ(x) ∈ L(2)(H0;Y ) defined by

D2
H0

ϕ(x)(h, k) := DH0(DH0ϕ(x)h)k, h, k ∈ H0.

In a similar way, for any k ∈ N we introduce the notion of k-times H0-Fréchet
differentiability of ϕ and we denote by Dk

H0
ϕ(x) its k-order H0-Fréchet derivative
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at x ∈ X. In particular Dk
H0

ϕ(x) belongs to L(k)(H0;Y ). We say that ϕ is k-
times H0-Fréchet differentiable if it is k-times H0-Fréchet differentiable at any
point x ∈ X.

Definition 2.3. We say that a function ϕ : X → Y is H0-Gateaux differentiable
at x ∈ X if there exists Lx ∈ L(H0;Y ) such that for any h ∈ H0

lim
s→0

∥∥∥∥ϕ(x + sh) − ϕ(x)
s

− Lxh

∥∥∥∥
Y

= 0.

The operator Lx is unique and it is called H0-Gateaux derivative of ϕ at x ∈ X.
We set DG,H0ϕ(x) := Lx. For any k ∈ N (in an analogous way of Definition 2.2)
we can define the notion of k-times H0-Gateaux differentiability of a function
ϕ and we denote by Dk

G,H0
ϕ(x) its k-order H0-Gateaux derivative at x ∈ X,

in particular Dk
G,H0

ϕ(x) belongs to L(k)(H0;Y ). We say that ϕ is k-times H0-
Gateaux differentiable if it is k-times H0-Gateaux differentiable at any point
x ∈ X.

If X is a Hilbert space and X = H0, then Definitions 2.2 and 2.3 are the
classical notions of Fréchet and Gateaux differentiability, respectively, and in
this case we will use the notation Dϕ and DGϕ, respectively. If ϕ : X → Y is H0-
Fréchet differentiable, then it is H0-Gateaux differentiable and DH0ϕ = DG,H0ϕ;
the converse is false. The following result provides a sufficient condition for the
equivalence of H0-Fréchet and H0-Gateaux differentiability.

Theorem 2.4. Let ϕ : X → Y be a H0-continuous function. If ϕ is H0-
Gateaux differentiable and DG,H0ϕ : X → L(H0, Y ) is H0-continuous, then ϕ
is H0-Fréchet differentiable and DH0ϕ = DG,H0ϕ.

Proof. We refer to [53, 4.1.7. Corollary 1] for the case in which X is a Hilbert
space and X = H0. If H0 � X, given x ∈ X let us consider the function
gx : H0 → Y defined by

gx(h) := ϕ(x + h), h ∈ H0.

Since ϕ is H0-continuous, gx : H0 → Y is continuous. By the H0-Gateaux
differentiability of ϕ, for any x ∈ X and h, k ∈ H0, we infer

lim
s→0

∥∥∥∥gx(h + sk) − gx(h)
s

−DG,H0ϕ(x + h)k
∥∥∥∥
Y

= lim
s→0

∥∥∥∥ϕ(x + h + sk) − ϕ(x + h)
s

−DG,H0ϕ(x + h)k
∥∥∥∥
Y

= 0.

Thus gx is Gateaux differentiable at h ∈ H0 and DGgx(h) = DG,H0ϕ(x + h),
for any x ∈ X and h ∈ H0. Since DG,H0ϕ : X → L(H0;Y ) is H0-continuous by
assumption, it follows that DGgx : H0 → L(H0;Y ) is continuous. By [53, 4.1.7.
Corollary 1] we thus infer that gx : H0 → R is Fréchet differentiable at 0 and
DGgx(0) = Dgx(0). To conclude, we observe that for any x ∈ X

lim
‖h‖H0

→0

‖ϕ(x + h) − ϕ(x) −Dgx(0)h‖Y
‖h‖H0
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= lim
‖h‖H0

→0

‖gx(h) − gx(0) −Dgx(0)h‖Y
‖h‖H0

= 0,

so that ϕ is H0-Fréchet differentiable at x ∈ H and DH0ϕ(x) = DG,H0ϕ(x).

In the next propositions we collect some basic properties of the H0-Fréchet
and H0-Gateaux differentiability. The chain rule is particularly valuable, among
other tools, especially for establishing gradient estimates for a transition semi-
group associated with a stochastic partial differential equations. These estimates
are extensively used to investigate both the Schauder and Sobolev regularity of
Kolmogorov equations linked to the transition semigroup; please refer to the
citations provided in the introduction of this section.

Proposition 2.5. Let Z be a Banach space equipped with the norm ‖·‖Z . If
f : X → Y is H0-Gateaux differentiable at x0 ∈ X and g : Y → Z is Fréchet
differentiable at y0 = f(x0), then g ◦ f is H0-Gateaux differentiable at x0 and
its H0-Gateaux derivative is Dg(y0) ◦ DG,H0f(x0).

Proof. Let h ∈ H0 and let (tn)n∈N be an infinitesimal sequence of positive real
numbers. We consider the sequence (zn)n∈N ⊆ Z defined as

zn := g(f(x0 + tnh)) − g(f(x0)) − tn(Dg(y0) ◦ DG,H0f(x0))h.

We need to prove that (t−1
n ‖zn‖Z)n∈N is an infinitesimal sequence. For k ∈ H0

and y ∈ Y set

R(k) := f(x0 + k) − f(x0) −DG,H0f(x0)k;
S(y) := g(y0 + y) − g(y0) −Dg(y0)y;

and

yn := f(x0 + tnh) − f(x0)
tn

= DG,H0f(x0)h + R(tnh)
tn

.

We write

zn
tn

= g(y0 + tnyn) − g(y0)
tn

− (Dg(y0) ◦ DG,H0f(x0))h

= S(tnyn)
tn

+ Dg(y0)yn − (Dg(y0) ◦ DG,H0f(x0))h

= S(tnyn)
tn

+ Dg(y0)
R(tnh)

tn
.

The H0-Gateaux differentiability of f yields

lim
n→+∞

‖R(tnh)‖Y
tn

= 0,

whereas the Fréchet differentiability of g yields limn→+∞ t−1
n ‖S(tnyn)‖Z = 0.

We thus infer limn→+∞ t−1
n ‖zn‖Z = 0 which concludes the proof.
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Proposition 2.6. Assume that ϕ : X → Y is a H0-Fréchet differentiable func-
tion and that there exists a constant M > 0 such that ‖DH0ϕ(x)‖L(H0;Y ) ≤ M ,
for any x ∈ X. The function ϕ is H0-Lipschitz and for every x ∈ X and h ∈ H0
it holds

‖ϕ(x + h) − ϕ(x)‖Y ≤ M‖h‖H0 .

Proof. The proof is standard, we give it for the sake of completeness. Let φ :
[0, 1] → X be defined as φ(t) := x+ th and let Ψ(t) := ϕ(φ(t)), for any t ∈ [0, 1].
Observe that Ψ is derivable in (0, 1), indeed for t ∈ (0, 1)

Ψ′(t) = lim
s→0

Ψ(t + s) − Ψ(t)
s

= lim
s→0

ϕ(x + (t + s)h) − ϕ(x + th)
s

= DH0ϕ(x + th)h.

Furthermore Ψ is continuous in [0, 1], since ϕ is H0-Fréchet differentiale. By the
mean value theorem there exists t0 ∈ (0, 1) such that Ψ(1) − Ψ(0) = Ψ′(t0).
Thus

|ϕ(x + h) − ϕ(x)| = |DH0ϕ(x + t0h)h| ≤ M‖h‖H0
.

This concludes the proof.

Proposition 2.7. Let ϕ : X → Y be a H0-Fréchet differentiable function, such
that for every x ∈ H it holds ‖DH0ϕ(x)‖L(H0;Y ) = 0. Then for every x ∈ X
and h ∈ H0 it holds ϕ(x + h) = ϕ(x). Moreover if H0 is dense in X and ϕ is a
continuous function, then ϕ is constant.

Proof. By Proposition 2.6 we get that ϕ(x + h) = ϕ(x), for every x ∈ X and
h ∈ H0. Now assume that H0 is dense in X and that ϕ is a continuous function.
Let x0 ∈ X and let (hn)n∈N ⊆ H0 be a sequence converging to x0 in X. By the
continuity of ϕ and the first part of the proof of the proposition it holds

ϕ(x0) = lim
n→+∞

ϕ(hn) = lim
n→+∞

ϕ(0 + hn) = ϕ(0).

This conclude the proof.

The following result clarifies the relationship between the classical notion of
Fréchet differentiability and the notion of H0-Fréchet differentiability.

Proposition 2.8. Let ϕ : X → Y be a Fréchet differentiable function. ϕ is
H0-Fréchet differentiable and for any x ∈ X and h ∈ H0 it holds DH0ϕ(x)h =
Dϕ(x)h.

Proof. By the Fréchet differentiability of ϕ we know that for every η > 0 there
exists δ > 0 such that for every y ∈ X with 0 < ‖y‖X < δ it holds

‖ϕ(x + y) − ϕ(x) −Dϕ(x)y‖Y
‖y‖X

< η. (4)
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Fix ε > 0, let η = ε/C in (4), where C is the constant appearing in (2),
and consider h ∈ H0 such that 0 < ‖h‖H0 < δ/C where δ > 0 is the one
introduced at the beginning of the proof. Observe that by (2) it holds that
0 < ‖h‖X ≤ C‖h‖H0 < δ. By (2) and (4), it holds

0 ≤ ‖ϕ(x + h) − ϕ(x) −Dϕ(x)h‖Y
‖h‖H0

= ‖ϕ(x + h) − ϕ(x) −Dϕ(x)h‖Y
‖h‖X

‖h‖X
‖h‖H0

≤ C
‖ϕ(x + h) − ϕ(x) −Dϕ(x)h‖Y

‖h‖X
< ε.

This concludes the proof.

The converse implication of Proposition 2.8 is not true in general, as shown
by the following example.

Example. Let ϕ : X → R be defined as

ϕ(x) :=
{
‖x‖2

H0
, x ∈ H0;

0, otherwise.

ϕ is not Fréchet differentiable (it is not continuous), but it is H0-Fréchet differ-
entiable and it holds

DH0ϕ(x)h =
{

2〈x, h〉H0 , x ∈ H0;
0, otherwise.

Remark 2.9. One of the most significant frameworks in which the Gross dif-
ferentiability is applied are abstract Wiener spaces. Let X be a separable Ba-
nach space, and let γ be a Gaussian measure on the Borel σ-algebra of X.
We denote by Hγ the Cameron–Martin space associated to γ (see [22, 69]). In
this case, we consider Gross differentiability along the Cameron–Martin space
Hγ , namely H0 = Hγ in Definition 2.2. This differentiability is related to the
integration by parts formula with respect to γ and lays the ground for the
theory of infinite-dimensional Ornstein–Uhlenbeck semigroups (see, for exam-
ple, [23, 35, 45, 46, 68, 71]). In the most important example of Wiener space
X = C([0, 1]), the space of real-valued continuous functions on [0, 1], γ is the
Wiener measure, and the Cameron–Martin space Hγ consists of real-valued func-
tions f defined on [0, 1] such that f is absolutely continuous, f ′ ∈ L2((0, 1), dλ)
(here dλ is the Lebesgue measure on (0, 1)), and f(0) = 0 (see [22, 69]).

2.1.1. Gross differentiability for real-valued functions

In this subsection we rewrite Definitions 2.2 and 2.3 for functions from a Hilbert
space H (with inner product 〈·, ·, 〉H) with values in R: we will focus of this case
from here on. Let k ∈ N and L ∈ L(k)(H;R), by the Riesz representation
theorem there exists a unique l ∈ L(k−1)(H) such that

L(h1, . . . , hn) = 〈l(h1, . . . , hn−1), hn〉H , h1, . . . , hn ∈ H.
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Definition 2.10. Let k ∈ N and let f : H → R be a k-times

1. H0-Fréchet differentiable function, then for any x ∈ H we denote by
∇k

H0
f(x) the unique element of L(k−1)(H0) such that for any h1, . . . , hk ∈

H0

Dk
H0

f(x)(h1, . . . , hk) = 〈∇k
H0

f(x)(h1, . . . , hk−1), hn〉H0 .

If k = 1 we write ∇H0f(x) and we call it H0-gradient of f at x ∈ H. If
H = H0 we write ∇kf(x).

2. H0-Gateaux differentiable function, then for any x ∈ H we denote by
∇k

G,H0
f(x) the unique element of Lk−1(H0) such that for any h1, . . . , hk ∈

H0

Dk
G,H0

f(x)(h1, . . . , hk) = 〈∇k
G,H0

f(x)(h1, . . . , hk−1), hn〉H0 .

If k = 1 we write ∇G,H0f(x) and we call it H0-gradient of f at x ∈ H. If
H = H0 we write ∇k

Gf(x).

Notice that ∇f and ∇Gf are the standard Fréchet and Gateaux gradient
of f in x ∈ H, respectively. Now we introduce some natural functional spaces
associated to the notion of H0-differentiability.

Definition 2.11. For any k ∈ N, we denote by BUCk
H0

(H) the subspace of
BUCk(H) of k-times H0-Fréchet differentiable functions f : H → R such
that the functions x 
→ ∇i

H0
f(x) belong to BUC(H;L(i−1)(H0)), for every

i = 1, . . . , k. If H = H0 we write BUCk(H).

For any k ∈ N, the space BUCk
H0

(H) is a Banach space if endowed with the
norm

‖f‖BUCk
H0

(H) := ‖f‖∞ +
k∑

i=1
sup
x∈H

‖∇i
H0

f(x)‖L(i−1)(H0).

We conclude this subsection noting that, for real-valued functions Theo-
rem 2.4 reads as follows.

Theorem 2.12. Let ϕ : H → R be a H0-continuous function. If ϕ is H0-
Gateaux differentiable and ∇G,H0ϕ : H → H is H0-continuous, then ϕ is H0-
Fréchet differentiable and ∇H0ϕ = ∇G,H0ϕ.

2.2. Differentiability in the sense of Cannarsa and Da Prato

We introduce here the notion of R-differentiability considered by P. Cannarsa
and G. Da Prato in [28] dropping the assumption of injectivity of the operator
R considered in that paper. In a separable Hilbert space H (with inner product
〈·, ·, 〉H and associated norm ‖·‖H), we fix a self-adjoint operator R ∈ L(H). We
denote by kerR the kernel of R and by (kerR)⊥ its orthogonal subspace in H.
By PkerR we denote the orthogonal projection on kerR.
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We denote by HR := R(H) the range of the operator R. In order to provide
HR with a Hilbert structure, we recall that the restriction R|(ker R)⊥

: (kerR)⊥ →
HR is a bijective operator. Hence, we can define the pseudo-inverse of R as

R−1 := (R|(ker R)⊥
)−1 ∈ L(HR, (kerR)⊥), (5)

see [66, Appendix C]. We introduce the scalar product

〈x, y〉HR
:= 〈R−1x,R−1y〉H , x, y ∈ HR (6)

with its associated norm ‖x‖HR
:= ‖R−1x‖H . Endowed with this inner product

HR is a separable Hilbert space and a Borel subset of H (see [60, Theorem 15.1]).
A possible orthonormal basis of HR is given by {Rek}k∈N, where {ek}k∈N is an
orthonormal basis of (kerR)⊥. We recall that it holds

RR−1 = IdHR
, R−1R = IdH − PkerR, (7)

R−1R|(ker R)⊥
= Id(kerR)⊥ ,RR−1 = IdH . (8)

Notice that for any x ∈ HR it holds

‖x‖H = ‖RR−1x‖H ≤ ‖R‖L(H)‖R−1x‖H ≤ ‖R‖L(H)‖x‖HR
.

Thus, when H0 = HR the constant C appearing in (2) is given by ‖R‖L(H).
Moreover we recall that kerR = {0} if, and only if, R(H) is dense in H (see [47,
Lemma VI.2.8]).

Definition 2.13. We say that a function f : H → R is R-differentiable at
x ∈ H if there exists lx ∈ H such that for any v ∈ H it holds

lim
s→0

∣∣∣∣f(x + sRv) − f(x)
s

− 〈lx, v〉H
∣∣∣∣ = 0. (9)

We set ∇Rf(x) := lx. We say that a function is R-differentiable if it is R-
differentiable at any x ∈ H. We say that f is twice R-differentiable at x ∈ H
if it is R-differentiable and there exists a unique Bx ∈ L(H) such that for any
v ∈ H we have

lim
s→0

∥∥∥∥∇Rf(x + sRv) −∇Rf(x)
s

−Bxv

∥∥∥∥
H

= 0. (10)

We set ∇2
Rf(x) := Bx. Let k ∈ N; similarly one introduces the notion of k-times

R-differentiability at x ∈ H. We denote by ∇k
Rf(x) ∈ L(k−1)(H) the k-order

R-derivative of ϕ. We say that a function is k-times R-differentiable when it is
k-times R-differentiable at any x ∈ H.

Remark 2.14. In [28] the authors introduce a weaker notion of twice R-differ-
entiability. More precisely, a function ϕ : H → R is twice R-differentiable if, for
any x ∈ H, there exists a unique Bx ∈ L(H) such that for any w, v ∈ H it holds

lim
s→0

〈
∇Rϕ(x + sRv) −∇Rϕ(x)

s
−Bxv, w

〉
H

= 0.
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We introduce some natural functional spaces associated to the notion of R-
differentiability.

Definition 2.15. For any k ∈ N, we denote by BUCk
R(H) the subspace of

BUCk(H) of k-times R-Fréchet differentiable functions ϕ : H → R such that
the mapping x 
→ ∇i

Rϕ(x) belongs to BUC(H;L(i−1)(H)), for every i = 1, . . . , k.

The space BUCk
R(H) equipped with the norm

‖ϕ‖BUCk
R(H) := ‖ϕ‖∞ +

k∑
i=1

sup
x∈H

‖∇i
Rϕ(x)‖L(i−1)(H)

is a Banach space. The following result will be useful throughout the paper.
Notice that if kerR = {0} (as in [28]) the next proposition is trivial.

Proposition 2.16. Let k ∈ N and let f : H → R be a k-times R-differentiable
function. For any x ∈ H

∇k
Rf(x) ∈ L(k−1)(H; (kerR)⊥), (11)

where we set L(0)(H; (kerR)⊥) := (kerR)⊥. In other words, for any v ∈ kerR

〈∇Rf(x), v〉H = 0,

and if k ≥ 2

∇k
Rf(x)(v1, . . . , vk−1) = 0, (12)

whether vi ∈ kerR for i = 1, . . . , k − 1.

Proof. The case k ≤ 2 is an immediate consequence of (9) and (10) by taking
v ∈ kerR. For k > 2 we proceed by induction. Assume the assertion to hold
true for k and let us prove it for k + 1. Let f : H → R be a (k + 1)-times
R-differentiable function. By the inductive hypothesis and Definition 2.13 we
infer that

lim
s→0

∥∥∥∥∇
k
Rf(x + sRvk) −∇k

Rf(x)
s

−∇k+1
R f(x)(·, . . . , ·, vk)

∥∥∥∥
L(k)(H;(kerR)⊥)

= 0,

hence (11) holds true and (12) holds true when vn ∈ kerR. Moreover for any
v1, . . . , vn ∈ H we have

lim
s→0

∥∥∥∥∇
k
Rf(x + sRvk)(v1, . . . , vk−1) −∇k

Rf(x)(v1, . . . , vk−1)
s

−∇k+1
R f(x)(v1, . . . , vk)

∥∥∥∥
H

= 0,

thus the inductive hypothesis yields (12).
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2.3. Comparisons between R-differentiability and
HR-differentiability

We aim to compare the notion of R-differentiability of Section 2.2 with the
notion of H0-differentiability of Section 2.1.1, if H0 = HR.

Proposition 2.17. A function ϕ : H → R is R-differentiable if and only if it
is HR-Gateaux differentiable. Moreover, for any x ∈ H

〈R∇Rϕ(x), h〉HR
= 〈∇G,HR

ϕ(x), h〉HR
, h ∈ HR

〈∇Rϕ(x), v〉H = 〈R−1∇G,HR
ϕ(x), v〉H , v ∈ H. (13)

In particular, for any x ∈ H it holds ‖∇Rϕ(x)‖H = ‖∇G,HR
ϕ(x)‖HR

.

Proof. Assume that ϕ is R-differentiable. By (6), Definition 2.13 and Proposi-
tion 2.16, for every x ∈ H, h ∈ HR of the form h = Rv it holds

lim
s→0

∣∣∣∣ϕ(x + sh) − ϕ(x)
s

− 〈R∇Rϕ(x), h〉HR

∣∣∣∣
= lim

s→0

∣∣∣∣ϕ(x + sRv) − ϕ(x)
s

− 〈∇Rϕ(x), v〉H
∣∣∣∣ = 0.

Since R∇Rϕ(x) ∈ HR, the mappings h 
→ 〈R∇Rϕ(x), h〉HR
belongs to H∗

R,
so ϕ is HR-Gateaux differentiable and 〈∇G,HR

ϕ(x), h〉HR
= 〈R∇Rϕ(x), h〉HR

.
Assume now that ϕ is HR-Gateaux differentiable. Recalling that h = Rv, by
Definitions 2.3 and 2.10, and (7) for every x ∈ H, v ∈ H it holds

lim
s→0

∣∣∣∣ϕ(x + sRv) − ϕ(x)
s

− 〈R−1∇G,HR
ϕ(x), v〉H

∣∣∣∣
= lim

s→0

∣∣∣∣ϕ(x + sh) − ϕ(x)
s

− 〈∇G,HR
ϕ(x), h〉HR

− 〈R−1∇G,HR
ϕ(x), PkerRv〉H

∣∣∣∣.
Since, by (5), R−1∇G,HR

ϕ(x) ∈ (kerR)⊥ and h = Rv, by (6) we obtain

lim
s→0

∣∣∣∣ϕ(x + sRv) − ϕ(x)
s

− 〈R−1∇G,HR
ϕ(x), v〉H

∣∣∣∣ = 0.

Hence ϕ is R-differentiable and (13) is verified.

Bearing in mind Definitions 2.11 and 2.15, we now show that BUCk
HR

(H) =
BUCk

R(H) for any k ∈ N. We need the following preliminary result.

Lemma 2.18. For any n ∈ N the mapping Tn : L(n)((kerR)⊥) → L(n)(HR)
defined for v1, . . . , vn ∈ HR and A ∈ L(n)((kerR)⊥) as

(TnA)(v1, . . . , vn) := RA(R−1v1, . . . , R
−1vn),

is a linear isometry and an isomorphism. We recall that for n = 0 we let
L(0)((kerR)⊥) := (kerR)⊥ and L(0)(HR) := HR and we set T0v := Rv, for
any v ∈ (kerR)⊥. Furthermore if A ∈ L(n)((kerR)⊥) and v ∈ HR it holds

Tn−1(A(·, . . . , ·, R−1v)) = (TnA)(·, . . . , ·, v).
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Proof. For any n ∈ N, since R|(ker R)⊥
: (kerR)⊥ → R(H) is linear and bijective,

it follows that Tn is linear. By (7) and (8), for any A ∈ L(n)((kerR)⊥) we have

‖TnA‖L(n)(HR) = sup
v1,...,vn∈HR\{0}

‖RA(R−1v1, . . . , R
−1vn)‖HR

‖v1‖HR
· · · ‖vn‖HR

= sup
v1,...,vn∈HR\{0}

‖A(R−1v1, . . . , R
−1vn)‖H

‖R−1v1‖H · · · ‖R−1vn‖H

= sup
h1,...,hn∈(kerR)⊥\{0}

‖A(h1, . . . , hn)‖H
‖h1‖H · · · ‖hn‖H

= ‖A‖L(n)((kerR)⊥).

This conclude the proof.

Theorem 2.19. For any n ∈ N, it holds BUCn
HR

(H) = BUCn
R(H). Moreover

if ϕ ∈ BUCn
R(H) and x ∈ H then

∇n
HR

ϕ(x) = Tn−1 (∇n
Rϕ(x)) , (14)

with Tn−1 as in Lemma 2.18.

Proof. We proceed by induction. We start by proving the base case n = 1.
Let ϕ : H → R; by Proposition 2.17 the mapping x 
→ ∇G,HR

ϕ(x) belongs to
BUC(H;HR) if, and only if, the mapping x 
→ ∇Rϕ(x) belongs to BUC(H;H).
Thus the case n = 1 follows by Theorem 2.12.

Now we prove the induction step. Assume the thesis to be true for an integer
n ≥ 2. Let ϕ ∈ BUCn+1

R (H), x ∈ H and vn ∈ HR\{0} such that vn = Rhn with
hn ∈ (kerR)⊥. By Proposition 2.16 and Lemma 2.18 we infer

lim
s→0

∥∥∥∥∇
n
HR

ϕ(x + svn) −∇n
HR

ϕ(x)
s

− Tn−1
(
∇n+1

R ϕ(x)(·, . . . , ·, hn)
)∥∥∥∥

L(n−1)(HR)

= lim
s→0

∥∥∥∥Tn−1

(
∇n

Rϕ(x + svn) −∇n
Rϕ(x)

s
−∇n+1

R ϕ(x)(·, . . . , ·, hn)
)∥∥∥∥

L(n−1)(HR)

= lim
s→0

∥∥∥∥∇
n
Rϕ(x + sRhn) −∇n

Rϕ(x)
s

−∇n+1
R ϕ(x)(·, . . . , ·, hn)

∥∥∥∥
L(n−1)((kerR)⊥)

= 0.

Since

Tn−1
(
∇n+1

R ϕ(x)(·, . . . , ·, R−1vn)
)

= (Tn∇n+1
R ϕ(x))(·, . . . , ·, vn),

we obtain (14) and BUCn
R(H) ⊆ BUCn

HR
(H). The inclusion BUCn

HR
(H) ⊆

BUCn
R(H) follows in a similar way using the operator T−1

n instead of the oper-
ator Tn.

In view of the above result, from here on we will use the space BUCk
R(H) to

represent both BUCk
HR

(H) and BUCk
R(H).
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2.4. A Comparison with the classical notions of differentiability

We focus here on the relationship between the R-differentiability and HR-dif-
ferentiability, and the classical Fréchet and Gateaux differentiability.

Proposition 2.20. For any n ∈ N, if ϕ : H → R is n-times Gateaux differ-
entiable, then ϕ is n-times R-differentiable and for any x ∈ H and n ≥ 2 it
holds

∇n
Rϕ(x)(v1, . . . , vn−1) = R∇n

Gϕ(x)(Rv1, . . . , Rvn−1), v1, . . . , vn−1 ∈ H.

While if n = 1, then for any x ∈ H

∇Rϕ(x) = R∇Gϕ(x).

Proof. We proceed by induction. Let ϕ : H → R be a Gateaux differentiable
function and let x, v ∈ H. By Definition 2.10 we have

lim
s→0

∣∣∣∣ϕ(x + sRv) − ϕ(x)
s

− 〈∇Gϕ(x), Rv〉H
∣∣∣∣ = 0.

Thus the thesis follows for n = 1. Now we assume that the statements hold true
for n and we prove it for n + 1. Let ϕ : H → R be a (n + 1)-times Gateaux
differentiable function and let x, v1, . . . , vn ∈ H. By the inductive hypothesis we
have for any s ∈ R \ {0}∥∥∥∥∇

n
Rϕ(x + sRvn)(v1, . . . , vn−1) −∇n

Rϕ(x)(v1, . . . , vn−1)
s

−R∇n+1
G ϕ(x)(Rv1, . . . , Rvn)

∥∥∥∥
H

=
∥∥∥∥R∇n

Gϕ(x + sRvn)(Rv1, . . . , Rvn−1) −R∇n
Gϕ(x)(Rv1, . . . , Rvn−1)

s

−R∇n+1
G ϕ(x)(Rv1, . . . , Rvn)

∥∥∥∥
H

≤ ‖R‖L(H)

∥∥∥∥∇
n
Gϕ(x + sRvn)(Rv1, . . . , Rvn−1) −∇n

Gϕ(x)(Rv1, . . . , Rvn−1)
s

−∇n+1
G ϕ(x)(Rv1, . . . , Rvn)

∥∥∥∥
H

.

(15)

To conclude it is enough to take the limit as s approaches zero in (15).

Combining Theorem 2.12, Propositions 2.19 and 2.20 we obtain the following
result.

Theorem 2.21. For any k ∈ N, if ϕ ∈ BUCk(H) then ϕ ∈ BUCk
R(H) (and so

it belongs in BUCk
HR

(H), by Proposition 2.19) and for any x ∈ H and k ≥ 2 it
holds

∇k
HR

ϕ(x)(h1, . . . , hk−1) = R2∇kϕ(x)(h1, . . . , hk−1), h1, . . . , hk−1 ∈ HR;
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∇k
Rϕ(x)(v1, . . . , vk−1) = R∇kϕ(x)(Rv1, . . . , Rvk−1), v1, . . . , vk−1 ∈ H.

Furthermore if k = 1, for any x ∈ H

∇HR
ϕ(x) = R2∇ϕ(x), and ∇Rϕ(x) = R∇ϕ(x). (16)

3. Malliavin calculus in Wiener spaces

We start by considering a Gaussian framework. We introduce on (H,B(H)) a
centered (that is with zero mean) Gaussian measure γ with covariance opera-
tor Q. Here Q ∈ L(H) is a self-adjoint non-negative and trace class operator.
The aim of this Section is to recall the construction of the Malliavin derivative
operators in the sense of Gross and in the sense of Cannarsa–Da Prato (mainly
referring to the books [22] and [39], respectively); then to show that they can
be interpreted as two (different) examples of the general notion of Malliavin
derivative (see Appendix A). In particular, we will show that the Malliavin
derivative in the sense of Gross and in the sense of Cannarsa–Da Prato are
different operators but with the same domain.

3.1. The Gaussian Hilbert space H∗
γ

We will denote by (H∗)′ the algebraic dual of H∗, namely the space of all linear
(not necessarely continuous) functional f : H∗ → R. The space H∗ is included
in L2(H,B(H), γ) and the inclusion mapping j : H∗ → L2(H, γ) is continuous.
The space

H∗
γ := closure of j(H∗) in L2(H, γ),

when endowed with the scalar product of L2(H, γ), is a Gaussian Hilbert space
(see e.g. [22, Lemma 2.2.8]). We introduce the covariance operator Rγ : H∗

γ →
(H∗)′ defined as

Rγf(g) := 〈f, j(g)〉L2(H,γ) =
∫
H

fj(g)dγ, f ∈ H∗
γ , g ∈ H∗.

Rγ is injective and its range is contained in H (see e.g. [69, Proposition 2.3.6]).
We define the Cameron–Martin space K (for the measure γ) as

K := Rγ(H∗
γ ) ⊆ H.

K inherits a structure of separable Hilbert space through Rγ (see e.g. [22,
Lemma 2.4.1]), that is introducing the mapping

·̂ := R−1
γ : K → H∗

γ ⊆ L2(H, γ)

it holds
〈h, k〉K := 〈ĥ, k̂〉L2(H,γ) =

∫
H

ĥk̂dγ,
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whenever h, k ∈ K with h = Rγ ĥ, k = Rγ k̂. As proved in [69, Theorem 4.2.7],
the Cameron–Martin space coincide with the Hilbert space HQ1/2 = Q1/2(H)
and its inner product is given by

〈h, k〉K = 〈h, k〉Q1/2 := 〈Q−1/2h,Q−1/2k〉H , h, k ∈ K = HQ1/2 .

From the very definition of the Cameron–Martin space it follows that the map-
ping ·̂ := R−1

γ is a unitary operator and this yields that

H∗
γ = {ĥ ∈ L2(H, γ) |h ∈ K}, (17)

where every ĥ ∈ H∗
γ is a centered Gaussian random variable with variance

‖ĥ‖2
L2(H,γ) = ‖h‖2

K .
On the other hand, when the measure γ is non degenerate (that is kerQ =

{0}), the Cameron–Martin space turns out to be dense in H (see e.g. [39, Lemma
2.16]). In this case, see [39, Section 2.5.2], the mapping ·̂ = R−1

γ : K → H∗
γ ⊆

L2(H, γ) can be uniquely extended to a linear isometry W• defined as

W• : H → H∗
γ ⊆ L2(H, γ).

In the literature the mapping W• is usually called white noise mapping. Thus,
W• is a unitary operator and it holds

H∗
γ = {Wz ∈ L2(H, γ) | z ∈ H}. (18)

Every Wz is a centered Gaussian random variable with variance ‖Wz‖2
L2(H,γ) =

‖z‖2
H .

3.2. Sobolev spaces

We denote by ∇H
Q1/2 and ∇Q1/2 the gradient operators introduced in Defini-

tions 2.10 and 2.13, respectively, with the choice R = Q1/2 and H0 = HQ1/2 . In
Section 2 we analyzed the relations between this two operators.

Lemma 3.1. Let Q ∈ L(H) be a self-adjoint non-negative and trace class
operator with kerQ = {0}. For any ϕ ∈ BUC1(H), z ∈ H, h ∈ HQ1/2 with
h = Q1/2z

〈∇H
Q1/2ϕ(x), h〉H

Q1/2 = 〈∇Q1/2ϕ(x), z〉H .

In particular, ‖∇H
Q1/2ϕ(x)‖H

Q1/2 = ‖∇Q1/2ϕ(x)‖H .

The following integration by parts formula with respect to γ is well known
(see e.g. [22, Theorem 5.1.8])

∫
H

〈∇H
Q1/2ϕ, h〉HQ1/2dγ =

∫
H

ϕĥdγ, ϕ ∈ C1
b (H), h ∈ HQ1/2 , (19)
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and in [22, Chapter 5] it is used to prove that the operator

∇H
Q1/2 : C1

b (H) ⊆ Lp(H, γ) → Lp(H, γ;HQ1/2),

is closable as an operator from Lp(H, γ) to Lp(H, γ;HQ1/2), for any p ∈ [1,+∞);
for a proof see [69, Proposition 9.3.7]. The Sobolev spaces W 1,p

H
Q1/2

(H, γ) are
defined as the domain of the closure of the operator ∇H

Q1/2 , still denoted by
∇H

Q1/2 , in Lp(H, γ). W 1,p
H

Q1/2
(H, γ) is a Banach space with the norm

‖f‖p
W 1,p

H
Q1/2

(H,γ) := ‖f‖pLp(H,γ) + ‖∇H
Q1/2 f‖

p
Lp(H,γ;H

Q1/2 ). (20)

Moreover, the integration by parts formula (19) holds for any ϕ belonging to
W 1,p

H
Q1/2

(H, γ) and h ∈ HQ1/2 (see e.g. [69, Proposition 9.3.10]).
When γ is non degenerate, Lemma 3.1 provides the following equivalent form

of the integration by parts formula (19)
∫
H

〈∇Q1/2ϕ, z〉Hdγ =
∫
H

ϕWzdγ, ϕ ∈ C1
b (H), z ∈ H, (21)

where we used ĥ = Wz for h = Q1/2z. The integration by parts formula (21) is
the one used in [39] to prove that the operator ∇Q1/2 : C1

b (H) → Lp(H, γ;H)
is closable as an unbounded operator from Lp(H, γ) to Lp(H, γ;H), for any
p ∈ [1,+∞). The Sobolev space W 1,p

Q1/2(H, γ) is defined as the domain of the
closure of the operator ∇Q1/2 , denoted by M . It is a Banach space with the
norm

‖f‖p
W 1,p

Q1/2 (H,γ) := ‖f‖pLp(H,γ) + ‖Mf‖pLp(H,γ;H). (22)

Moreover, the integration by parts formula (21) holds for any ϕ ∈ W 1,p
Q1/2(H, γ)

and z ∈ H.
In the following sections we show that the gradient operators ∇H

Q1/2 and
M , can be thought as Malliavin derivative operators. For this purpose, referring
back to Section A, it will be enough to identify the choices of the probability
space (Ω,F ,P), the Gaussian Hilbert space H1, the Hilbert space H and the
unitary operator W .
Remark 3.2. Given R∇ : C1

b (H) ⊆ Lp(H, γ) → Lp(H, γ;H), under specific
compatibility assumptions between R and Q it is possible to prove that R∇ is
closable, we call generalized gradient the closure of it (see, for example, [16, 55]).
The Sobolev space W 1,p

R (H, γ) is the domain of the closure of the operator R∇.
See also [9] for the problem of equivalence of Sobolev norms.

3.3. Malliavin derivative in the sense of Gross

In [56] (see also [22]), the reference probability space is (Ω,F ,P) = (H,B(H), γ),
with γ a centered Gaussian measure. The Gaussian Hilbert space H1 is H∗

γ , the
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space H is the Cameron–Martin space K = HQ1/2 and the unitary operator W is
the operator ·̂ = R−1

γ . With these identifications, by comparing the integration
by parts formula ∫

H

〈∇H
Q1/2ϕ, h〉HQ1/2dγ =

∫
H

ϕĥdγ,

for ϕ ∈ W 1,2
H

Q1/2
(H, γ) = Dom(∇H

Q1/2 ) and h ∈ HQ1/2 , with (43):

E [〈Dϕ, h〉H] = E [ϕW (h)] , ϕ ∈ D1,2 = Dom(D), h ∈ H,

we immediately see that the Malliavin derivative in [56] (see also [22]) is the
gradient operator ∇H

Q1/2 .

3.4. Malliavin derivative in the sense of Cannarsa and Da Prato

In [39] the reference probability space is (Ω,F ,P) = (H,B(H), γ), with γ a
centered non degenerate Gaussian measure. The Gaussian Hilbert space H1 is
H∗

γ , the space H is H itself and the unitary operator W is the white noise
mapping W•. With these identifications, by comparing the integration by parts
formula∫

H

〈Mϕ, z〉Hdγ =
∫
H

ϕWzdγ, ϕ ∈ W 1,2
Q1/2(H, γ) = Dom(M), z ∈ H,

with (43), we immediately see that the Malliavin derivative in [39] is the gradient
operator M .

3.5. Final remarks

The Malliavin derivatives ∇H
Q1/2 and M of Sections 3.3 and 3.4 are different.

Indeed (16) yields the relation ∇H
Q1/2 = Q1/2M . On the other hand, the domain

of the two derivatives is the same, that is

W 1,2
Q1/2(H, γ) = W 1,2

H
Q1/2

(H, γ).

In fact, thanks to Lemma 3.1, the closure of the space C1
b (H) with respect to the

norm (20) is the same as its closure with respect to the norm (22). This should
not be surprising in light of the general results of Section A: in Sections 3.3
and 3.4 the reference Gaussian Hilbert space H1 is the same, that is H∗

γ ; thus
Proposition A.6 ensures the two Malliavin derivatives ∇H

Q1/2 and M to have
the same domain. What changes in Sections 3.3 and 3.4 is how the space H1
is characterized. In Section 3.3 we considered the unitary operator ·̂ = R−1

γ

between HQ1/2 and H1 and obtain the characterization (17), whereas in Sec-
tion 3.4 we considered the unitary operator W• between H and H1 and obtain
the characterization (18). This naturally leads to different Malliavin derivatives,
having chosen different Hilbert spaces H and unitary operators W .
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4. Application: Lasry–Lions approximation and an interpolation
result

We consider the same framework of Section 2. We introduce here the notions
of H0-Hölder and R-Hölder functions. We prove this notions to be equivalent
when H0 = HR. We thus prove an interpolation type result for the space of
HR-Hölder functions. A key role in the proof is played by Lasry–Lions type
approximations along the space HR (see Subsection 4.2).

4.1. Hölder and Lipschitz functions along subspaces

We recall here the notions of H0-Hölderianity (H0-Lipschitzianity, respectively)
and R-Hölderianity (R-Lipschitzianity, respectively) and show that they are
equivalent when H0 = HR.

Definition 4.1. We say that ϕ : H → R is a H0-Hölder function of exponent
α ∈ (0, 1) if there exists a positive constant Lα,H0 such that for any x ∈ H and
h ∈ H0 it holds

|ϕ(x + h) − ϕ(x)| ≤ Lα,H0‖h‖
α
H0

. (23)

The infimum of all the possible constants Lα,H0 appearing in (23) is called
H0-Hölder constant constant of ϕ.

It is trivial to see that a H0-Hölder function ϕ : H → R is H0-continuous.
When H0 = H we recover the classical definition of Hölder continuous function
from H to R. Moreover, by (2), if ϕ is Hölder continuous, then ϕ is H0-Hölder.
The converse is not true as shown by the following example.

Example. For any α ∈ (0, 1), we consider the function ϕα : H → R defined as

ϕα(x) :=
{
‖x‖αH0

, x ∈ H0;
0, otherwise.

ϕα is H0-Hölder of exponent α, but it is not continuous.

Definition 4.2. For any α ∈ (0, 1) we denote by BUCα
H0

(H) the subspace of
BUC(H) given by all H0-Hölder functions of exponent α.

For any α ∈ (0, 1), the space BUCα
H0

(H) is a Banach space, if endowed with
the norm

||ϕ||BUCα
H0

(H) := ‖ϕ‖∞ + [ϕ]H0,α,

where

[ϕ]H0,α := sup
x∈H;

h∈H0\{0}

|ϕ(x + h) − ϕ(x)|
‖h‖αH0

.

If H = H0 we write BUCα(H) and [ϕ]α.



Differentiability in infinite dimension and the Malliavin calculus 49

Definition 4.3. Let α ∈ (0, 1). We say that ϕ : H → R is R-Hölder of exponent
α if there exists Lα,R > 0 such that for any x, v ∈ H it holds

|ϕ(x + Rv) − ϕ(x)| ≤ Lα,R‖v‖αH . (24)

The infimum of all the possible constants Lα,R appearing in (24) is called R-
Hölder constant constant of ϕ.

Definition 4.4. Let α ∈ (0, 1). We denote by BUCα
R(H) the subspace of

BUC(H) of the R-Hölder functions of exponent α.

For any α ∈ (0, 1), the space BUCα
R(H) is a Banach space, if endowed with

the norm
‖f‖R,α := ‖f‖∞ + [f ]R,α,

where
[f ]R,α := sup

x,v∈H, v 	=0

|f(x + Rv) − f(x)|
‖v‖αH

.

Let us compare the above definitions in the specific case H0 = HR.

Proposition 4.5. If α ∈ (0, 1), then BUCα
HR

(H) = BUCα
R(H).

Proof. Simply letting h = Rv, it immediately follows that (24) coincides with
(23).

In view of the above result, from here on we will use the space BUCα
R(H) to

represent both BUCα
HR

(H) and BUCα
R(H). We state now a useful characteriza-

tion of the space BUCα
R(H) whenever kerR = {0}.

Proposition 4.6. Assume that kerR = {0} and let α ∈ (0, 1) and ϕ ∈
BUC(H). ϕ belongs to BUCα

R(H) if, and only if, the function ϕ ◦ R belongs
to BUCα(H). Furthermore it holds

[ϕ]R,α = [ϕ ◦R]α.

Proof. Let us start by noticing that HR is dense in H, since kerR = {0}. We
begin to prove that ϕ ∈ BUCα

R(H) implies ϕ◦R ∈ BUCα(H). If ϕ ∈ BUCα
R(H),

then for any x, y ∈ H it holds

|(ϕ ◦R)(x) − (ϕ ◦R)(y)| = |ϕ(Rx) − ϕ(Ry)|
= |ϕ(Ry + (Rx−Ry)) − ϕ(Ry)| ≤ [ϕ]R,α‖x− y‖αH .

So ϕ ◦R ∈ BUCα(H) and [ϕ ◦R]α ≤ [ϕ]R,α.
Now let ϕ ◦ R ∈ BUCα(H), x ∈ H and let (xn = Ryn)n∈N ⊆ HR be a

sequence converging to x in H. For any v ∈ H it follows

|ϕ(x + Rv) − ϕ(x)| = lim
n→+∞

|ϕ(Ryn + Rv) − ϕ(Ryn)|

= lim
n→+∞

|(ϕ ◦R)(yn + v) − (ϕ ◦R)(yn)| ≤ [ϕ ◦R]α‖v‖αH .

So ϕ ∈ BUCα
R(H) and [ϕ]R,α ≤ [ϕ ◦R]α.
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Now we introduce the notion of R-Lipschitz function.

Definition 4.7. We say that ϕ : H → R is R-Lipschitz, respectively if there
exists LR > 0 such that for any x, v ∈ H it holds

|ϕ(x + Rv) − ϕ(x)| ≤ LR‖v‖H . (25)

The infimum of all the possible constants LR appearing in (25) is called R-
Lipschitz constant constant of ϕ.

Definition 4.8. We denote by Lipb,R(H) the subspace of BUC(H) of the R-
Lipschitz function.

Lipb,R(H) is a Banach space, if endowed with the norm

‖f‖Lipb,R(H) := ‖f‖∞ + [f ]R,

where
[f ]R := sup

x,v∈H, v 	=0

|f(x + Rv) − f(x)|
‖v‖H

.

It easy to see that (25) is equivalent to (3). Hence by Proposition 2.6 and
Theorem 2.19, we deduce that BUC1

R(H) ⊆ Lipb,R(H).

4.2. Lasry–Lions type approximations

We recall the classical Lasry–Lions approximating procedure introduced in [65].

Theorem 4.9. Let f ∈ BUC(H) and t > 0; we define the function

S(t)f(x) := sup
z∈H

{
inf
y∈H

{
f(x + z − y) + 1

2t‖y‖
2
H

}
− 1

t
‖z‖2

H

}
, x ∈ H.

Then {S(t)f}t≥0 ⊆ BUC1(H) and for any x ∈ H it holds

lim
t→0+

|S(t)f(x) − f(x)| = 0.

We now recall a modification of the Lasry–Lions approximating procedure
presented in [28] (if kerR = {0}): given f ∈ BUC(H), t > 0 and x ∈ H one
defines

SR(t)f(x) := sup
w∈H

{
inf
v∈H

{
f(v) + 1

2t‖R
−1(w − v)‖2

H

}
− 1

t
‖R−1(w − x)‖2

H

}
,

(26)

with the convention that ‖R−1y‖ = +∞ if y /∈ R(H). We will consider a slight
modification of (26) obtained via a change of variables

SR(t)f(x) := sup
h∈HR

{
inf

k∈HR

{
f(x + k − h) + 1

2t‖k‖
2
HR

}
− 1

t
‖h‖2

HR

}
. (27)
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Proposition 4.10. For every f ∈ BUC(H) and t > 0, the mapping x 
→
SR(t)f(x) belongs to BUC(H).

Proof. Fix t > 0. We prove that SR(t)f ∈ BUC(H). Since f is uniformly con-
tinuous we know that for every η > 0 there exists δ := δ(η) > 0 such that for
every x, y ∈ H with 0 < |x− y| < δ it holds |f(x) − f(y)| < η. Let x, y ∈ H be
such that 0 < |x − y| < δ, then for every σ > 0 there exist hσ, kσ ∈ HR such
that

SR(t)f(x) − SR(t)f(y)

≤ inf
k∈HR

{
f(x + hσ − k) + 1

2ε‖k‖
2
R

}
− 1

ε
‖hσ‖2

R + σ

− inf
k∈HR

{
f(y + hσ − k) + 1

2ε‖k‖
2
R

}
+ 1

ε
‖hσ‖2

R

≤ f(x + hσ − kσ) + 1
2ε‖kσ‖

2
R − f(y + hσ − kσ) − 1

2ε‖kσ‖
2
R + 2σ

≤ η + 2σ.

Using similar arguments we get that SR(t)f(x) − SR(t)f(y) ≥ −η − 2σ. So
SR(t)f is uniformly continuous.

The following proposition summarize some of the properties of {SR(t)f}t≥0
that we will use throughout this section.

Proposition 4.11. Let f ∈ BUCα
R(H), for some α ∈ (0, 1). Let {SR(t)f}t≥0

be the family of functions introduced in (27). There exists cα > 0 such that for
every t > 0 and x ∈ H it holds

‖SR(t)f‖∞ ≤ ‖f‖∞; (28)

0 ≤ f(x) − SR(t)f(x) ≤ cα[f ]2/(2−α)
R,α tα/(2−α); (29)

[SR(t)f ]R ≤ 2
(
2cα[f ]2/(2−α)

R,α

)1/2
t(α−1)/(2−α). (30)

In particular the mapping x 
→ SR(t)f(x) belongs to Lipb(H), for every t > 0.

Proof. We start by proving (28).

SR(t)f(x) = sup
h∈HR

{
inf

k∈HR

{
f(x + h− k) + 1

2t‖k‖
2
HR

}
− 1

t
‖h‖2

HR

}

≤ sup
h∈HR

{
f(x) + 1

2t‖h‖
2
HR

− 1
t
‖h‖2

HR

}
≤ f(x) ≤ ‖f‖∞. (31)

In a similar way

SR(t)f(x) = sup
h∈HR

{
inf

k∈HR

{
f(x + h− k) + 1

2t‖k‖
2
HR

}
− 1

t
‖h‖2

HR

}

≥ inf
k∈HR

{
f(x− k) + 1

2t‖k‖
2
HR

}
≥ −‖f‖∞. (32)
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By (31) and (32) we get (28).
Let us now prove (29). By (27), for every η > 0 there exists kη ∈ HR such

that

0 ≤ f(x) − SR(t)f(x) ≤ f(x) − inf
k∈HR

{
f(x− k) + 1

2t‖k‖
2
HR

}

≤ f(x) − f(x− kη) −
1
2t‖kη‖

2
HR

+ η

≤ [f ]R,α‖kη‖αHR
− 1

2t‖kη‖
2
HR

+ η. (33)

From the above inequality we get the estimate ‖kη‖2
HR

≤ 2t[f ]R,α‖kη‖αHR
+2tη.

The Young inequality yields, for every c > 0,

‖kη‖2
HR

≤ α

2 c
2/α‖kη‖2

HR
+ 2 − α

2
1

c2/(2−α) (2t[f ]R,α)2/(2−α) + 2tη.

Now taking c = α−α/2 we get

‖kη‖2
HR

≤ (2 − α)αα/(2−α)22/(2−α)[f ]2/(2−α)
R,α t2/(2−α) + 4tη. (34)

Combining (33) and (34) we obtain

0 ≤ f(x) − SR(t)f(x)

≤ [f ]R,α

(
(2 − α)αα/(2−α)22/(2−α)[f ]2/(2−α)

R,α t2/(2−α) + 4tη
)α/2 + η.

Since the above estimate holds for every η > 0, by choosing η arbitrarily small,
we get (29).

We conclude by proving (30). First notice that by (27) for every σ > 0 there
exists hσ ∈ HR such that

SR(t)f(x) ≤ inf
k∈HR

{
f(x + hσ − k) + 1

2t‖k‖
2
HR

}
− 1

t
‖hσ‖2

HR
+ σ.

A straightforward calculation gives

1
t
‖hσ‖2

HR
≤ f(x) − SR(t)f(x) + σ + 1

2t‖hσ‖2
HR

.

Thus from (29) we obtain

‖hσ‖2
HR

≤ 2cα[f ]2/(2−α)
R,α t2/(2−α) + 2tσ. (35)

By (35) we get

SR(t)f(x + h) − SR(t)f(x)

≤ inf
k∈HR

{
f(x + h + hσ − k) + 1

2t‖k‖
2
HR

}
− 1

t
‖hσ‖2

HR
+ σ
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− inf
k∈HR

{
f(x + h + hσ − k) + 1

2t‖k‖
2
HR

}
+ 1

t
‖h + hσ‖2

HR

= 1
t
‖h + hσ‖2

HR
− 1

t
‖hσ‖2

HR
+ σ = 1

t
‖h‖2

HR
+ 2

t
〈h, hσ〉HR

+ σ

≤ 1
t
‖h‖2

HR
+ 2

t
‖h‖HR

(2cα[f ]2/(2−α)
R,α t2/(2−α) + 2tσ)1/2 + σ.

Since the above inequalities hold for every σ > 0 taking the infimum we get

SR(t)f(x + h) − SR(t)f(x) ≤ 1
t
‖h‖2

HR
+ 2‖h‖HR

(2cα[f ]2/(2−α)
R,α )1/2t(α−1)/(2−α).

In a similar way we get

SR(t)f(x + h) − SR(t)f(x)

≥ −1
t
‖h‖2

HR
− 2‖h‖HR

(2cα[f ]2/(2−α)
R,α )1/2t(α−1)/(2−α).

and so

|SR(t)f(x + h) − SR(t)f(x)|

≤ 1
t
‖h‖2

HR
+ 2‖h‖HR

(2cα[f ]2/(2−α)
R,α )1/2t(α−1)/(2−α). (36)

By (36), the mapping x 
→ SR(t)f(x) verifies (25) for every h ∈ HR such that
‖h‖HR

≤ 1, instead, since SR(t)f , if ‖h‖HR
> 1 then

|SR(t)f(x + h) − SR(t)f(x)| ≤ 2‖SR(t)f‖∞ ≤ 2‖SR(t)f‖∞‖h‖HR
,

so the proof is concluded.

4.3. An interpolation result

We have now all the ingredients to prove an interpolation result for the space
BUCα

R(H). We shall use the K method for real interpolation spaces (see [67, 99]).
Let K1 and K2 be two Banach spaces, with norms ‖·‖K1

and ‖·‖K2
, respectively.

If K2 ⊆ K1 with a continuous embedding, then for every r > 0 and x ∈ K1 we
define

K(r, x) := inf {‖a‖K1 + r‖b‖K2 |x = a + b, a ∈ K1, b ∈ K2}. (37)

For any ϑ ∈ (0, 1), we set

‖x‖(K1,K2)ϑ,∞ := sup
r>0

r−ϑK(t, x); (38)

(K1,K2)ϑ,∞ := {x ∈ K1 | ‖x‖(K1,K2)ϑ,∞ < +∞}.

It is standard to show that (K1,K2)ϑ,∞ endowed with the norm ‖·‖(K1,K2)ϑ,∞
is a

Banach space. The following result can be found in [29] for the case R = IdH and
a similar result can be found in [18], where the space Lipb,R(H) is substituted
by another space.
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Theorem 4.12. Let α ∈ (0, 1). Up to an equivalent renorming, it holds

BUCα
R(H) = (BUC(H),Lipb,R(H))α,∞.

Proof. We start by showing that (BUC(H),Lipb,R(H))α,∞ ⊆ BUCα
R(H). For

any element ϕ ∈ (BUC(H),Lipb,R(H))α,∞ and any r, t > 0 there exist fr,t ∈
BUC(H) and gr,t ∈ Lipb,R(H) such that

ϕ(x) = fr,t(x) + gr,t(x), x ∈ H;

and

‖fr,t‖∞ + r‖gr,t‖Lipb,R(H) ≤ rα‖ϕ‖(BUC(H),Lipb,R(H))α,∞ + t. (39)

By (39), for any x, v ∈ H it holds

|ϕ(x + Rv) − ϕ(x)| ≤ 2‖fr,t‖∞ + |gr,t(x + Rv) − gr,t(x)|
≤ 2‖fr,t‖∞ + [gr,t]R‖v‖H
≤ 2rα‖ϕ‖(BUC(H),Lipb,R(H))α,∞

+ 2t + rα−1‖ϕ‖(BUC(H),Lipb,R(H))α,∞‖v‖H + t

r
‖v‖H .

Now letting t tend to zero and setting r = ‖v‖H we get

|ϕ(x + h) − ϕ(x)| ≤ 3‖ϕ‖(BUC(H),Lipb,R(H))α,∞‖v‖αH .

This proves the continuous embedding (BUC(H),Lipb,R(H))α,∞ ⊆ BUCα
R(H).

To show that BUCα
R(H) ⊆ (BUC(H),Lipb,R(H))α,∞, let ϕ ∈ BUCα

R(H). For
every t > 0 let SR(t)ϕ be the function defined in (27). For r ∈ (0, 1) we consider
the functions fr : H → R and gr : H → R defined by

fr(x) := ϕ(x) − SR(r2−α)ϕ(x), gr(x) := SR(r2−α)ϕ(x),

so that ϕ = fr + gr with fr ∈ BUCR(H) and gr ∈ Lipb,R(H) in virtue of
Proposition 4.10. By (29) we get that there exists a constant k1 = k1(α,ϕ) >
0 such that ‖fr‖∞ ≤ k1r

α. By (28) and (30), there exist a constant k2 =
k2(α,ϕ) > 0 such that

‖gr‖Lipb,R(H) = ‖SR(r2−α)ϕ‖∞ + [SR(r2−α)ϕ]R ≤ k2r
α−1.

Thus, bearing in mind (37), for every r ∈ (0, 1) we get K(r, ϕ) ≤ (k1 + k2)rα.
Notice that the previous estimate is trivial if r > 1. Keeping in mind (38) we
get the thesis.

Remark 4.13. In the case kerR = {0} the results of Subsection 4.2 were already
proved in [18] and [28]. Here we proved that the condition kerR = {0} is not
necessary to ensure that the Lasry–Lions approximants defined in (27) have
sufficient regularity to prove the interpolation result stated in Theorem 4.12
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Appendix A: Malliavin calculus in an abstract framework

Malliavin calculus is named after P. Malliavin who first introduced this tool
with his seminal work [72] (see also [73]). There he laid the foundations of what
is now known as the “Malliavin calculus”, an infinite-dimensional differential
calculus in a Gaussian framework, and used it to give a probabilistic proof
of Hörmander theorem. This new calculus proved to be extremely successful
and soon a number of authors studied variants and simplifications, see e.g.
[20, 21, 54, 62, 63, 64, 86, 96, 97, 98, 102, 104].

The general context consists of a probability space (Ω,F ,P) and a Gaussian
separable Hilbert space H1, that is a closed subspace of L2(Ω,F ,P) consist-
ing of centered Gaussian random variables. The space H1 (also known as the
first Wiener Chaos) induces an orthogonal decomposition, known as the Wiener
Chaos Decomposition, of the corresponding L2(Ω, σ(H1),P) space of square in-
tegrable random variables that are measurable with respect to the σ-field gen-
erated by H1. To characterize elements in H1 it is useful to fix a separable
Hilbert space H and consider a unitary operator between the two spaces. In
this abstract setting one can introduce the notion of Malliavin derivative, that
is the derivative Dϕ of a square integrable random variable ϕ : Ω → R, mea-
surable with respect to σ(H1). Heuristically one differentiates ϕ with respect to
ω ∈ Ω.

Usually Ω is a linear topological space and the Malliavin derivative operator
can be introduced as a differential operator (see Section 3). Nevertheless, as
done for instance in [86], it is possible to introduce a notion of Malliavin deriva-
tive without assuming any topological or linear structure on the probability
space Ω. This approach proves to be particularly flexible and useful in several
applications; moreover, it is general enough to admit as special cases the defini-
tions of Malliavin derivative given in probability spaces with a linear topological
structure, as explained in details in Section 3. It is worth mentioning that, in
quantum probability theory, there are connections with Malliavin calculus as
well. For example, in the general framework of Fock spaces, the so-called anni-
hilation operator can be interpreted as a Malliavin derivative, as discussed in
[80]. Moreover, for a definition of the Malliavin derivative on non-commutative
spaces, we refer to [52].

We point out here that it would be more accurate to speak of a (choice of)
Malliavin derivative rather than the Malliavin derivative. In fact, given (Ω,F ,P)
and the Gaussian Hilbert spaces H1, one can construct infinitely many different
Malliavin derivative operators. On the other hand, it turns out that all these
Malliavin derivatives have the same domain when the Gaussian Hilbert space
H1 is the same. This is showed in details in a concrete situation in Section 3:
there we provide two different (among the infinitely many) examples of Malliavin
derivatives on a Wiener space having the same domain.

In this Section we briefly recall the construction of the Malliavin derivative
in the abstract framework described above and collect some results. We mainly
refer to [59, 84, 86, 100].
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A.1. Gaussian Hilbert spaces

Let (Ω,F ,P) be a probability space, we denote by E the expectation under P. Let
H be a real separable Hilbert space with inner product 〈·, ·〉H and corresponding
norm ‖·‖H.

Definition A.1. A Gaussian linear space is a real linear space of random vari-
ables, defined on (Ω,F ,P), such that each variable in the space is centered
and Gaussian. A Gaussian Hilbert space is a Gaussian linear space which is
complete, i.e. a closed subspace of L2(Ω,F ,P) consisting of centered Gaussian
random variables. We denote it by H1.

We recall that a linear isometry between Hilbert spaces is a linear map that
preserves the inner product. Linear isometries that are onto are called unitary
operators.

Proposition A.2. Let H be a Hilbert space. There exists a Gaussian Hilbert
space H1 (with the same dimension of H) and a unitary operator h 
→ W (h) of
H onto H1. That is, H1 = {W (h) |h ∈ H} and for any h, k ∈ H,

E [W (h)W (k)] = 〈h, k〉H.

Proof. Let {ei}i∈I be an orthonormal basis of H. Let {ξi}i∈I be a collection
of independent standard Gaussian random variables, defined on some proba-
bility space (Ω,F ,P). Every element h ∈ H can be uniquely written as h =∑

i∈I〈h, ei〉Hei. We introduce the mapping H � h 
→ W (h) :=
∑

i∈I〈h, ei〉Hξi.
By construction, the random variable W (h) is Gaussian. Moreover, since the ξi
are independent, centered and have unit variance, W (h) is centered and, for any
h, k ∈ H, it holds

E [W (h)W (k)] = E

⎡
⎣∑

i∈I

〈h, ei〉Hξi
∑
j∈I

〈k, ej〉Hξj

⎤
⎦

=
∑
i∈I

〈h, ei〉H〈k, ei〉H = 〈h, k〉H.

This entails that W is a unitary operator of H onto the Gaussian Hilbert space
H1 := {W (h) |h ∈ H}, and concludes the proof.

In [86] the unitary operator W , introduced in Proposition A.2, is called isonor-
mal Gaussian processes. The role of the space H and the operator W , in the
above result, is to suitable index the elements in H1. We point out that, fixed a
generic Gaussian Hilbert space H1, there are infinitely many possible choices of
real Hilbert spaces H (with the same dimension as H1) and unitary operators
W such that H1 = {W (h) |h ∈ H}. For instance, since H1 is itself a real Hilbert
space (with respect to the usual L2(Ω,F ,P) inner product), it follows that H1
can be represented by choosing H equal to H1 itself and W equal to the identity
operator. In general, given an Hilbert space H, there are infinitely many differ-
ent ways of choosing an orthonormal basis {ei}i∈I in H and an orthonormal
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basis {ξi}i∈I in H1, each choice giving a different unitary operator W of the
form W (h) =

∑
i∈I〈h, ei〉Hξi. The subtlety in the use of Proposition A.2, is that

one has to select an Hilbert space H and a unitary operator W that are well
adapted to the specific problem at hand.

A.2. Wiener Chaos Decomposition

Every Gaussian Hilbert space induces an orthogonal decomposition, known as
the Wiener Chaos Decomposition, of the corresponding L2(Ω, σ(H1),P) space
of square integrable random variables that are measurable with respect to the
σ-field generated by the Gaussian Hilbert space, that we denote by σ(H1). For
n ≥ 0 we introduce the linear space

Pn(H1) := {p(ξ1, . . . , ξm) | p is a polynomial of degrees ≤ n,

ξ1, . . . , ξm ∈ H1, m ∈ N}.

Let Pn(H1) be the closure of Pn(H1) in L2(Ω, σ(H1),P). For n ≥ 0 the space

Hn := Pn(H1) � Pn−1(H1) = Pn(H1) ∩ Pn−1(H1)
⊥

is called n-th Wiener Chaos (associated to H1). We remark that H0 = R. The
following result is usually called Wiener chaos decomposition, its proof can be
found in [59, Theorem 2.6].

Theorem A.3. The spaces Hn, n ≥ 0, are mutually orthogonal, closed sub-
spaces of L2(Ω,F ,P) and

L2(Ω, σ(H1),P) =
∞⊕

n=0
Hn.

For n ≥ 0 let us denote by Jn the orthogonal projection of L2(Ω, σ(H1),P)
onto Hn; in particular, J0(X) = E [X]. Theorem A.3 yields that every random
variable X ∈ L2(Ω, σ(H1),P) admits the unique expansion

X =
+∞∑
n=0

Jn(X) = E [X] +
+∞∑
n=1

Jn(X),

with the series converging in L2(Ω, σ(H1),P).

A.3. Malliavin derivative operators and Sobolev spaces

From here on we fix a probability space (Ω,F ,P) and an infinite dimensional
separable Gaussian Hilbert space H1. We assume F to be the σ-field generated
by H1. Moreover, according to Proposition A.2, we fix a separable Hilbert space
H and a unitary operator

W : H → H1 ⊆ L2(Ω, σ(H1),P),
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so that we characterize
H1 = {W (h) |h ∈ H},

and every W (h) ∈ H1 is a centered Gaussian random variable with variance

‖W (h)‖2
L2(Ω,σ(H1),P) = ‖h‖2

H.

Let us denote by S(H1) the set of smooth random variables, i.e. random variables
of the form

F = f(W (h1), . . . ,W (hm)) (40)
for some m ≥ 1 and h1, . . . , hm ∈ H, where f is a C∞(Rm) function such that
f and all its partial derivatives have at most polynomial growth.

Definition A.4. The derivative of a random variable F ∈ S(H1) of the form
(40) is the H-valued random variable

DF =
m∑
i=1

∂f

∂xi
(W (h1), . . . ,W (hm))hi.

The space S(H1) turns out to be dense Lp(Ω, σ(H1),P) for any p ∈ [1,+∞),
see e.g. [84, Lemma 3.2.1]. This, along with the following integration by parts
formula (see e.g. [86, Lemma 1.2.1]):

E [〈DF, h〉H] = E [W (h)F ] , h ∈ H, F ∈ S(H1), (41)

is the crucial ingredient to extend the class of differential random variables to a
larger class. For a proof of the following proposition see [84, Proposition 2.3.4].

Proposition A.5. For any p ∈ [1,+∞) the operator

D : S(H1) ⊆ Lp(Ω, σ(H1),P) → Lp(Ω, σ(H1),P;H),

introduced in Definition A.4, is closable as an operator from Lp(Ω, σ(H1),P) to
Lp(Ω, σ(H1),P;H).

For any p ∈ [1,+∞) we denote with D1,p the closure of S(H1) with respect
to the norm

‖F‖p
D1,p = E [|F |p] + E [‖DF‖pH] . (42)

According to Proposition A.5 the operator D admits a closed extension (still
denoted by D) with domain D1,p. We call this extension Malliavin derivative
and we call D1,p the domain of D in Lp(Ω, σ(H1),P). For any p ∈ [1,+∞) the
space D1,p endowed with the norm (42) is a Banach space, for p = 2 the space
D1,2 is a Hilbert space with the inner product

〈F,G〉D1,2 = E [FG] + E [〈DF,DG〉H] .

It is not difficult to prove that the integration by parts formula (41) extends to
elements in D1,2, that is

E [〈DF, h〉H] = E [W (h)F ] , h ∈ H, F ∈ D1,2. (43)

The space D1,2 is characterized in the following proposition, in terms of the
Wiener chaos expansion (see [86, Proposition 1.2.2]).
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Proposition A.6. Let F ∈ L2(Ω, σ(H1),P) with Wiener chaos expansion F =∑∞
n=0 Jn(F ). Then F ∈ D1,2 if, and only if,

E
[
‖DF‖2

H
]

=
∞∑

n=1
n‖Jn(F )‖2

L2(Ω) < ∞.

Let us emphasize that, once we have fixed the reference probability space
(Ω,F ,P) and the Gaussian Hilbert spaces H1, different (infinitely many) choices
of the separable Hilbert space H and the unitary operator W lead to different
(infinitely many!) Malliavin derivative operators. On the other hand, in view
of Proposition A.6, all these Malliavin derivatives have the same domain D1,2

when the Gaussian Hilbert space H1 is the same. In fact the characterization
of D1,2 is given in terms of the Wiener chaos decomposition that relies only on
the Gaussian Hilbert space H1 (and not on the choices of H and W ).
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