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Abstract: Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared
phenotype but varying prognosis and response to current treatments. Based on their morphologi-
cal features and rate of proliferation, NENs can be classified into two main groups with a distinct
clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or
carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroen-
docrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic
tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the
main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in
combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs.
The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which
interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which
often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN),
have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular
pathways involved in the initiation and progression of NENs can be crucial in predicting the response
to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as
predictors of therapeutic response to platinum-based chemotherapy in NENs.

Keywords: neuroendocrine neoplasms; well-differentiated neuroendocrine tumors; poorly differentiated
neuroendocrine carcinomas; platinum-based chemotherapy; response to platinum chemotherapy;
molecular pathways mutations; DNA repair pathways mutations

1. Introduction

Neuroendocrine neoplasms (NENs) are a diverse group of malignancies that originate
from neuroendocrine (NE) cells, which are characterized by both “neuro” and “endocrine”
properties. These cells release hormones into the bloodstream in response to nervous
system stimulation [1]. The classification of neuroendocrine neoplasms is based on the
primary site of origin, proliferation index (Ki-67), and symptoms caused by the production
of biologically active amines (functioning and non-functioning NENs) [2].

Since NE cells are found throughout the body, neuroendocrine tumors can arise in
various tissues, including the skin, nervous system, respiratory tract, gastrointestinal tract,
larynx, thyroid, breast, and urogenital system. The neuroendocrine system includes en-
docrine glands (such as the parathyroid, pituitary, and adrenal glands), as well as endocrine
islet tissue embedded within glandular tissue (such as the thyroid or pancreas) and scat-
tered cells in the exocrine parenchyma (such as the endocrine cells of the digestive and
respiratory tracts in the diffuse endocrine system) [1,3]. The most common primary tumor
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sites for neuroendocrine neoplasms are the gastroenteropancreatic (GEP) and bronchopul-
monary (BP) tracts, although they can develop in any organ or system in the human body,
with similar features due to their neuroendocrine nature (Figure 1).
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ble or metastatic disease. 
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Figure 1. Classification and treatment options for neuroendocrine neoplasms (NENs). Well-
differentiated neuroendocrine tumors (NETs) are categorized as G1, G2 and G3, while poorly differ-
entiated neuroendocrine carcinomas (NECs) are classified as G3. Resectable tumors are best treated
with surgery, while systemic therapeutic options such as somatostatin analogs (SSAs, e.g., lanreotide),
mTOR inhibitors (e.g., everolimus), tyrosine kinase inhibitors (TKIs, e.g., sunitinib, vandetanib,
cabozantinib), immunotherapy (e.g., avelumab, pembrolizumab), chemotherapy (e.g., streptozotocin,
etoposide with cisplatin/carboplatin, belzutifan), and peptide receptor radionuclide therapy (PRRT)
with 177Lu-DOTATATE (177Lutetium-[DOTA(0),Tyr(3)]octreotate) are available for inoperable or
metastatic disease.

Neuroendocrine neoplasms (NENs) can also be classified based on the specific hor-
mones they secrete [1,4–8]. In fact, they can oversecrete bioactive substances that regulate
certain body functions, which results in a clinical syndrome known as carcinoid syndrome.
Tumors associated with this syndrome are currently defined as “carcinoids”, which are
well established and distinct clinical entities [9]. The degree of biological aggressiveness
and response to therapies of NENs [7,10] is influenced by their secretory properties and
syndromes of uncontrolled hormone hypersecretion (such as Cushing, Verner–Morrison,
Zollinger–Ellison, and other eponymic syndromes). Therefore, the challenging manage-
ment of NENs is due to their heterogeneous clinical presentations and varying degrees of
aggressiveness [11].

In order to standardize the nomenclature of NENs, the 2015 World Health Organization
(WHO) proposed a universal definition system based on mitotic count and/or Ki-67 index
and/or the presence of necrosis, classifying NENs into three tiers (grades 1–3). Based on
this concept, NENs are divided into well-differentiated neuroendocrine tumors (NETs)
(G1, G2 and G3 grade) and poorly differentiated neuroendocrine carcinomas (NECs),
which are high-grade neoplasms (G3) (Figure 1) [7,10]. NETs and NECs have different
risk factors, hereditary predispositions, relationships to non-NEN, and genetic factors
(for example, NECs are most frequently characterized by p53 and Rb gene alterations
compared to NETs) [7,10]. Furthermore, NECs should be distinguished from carcinoids:
both are composed of chromogranin-positive neuroendocrine cells but, while carcinoids
are low-grade malignancies, NECs are highly aggressive malignancies [12]. These types of
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neoplasms can also be composed of different combinations of NENs (NET or NEC) and
non-NENs, which are referred to as mixed NENs/non-NENs (MiNENs) [13].

Neuroendocrine neoplasms can also be classified by identifying conventional biomark-
ers of NE lineage and differentiation, which are useful in distinguishing G3 NETs from
NECs, epithelial from non-epithelial NENs, and so on. Some examples of biochemical mark-
ers for NENs include chromogranin A (CgA), pancreatic polypeptide (PP), human chori-
onic gonadotropin (HCG), alpha-fetoprotein (AFP), neuron specific enolase (NSE) [10,14],
insulinoma-associated protein-1 (INSM-1), synaptophysin (SYN), and somatostatin recep-
tors (SSTRs). Transcription factors (e.g., thyroid transcription factor-1, TTF-1; Islet 1, Isl-1;
paired box 8, PAX 8), enzymes, keratins, and hormones can also be useful in functional
and structural correlation. For example, insulinomas, glucagonomas, gastrinomas, somato-
statinomas, and vipomas are named after the hormones they produce (insulin, glucagon,
gastrin, somatostatin, and vasoactive intestinal peptide (VIP), respectively) [7,14–16].

Generally, NENs are sporadic, but they may also arise due to hereditary syndromes
that predispose individuals to the onset of neuroendocrine neoplasms, such as multiple
endocrine neoplasia type 1 and 2 (MEN-1 and MEN-2 hereditary cancer syndromes),
von Hippel–Lindau (VHL) syndrome, neurofibromatosis, and tuberous sclerosis [1,17].
NENs can also be associated with mutations in different pathway genes, as rearranged
during transfection (RET) proto-oncogene, mTOR (mammalian target of rapamycin), and
VEGF (vascular endothelial growth factor)/VEGF-receptor pathway genes [2,18]. The
PI3K-Akt-mTOR (phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin)
pathway plays an important role in NENs. In fact, mTOR inhibitors (rapamycin analogs)
have been approved by the FDA (Food and Drug Administration) for the treatment of
advanced pancreatic NETs [19]. The treatment of NENs generally involves a variety of
therapeutic approaches (surgery, radiotherapy, immunotherapy, molecular-targeted agents,
and chemotherapy), depending on the tumor grade and differentiation [7,20] (Figure 1).

Currently, platinum-based chemotherapy is considered a first-line palliative treatment
for various types of tumors, including NENs [21–23]. For poorly differentiated NECs, such
as gastroenteropancreatic neuroendocrine cancers (GEP-NECs) and bronchopulmonary
neuroendocrine cancers (BP-NECs), the most effective therapy involves the use of cisplatin
or carboplatin in combination with etoposide (Figure 2) [21]. Despite the widespread use
of platinum agents in various tumor types, their mechanism of action in NE tumor cells
remains unclear.

This review stems from the need to better understand the predictive and prognostic
features of NENs. These features remain uncertain, making it crucial to identify the major
molecular genetic alterations in each type of tumor. Establishing correlations between
specific genetic abnormalities involved in tumorigenesis and metastasis could reveal po-
tential targets for cancer therapy. Due to the heterogeneity of NENs, there is a significant
need to re-evaluate chemotherapeutic approaches, focusing on combined and personalized
therapies that offer greater selectivity and effectiveness. The review incorporates recent
and relevant studies in the field, providing a comprehensive analysis of current knowledge
and developments in NENs and responses to platinum-based chemotherapy. This analysis
considers data and research findings up to the year 2024 and discusses the role of altered
molecular pathways in NENs that contribute to sensitivity to platinum drugs. These ge-
nomic alterations are typically involved in tumor initiation and progression and serve as
biomarkers for predicting therapeutic outcomes. Therefore, the purpose of this work is to
identify the main affected signaling pathways in NENs and their relationship to response
to platinum chemotherapy.
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Figure 2. Chemical structures of cisplatin, carboplatin and etoposide. Cisplatin or carboplatin (a), in
combination with etoposide (b), are the cornerstone of chemotherapy treatment for various types
of cancers, including poorly differentiated or undifferentiated, high-grade neuroendocrine tumors
(NETs), small-cell lung cancer (SCLC), and large-cell neuroendocrine carcinoma (LCNEC).

1.1. Most Common Neuroendocrine Neoplasms
1.1.1. Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs)

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) affect organs of the
gastrointestinal tract. Approximately 30% of GEP-NENs are hormonally active and can
produce and secrete peptides and neuroamines causing specific clinical syndromes. Poorly
differentiated neuroendocrine carcinomas (NECs) account for 10–20% of malignant GEP-
NENs and are primarily found in the esophagus, pancreas, ampulla of Vater, large bowel,
and rarely in the ileum (Figure 1) [24].

Their clinical features mainly depend on the primary site of the tumor and its function-
ality [25]. Based on the primary tumor site, GEP-NENs are divided into two sub-categories:
carcinoid tumors of the luminal gastrointestinal (GI) tract and pancreatic (P) neoplasms [1,6].
Among GEP neoplasms, pancreatic NETs (P-NETs) account for approximately 1% of pan-
creatic cancers. An estimated 40–91% of P-NETs are non-functioning, while the others
manifest evident hormonal symptoms (e.g., insulinoma, gastrinoma, glucagonoma, vipoma,
somatostatinoma) [26,27]. GI-NETs and P-NETs may have similar histological features
but variable clinical behavior and biology. P-NETs have a relatively worse prognosis than
GI-NETs and respond differently to therapies. Several agents have shown higher response
rates in P-NETs compared to GI-NETs [28–30].

1.1.2. Bronchopulmonary Neuroendocrine Neoplasms (BP-NENs)

Similar to GEP-NENs, bronchopulmonary neuroendocrine tumors (BP-NENs) are clas-
sified based on morphology and/or mitotic count. The World Health Organization (WHO)
classification (2015) groups both, lung and thymic neuroendocrine tumors (NETs) (referred
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to as neoplasms in the digestive WHO classification) into one category, subdivided into two
main groups: (a) BP-NETs, which include low-grade typical carcinoid (TC) (0–1 mitoses
per 2 mm2) and intermediate-grade atypical carcinoid (AC) (2–10 mitoses per 2 mm2), and
(b) BP-NECs, which consist of large-cell neuroendocrine carcinoma (LCNEC) and small-cell
lung carcinoma (SCLC) (≥11 mitoses per 2 mm2) (Figure 1) [6,31].

The accurate identification and differentiation of AC from TC or NECs (LCNEC and
SCLC) is crucial for determining treatment options and prognosis [32]. Currently, the
standard treatment for patients with SCLC involves platinum-based chemotherapy com-
bined with an immune checkpoint inhibitor (ICI) such as atezolizumab or durvalumab [29]
(Figure 1). The histological features of LCNEC can overlap with non-small-cell lung cancer
(NSCLC) and, in some cases, SCLC, making a histological diagnosis challenging and requir-
ing the establishment of an optimal systemic treatment. On the other hand, chemotherapy
for SCLC is considered the most appropriate treatment (Figure 1) [33,34].

2. Approved Therapeutic Options for Neuroendocrine Neoplasms

As previously discussed, neuroendocrine neoplasms (NENs) encompass a wide range
of tumors with varying biological and clinical features. As a result, there has been a
noticeable expansion in therapeutic options for NENs in recent years, particularly for well-
differentiated NETs [6]. NENs can be differentiated based on laboratory tests (secretory
vs. non-secretory), clinical symptoms (functioning vs. non-functioning), morphological
features (growth patterns of cancer cells, mitotic counts, Ki-67 index, necrosis, expression
of somatostatin receptors, SSTRs), and the degree of cellular differentiation. Due to the
significant differences in clinical behavior between G1 and G2 NETs compared to G3 NETs,
treatment approaches vary between these two malignancies [35]. Additionally, G3 NETs
have distinct biological features compared to poorly differentiated G3 neuroendocrine
carcinomas (NECs) [28,36–38].

The identification of altered pathways involved in the pathogenesis of NENs has
led to the development of specific therapies [39]. Surgery is the preferred option for
resectable tumors, while for inoperable or metastatic disease, therapeutic options include
radiation therapy, somatostatin analogs (SSAs), mTOR inhibitors, receptor tyrosine kinase
receptors inhibitors (TKIs), chemotherapy, peptide receptor radionuclide therapy (PRRT),
and targeted therapy (Figure 1) [40,41].

In recent years, molecular-targeted therapies have emerged as a treatment approach
for advanced neuroendocrine tumors (NETs) [42]. Among these therapies, somatostatin
analogs (SSAs) have been shown to delay tumor progression and decrease hormone over-
production by interacting with somatostatin receptors (SSTRs), which are often over-
expressed in NETs [43]. Somatostatin (SST) plays a role in regulating cell growth and
hormone secretion, making SSTRs a potential target for treating neuroendocrine neoplasms
(NENs) [43]. The first synthetic SSA to be approved by the FDA was octreotide, an octapep-
tide available in both conventional and long-acting release (LAR) injections (approved in
1988 and 1998, respectively). Lanreotide was initially approved for treating acromegaly
but has since been approved for treating unresectable, well- or moderately differentiated,
locally advanced, or metastatic gastroenteropancreatic (GEP) NETs (in 2014) and carcinoid
syndrome (in 2017).

Another type of targeted therapy is represented by everolimus and sunitinib, which
were approved by the FDA in 2011. Everolimus is an mTOR inhibitor that plays a role in the
tumorigenesis and progression of NENs, while sunitinib is a multi-targeted tyrosine kinase
inhibitor (TKI) that blocks the activation of VEGFRs 1–3 (vascular endothelial growth factor
receptor 1–3), PDGFR-α and -β (platelet-derived growth factors-α and -β), KIT (stem-cell
growth factor receptor), FLT3 (fms-related tyrosine kinase 3), RET and CSF1R (colony-
stimulating factor receptor 1), resulting in antiangiogenic and antitumor activity against
a broad range of neoplasms. The FDA has approved these targeted agents for managing
advanced GEP-NETs: everolimus for both primary gastrointestinal NETs (GI-NETs) and
pancreatic NETs (P-NETs) and sunitinib for primary P-NETs [44–47]. Vandetanib and
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cabozantinib are TKIs currently used to treat patients with unresectable, progressive, and
symptomatic medullary thyroid carcinoma (MTC) [48–50] (Figure 1).

Peptide receptor radionuclide therapy (PRRT) is a treatment option for patients with
progressive somatostatin receptor (SSTR)-positive neuroendocrine tumors (NETs) [43,51].
PRRT involves attaching a radioisotope to a chelating molecule, which is then linked to
a peptide that targets SSTRs on the surface of cancer cells. This allows for the precise
delivery of radiation to the tumor. In the case of advanced NETs, the peptide used can be a
somatostatin analog (SSA) or antagonist that binds to SSTRs. In 2018, the FDA approved
the radiopharmaceutical lutetium (177Lu) for the treatment of patients with SSTR-positive
gastroenteropancreatic NETs (GEP-NETs) (Figure 1) [52].

Immunotherapy is another treatment option for neuroendocrine neoplasms (NENs),
that has achieved significant success in treating small-cell lung cancer (SCLC) and Merkel
cell carcinoma (MCC) [53]. CTLA-4 (cytotoxic T-lymphocyte antigen 4), PD-1 (programmed
death-1) and PD-L1 (programmed death-1 ligand) are involved in cancer cells evading
immune surveillance. Immune checkpoint inhibitors (ICIs) are antibodies that target these
molecules and have proven effective in various cancers, included NENs. Avelumab and
pembrolizumab are the only two FDA-approved ICIs for treating metastatic MCC, a rare
and aggressive neuroendocrine tumor of the skin (Figure 1) [53–55].

Cytotoxic chemotherapy is the standard treatment for patients with poorly differenti-
ated neuroendocrine carcinomas (NECs), but its role in patients with well-differentiated
neuroendocrine tumors (NETs) is not well defined [56]. Streptozotocin (STZ) is an alkylating
agent that was the first drug to show efficacy in NETs.

It was approved in 1982 for treating pancreatic NETs. Subsequent studies have shown
that STZ in combination with 5-fluorouracil (5-FU) and/or doxorubicin is effective for
treating well-differentiated pancreatic NETs (P-NETs) [57–60]. In 2021, the FDA approved
belzutifan, a hypoxia-inducible factor inhibitor (HIF-2α), for certain types of cancers, in-
cluding P-NETs associated with von Hippel-Lindau disease [61]. Recently, the combination
therapy of capecitabine and temozolomide (CAPTEM) showed improved anticancer activity
in metastatic P-NETs [62] (Figure 1).

Among the chemotherapeutic agents mentioned, cisplatin/carboplatin-based ther-
apy is the first-line regimen (Figures 1 and 2). However, not all platinum compounds
have the same activity in neuroendocrine neoplasms [63]. Cisplatin with etoposide-based
therapy appears to be more effective in G3 NET (with Ki-67 > 50%) and metastatic NECs
(Figure 3) [21]. On the other hand, NEC patients with Ki-67 < 55% are less responsive to
platinum-based chemotherapy but have a longer survival than those with a higher Ki-67.

Of the FDA-approved platinum compounds, oxaliplatin has shown significant clini-
cal results in patients with well differentiated NETs, rather than cisplatin or carboplatin.
The most commonly tested oxaliplatin combination regimens in patients with NETs are
fluorouracil plus oxaliplatin (FOLFOX) or capecitabine plus oxaliplatin (CAPOX) [56].
Oxaliplatin has also demonstrated significant anticancer activity in G2 NETs and carci-
noids, but there is currently no universally accepted standard chemotherapy for these
tumors [40,63].

Significant effects have been observed when platinum-based drugs are combined with
molecular-targeted therapy, immunotherapy, or other cytotoxic agents [29,53,64,65]. In
2019, the FDA approved atezolizumab in combination with etoposide and carboplatin [65]
and, in 2020, durvalumab (an IgG1 kappa anti-PD-L1 monoclonal human antibody) in
combination with etoposide and carboplatin/cisplatin as first-line treatments for patients
with extensive-stage (ES) SCLC (ES-SCLC) (Figure 1) [53].
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Figure 3. General accepted mechanism of action of cisplatin/carboplatin etoposide combined therapy
essentially showing the platinum drugs contribution. Cisplatin and carboplatin enter cells through
passive diffusion and various transport proteins, including copper transporters (CTR1–2), organic
cation transporters (OCT1–3), and LRRC8 volume-regulated anion channels (VRACs). Some of these
transporters are associated with the export of platinum drugs and drug resistance, such as P-type
copper-transporting ATPases (ATP7A and ATP7B), multidrug extrusion transporters (MATE 1–3), and
ATP-binding cassette (ABC) transporters (MRP1–2). Once inside the cell, cisplatin and carboplatin
undergo hydrolysis of chloro-ligand(s) and 1,1-cyclobutanedicarboxylate, respectively, resulting
in a positively charged form. This allows the platinum compounds to interact with nucleophilic
molecules within the cell, including DNA, RNA, and proteins, leading to the formation of platinum
adducts. The formation of DNA adducts inhibits the cell cycle and impairs DNA repair, ultimately
causing DNA damage and p53 activation, which induces apoptosis. Additionally, cisplatin and
carboplatin induce intrinsic apoptosis by increasing mitochondrial ROS generation and activating
pro-apoptotic proteins, such as Bax, which promotes the release of cytochrome C (Cyt-C) and the
subsequent activation of caspases. Etoposide is a topoisomerase II inhibitor, which is considered
a major anticancer mechanism of this drug. The combined actions of cisplatin or carboplatin and
etoposide enhance DNA damage and promote cancer cell death.

3. Platinum-Based Chemotherapy

Platinum-based antitumor drugs are a successful class of chemotherapy agents [66–68].
Cisplatin was the first metal-based anticancer drug introduced into clinical use in 1978 for
several types of solid tumors [69]. However, its use as an anticancer drug is limited due to
side effects such as neurotoxicity, nephrotoxicity, hepatotoxicity, and myelosuppression [22].
To overcome the high toxicity and chemoresistance associated with cisplatin-based therapy,
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a very high number of new platinum complexes have been synthesized and tested for
antitumor activity [67,68,70–78]. However, only its analogs carboplatin and oxaliplatin
have been approved by the FDA as chemotherapeutic drugs. Other platinum agents, such
as nedaplatin, lobaplatin, and heptaplatin, have been approved only in Japan, China, and
South Korea, respectively [66–68].

Currently, cisplatin and its derivatives are used to treat lymphomas, lung, colon,
ovary, testicular, bladder, cervical, and other types of cancer, including neuroendocrine
cancers [22,40]. These drugs induce cytotoxic effects by binding to DNA, interfering with
its normal transcription and/or replication (Figure 3) [68,70,72,79]. In order to enhance
and optimize the antitumor activity of cisplatin analogs, new coordination compounds are
under evaluation as alternative platinum drugs. In recent years, platinum-based anticancer
complexes have made significant progress in cancer therapy. New anticancer molecules
have been synthesized or developed by modifying existing platinum drugs and attempting
to mimic the mechanism of action of cisplatin [67,68,70–73,75–77,80–88]. However, no new
platinum complexes have been approved for cancer therapy, neuroendocrine neoplasms
included.

General Mechanism of Action of Cisplatin and Carboplatin

Cisplatin (cis-diamminedichloroplatinum(II)) and carboplatin (cis-diammine(1,1-
cyclobutanedicarboxylato)platinum(II)), in combination with etoposide (Figure 2), rep-
resent the current standard first-line chemotherapy for various types of tumors, including
neuroendocrine cancers. By 1979, pre-clinical data had shown synergistic effects of the
combination of cisplatin and etoposide [89,90].

Platinum-based anticancer drugs can generally enter cells through passive diffusion
and also using various cell membrane transport proteins, such as copper transporter 1 and
2 (CTR1 and CTR2), P-type copper-transporting ATPases (ATP7A and ATP7B), the or-
ganic cation transporter 2 (OCT2), the multidrug extrusion transporter 1 (MATE1), and
LRRC8 volume-regulated anion channels (VRACs) (Figure 3) [91–93]. In the extracellu-
lar matrix, the concentration of chloride ions is higher (~100 mM) than in intracellular
environment (~4 mM). As a result, after entering the cell, cisplatin undergoes an acti-
vation step where chloro-ligands are replaced by water molecules or other molecules
containing sulfhydryl groups. This “aquation” of cisplatin promotes the formation of
mono- and di-aquo species, such as cis-[Pt(NH3)2Cl(OH2)]+, cis-[Pt(NH3)2(OH)(OH2)]+

and cis-[Pt(NH3)2(OH2)2]2+ [83]. Due to the chelation of the leaving ligand, carboplatin
and oxaliplatin are more stable and their activation is allowed by nucleophiles containing
sulfhydryl groups, such as glutathione (GSH), aspartic acid, and other molecules [83,94,95].
The cytotoxicity induced by cisplatin and carboplatin is primarily due to their binding to
DNA, through the formation of mono- and bis-adducts, producing intra- and inter-strand
cross-links with DNA. However, it was estimated that only about 1% of intracellular cis-
platin interacts with nuclear DNA [96]. It has been demonstrated that in the cytoplasm,
platinum drugs interact with other biomolecules, such as cellular proteins, membrane phos-
pholipids, and RNA [96], and induce cytotoxicity through the acidification of the cytoplasm,
ER stress, the inhibition of RNA transcription and translation, the inhibition of important
oncogenic proteins, and a decrease in metabolic plasticity of cancer cells [88,97,98]. The
general accepted mechanism of action of cisplatin/carboplatin etoposide combined therapy
essentially showing the platinum drugs contribution is reported in Figure 3.

In the nucleus, the diamineplatinum(II) units are coordinated by the N7 of purine
bases, leading to the inhibition of replication and/or transcription, DNA damage, interfer-
ence with DNA repair mechanisms, and ultimately, cell cycle arrest at S, G1 or G2-M and the
induction of apoptosis/necrosis in cancer cells [67,83,99–101]. The interaction of cisplatin
and carboplatin with DNA activates several signal transduction pathways, including those
involving ATR, p53, p73, MAPKs (such as ERK, p38, and JNK), and PI3K/Akt, which
ultimately result in the induction of apoptosis through both intrinsic and extrinsic path-
ways [68,102–107]. The formation of cisplatin/carboplatin adducts to DNA also activates
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the tumor suppressor p53, which can activate genes involved in cell cycle progression,
DNA repair, and apoptosis [86,105,107]. The p53 protein can also activate genes of the
Bcl family, which include pro-apoptotic (e.g., Bax and Bak) and anti-apoptotic (e.g., Bcl-2)
factors (Figure 3) [108].

The combination of cisplatin or carboplatin drugs with etoposide improves DNA
damage and induces cancer cell death [83,109]. Etoposide, a derivative of podophyllotoxin,
was first synthesized in 1966 and approved for cancer therapy by the FDA in 1983. It
targets DNA topoisomerase II (topo II) activity, inhibiting the faithful rejoining of DNA
breaks and affecting various aspects of cell metabolism. Specifically, it causes topo II-linked
DNA double- or single-strand breaks by inhibiting the rejoining of cleaved DNA [109].
Studies have shown that etoposide-induced DNA damage activates p53, leading to cell
death [110,111]. In the apoptotic cascade, the activation of DNA-PK (DNA-dependent pro-
tein kinase) is crucial as it links the recognition of DNA damage to downstream signaling
events. The activation of p53 by etoposide results in the upregulation of the pro-apoptotic
protein Bax and the release of cytochrome c (Cyt C) (Figure 3) [112,113]. Robertson and
colleagues hypothesized that etoposide-induced DNA damage leads to the activation of
caspase-2, which acts as an intermediary in the induction of the mitochondrial apoptotic
pathway [113,114]. On the other hand, while it is well known that etoposide triggers
apoptotic pathways, recent findings also suggest its involvement in autophagic path-
ways [115,116]. Specifically, etoposide-induced autophagy seems linked to the activation of
AMPK (AMP-activated protein kinase) [115]. Indeed, etoposide could induce an autophagy-
associated surge in ATP, which contributes to cell survival and drug resistance [117].

4. Altered Pathways in NENs and Platinum-Based Chemotherapy Sensitivity

The anticancer activity of cisplatin and carboplatin was extensively studied in vitro
and in vivo by various research groups for several types of tumors (Figure 3) [98,118].
Despite their widespread use in treating different types of neoplasms, platinum-based
chemotherapy is often ineffective in treating NENs, and the mechanism of action in NE
tumor cells remains unclear. Several pathways have been found to be altered in cis-
platin/carboplatin sensitivity and are discussed below (Figure 4).

4.1. PTEN/PI3K/Akt/mTOR Pathway

The PI3K/Akt/mTOR pathway plays a crucial role in the development, progression,
and angiogenesis of NENs, making it a promising target for treatment [119–123]. Akt, a ma-
jor downstream regulator of PI3K, promotes cell proliferation by deactivating pro-apoptotic
genes, such as caspase and Bcl-2 family members [107]. Moreover, mTOR is essential
for the activation of the autophagic process, a key homoeostatic machinery of cellular
self-degradation. Interestingly, across different tumor types, autophagy exhibits promoting
or inhibitory effects to tumorigenesis by favoring resistance to anticancer treatments or
inducing tumor cell cycle arrest, respectively [27,124–126]. The autophagic activity or the
expression of autophagy-associated genes to influence survival in NENs has not been
investigated yet, although it seems that a lower expression level of autophagic genes is
associated with a metastatic stage [126].

Since the mTOR pathway is consistently activated in NETs, the development of
mTOR inhibitors has provided a new therapeutic option for these tumors (Figure 1 and
Table S1) [19,33,37,38,127–171]. In fact, the PI3K/Akt/mTOR pathway plays an important
role in tumorigenesis and the tumor progression of NENs [122]. It was observed that the
PI3K/Akt/mTOR axis can cause resistance to cisplatin [172] and carboplatin [173] treat-
ment. Conversely, the inhibition of Akt/mTOR can promoted cisplatin-induced apoptosis
in resistant cells [174].
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in the transcription of genes associated with cell proliferation, invasion, and metastasis. Mutations 
in (a) PTEN and (b) KRAS have been associated with heightened cytotoxic effects following plati-
num drug administration, while (b) BRAF mutations have been linked to limited response to chem-
otherapy. TGF-β can interact with TGF-β receptors (TGF-βR1,2) and activate the (a) PTEN/PI3K/Akt, 
(b) MAPK, and (c) SMAD pathways. In NE cells, the disruption of TGF-β signaling leads to an in-
creased expression of (c) ASCL1, which in turn protects cancer cells from apoptosis. Additionally, 
(c) Notch signaling can activate ASCL1 through SMAD-mediated activation. The low expression of 
both Notch1 and DLL3 has been associated with better prognosis and increased sensitivity to plati-
num chemotherapy. Mutation in DNA repair-related genes can also impact response to platinum 
drugs. (d) The role of p53 in chemotherapy response is still unclear, with alterations in this gene 
being linked to both negative and neutral effects. However, the overexpression of the p53-negative 
regulator MDM2 in NENs has been shown to improve response to platinum-based therapy. Muta-
tions of Rb and BRCA2 have also been associated with improved response to cisplatin chemother-
apy. (a–c) Menin is implicated in the regulation of several of the aforementioned pathways. 
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Figure 4. Signal transduction pathways influencing the efficacy of platinum-based chemotherapy
in neuroendocrine neoplasms (NENs). Genetic alterations or abnormal expression of pathway
members, indicated in green and red respectively, have been linked to increased or decreased
sensitivity to platinum-based therapy. Growth factors (EGF, FGF, IGF, TGF-α, etc.) can bind to
tyrosine kinase receptors (RTKs) and activate the (a) PTEN/PI3K/Akt and (b) RAS/RAF/MAPK
pathways, resulting in the transcription of genes associated with cell proliferation, invasion, and
metastasis. Mutations in (a) PTEN and (b) KRAS have been associated with heightened cytotoxic
effects following platinum drug administration, while (b) BRAF mutations have been linked to limited
response to chemotherapy. TGF-β can interact with TGF-β receptors (TGF-βR1,2) and activate the
(a) PTEN/PI3K/Akt, (b) MAPK, and (c) SMAD pathways. In NE cells, the disruption of TGF-β
signaling leads to an increased expression of (c) ASCL1, which in turn protects cancer cells from
apoptosis. Additionally, (c) Notch signaling can activate ASCL1 through SMAD-mediated activation.
The low expression of both Notch1 and DLL3 has been associated with better prognosis and increased
sensitivity to platinum chemotherapy. Mutation in DNA repair-related genes can also impact response
to platinum drugs. (d) The role of p53 in chemotherapy response is still unclear, with alterations
in this gene being linked to both negative and neutral effects. However, the overexpression of the
p53-negative regulator MDM2 in NENs has been shown to improve response to platinum-based
therapy. Mutations of Rb and BRCA2 have also been associated with improved response to cisplatin
chemotherapy. (a–c) Menin is implicated in the regulation of several of the aforementioned pathways.

Despite these advancements, there is still much to learn about how platinum drugs in-
teract with NENs, particularly in patients with an abnormal expression of PI3K/Akt/mTOR
components (Figure 4). In this regard, we summarize below some studies that have inves-
tigated the relationships between the PTEN/PI3K/Akt/mTOR signaling system and the
differential sensitivity to platinum-based chemotherapy.
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PTEN (phosphatase and tensin homolog) is a tumor suppressor protein that nega-
tively regulates the PI3K/Akt/mTOR signaling axis [122] and stimulates various DNA
repair pathways, including homologous recombination (HR), non-homologous end joining
(NHEJ), and nucleotide excision repair (NER). Its absence can sensitize cancer cells to DNA-
damaging agents, including platinum drugs (Figures 3 and 4) [128,129,175–177]. In NECs,
the loss or reduced expression of PTEN has been associated with rapid tumor growth,
metastasis, and poor survival (Table S1) [37,129,130,178,179]. Omura and colleagues ob-
served that PTEN loss or downregulation was linked to a better response to platinum drugs.
They reported the first case of a patient with advanced castration-resistant prostate NEC
who showed a significant response to platinum-based chemotherapy and had mutations
in both BRCA2 and PTEN (Table 1) [177]. Nuclear PTEN promotes genomic stability and
DNA repair through the upregulation of RAD51, a key protein involved in double-strand
break repair. Cytoplasmic PTEN also inhibits the Akt-mediated cytoplasmic sequestration
of the checkpoint kinase CHEK1, preventing genomic instability and the accumulation of
double-strand breaks [180]. By contrast, the loss of PTEN promotes genomic instability
and the accumulation of double-strand break repair in tumor cells, enhancing platinum
drugs’ anticancer activity [180,181]. However, the frequency of somatic PTEN alterations
in patients with neuroendocrine prostate cancer is unknown because of its rarity and the
lack of available genomic analysis in the literature [177].

Table 1. Genomic alterations and aberrant regulations impacting response to platinum-based
chemotherapy in neuroendocrine neoplasms (NENs). The utilization of IHC (immunohistochemistry)
staining, NGS (next-generation sequencing), PCR (polymerase chain reaction), CGP (comprehensive
genomic profiling) techniques for the identification of therapeutic targets and deregulated pathways
with positive (green) or negative (red) influence on chemotherapy response. Yellow represents
members with uncorrelated effects on chemotherapy.

Altered Gene/
Biomarker

NE Tumor
Type Type of Analyses Observations References

MAPK Pathway

KRAS

G3 P-NET
(n = 21)

P-NEC (n = 31
SCNEC; n = 18

LCNEC)

PCR
IHC

KRAS mutations are not detected in NET-G3
(0%), while NEC-G3 harbors KRAS mutations

in 48.7% of cases. There are no significant
differences between SCNEC and LCNEC in the

prevalence of KRAS mutations. KRAS
mutations are associated with a higher response
to platinum-based chemotherapy compared to

those without mutations (mutated KRAS,
77% vs. wild-type, 23%).

[182]

G3 P-NET
(n = 21)
P-NEC

(n = 18 LCNEC;
n = 31 SCNEC)

IHC
Real-Time PCR

KRAS is mutated in 48.7% of G3 P-NEC.
Patients with a KRAS mutation exhibit a better
response to first-line platinum-based therapy
compared to those with wild-type KRAS but
tend to have shorter overall survival rates.

[183]

G3 NET (n = 6)
NEC (n = 77)

Real-Time PCR
NGS

KRAS mutations do not affect treatment
effectiveness or survival rates following

initial chemotherapy.
[184]

BRAF G3 NET (n = 6)
NEC (n = 77)

Real-Time PCR
NGS

A higher frequency of BRAF mutations is found
in colon NEC and predicts failure to first-line

treatment with cisplatin/carboplatin
and etoposide.

[184]

PTEN/PI3K/Akt/mTOR Pathway

PTEN prostate NEC
(n = 1)

NGS
IHC

Somatic mutations in PTEN (and BRCA2) were
identified in the tumor tissue. The tumor cells

exhibited decreased staining for PTEN,
indicating a loss of protein expression, which is

also associated with a significant response to
platinum therapy.

[177]
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Table 1. Cont.

Altered Gene/
Biomarker

NE Tumor
Type Type of Analyses Observations References

Notch/ASCL1 pathway

Notch1 SCLC (n = 46) IHC

Hes1, ASCL1, and DLL3 protein expression
levels are not associated with sensitivity to

platinum chemotherapy or prognosis. However,
SCLC with low Notch-1 expression has a better

survival rate.

[131]

DLL3 LCNEC (n = 70) IHC

DLL3 is a predictive marker for sensitivity to
platinum-based adjuvant chemotherapy in

LCNEC. Patients with DLL3-negative tumors
who receive chemotherapy show significantly

higher overall survival and recurrence-free
survival rates.

[185]

Members of pathways involved in DNA repair

MDM2 prostate NEC
(n = 1) NGS

Platinum-based chemotherapy was found to be
effective in a patient with pancreatic

neuroendocrine carcinoma (NEC) exhibiting an
aggressive course and MDM2 amplification.

[186]

NSCLC-NE
(n = 157) IHC

There is no statistically significant correlation
between the p53 marker and response to

chemotherapy. However, patients with an
increased expression of p53 are more likely to

experience progressive disease after
undergoing chemotherapy.

[132]

p53

G3 NET (n = 10)
LCNEC (n = 31)
SCNEC (n = 48)

IHC

There is no statistically significant correlation
between the p53 marker and response to

chemotherapy. However, patients with an
increased expression of p53 are more likely to

experience progressive disease after
undergoing chemotherapy.

[132]

ES-SCLC
(n = 75) NGS Patients with mutant TP53 had a better PFS

than those with wild-type TP53. [187]

P-NET (n = 50)
P-NEC (n = 29) IHC Abnormal p53 expression is not associated with

response to platinum-based therapy. [20]

Prostate NEC
(n = 1)

NGS
IHC

The TP53 p.P72R variant is correlated with
higher platinum sensitivity and longer survival

of patient with aggressive prostate cancer.
[188]

G3 GEP-NET
(n = 41)

GEP-NEC
(n = 188)

NGS

TP53 mutation predicts an inferior response
rate to cisplatin/carboplatin for NEC but does
not correlate with overall survival (except for

small-cell NEC).

[189]

SCLC (n = 50)

Whole/Targeted
Genome Sequencing

IHC
Western Blotting

The RB1 mutation status had the most
significant impact of any gene. SCLC patients

with wild-type RB1 demonstrated a
significantly lower response to chemotherapy

compared to patients with mutant RB1.

[190]

Rb G3 P-NET (n = 21)
P-NEC (n = 31
SCNEC; n = 18

LCNEC)

PCR
IHC

The loss of Rb expression was not observed in
NET-G3 (0%), while NEC-G3 showed a loss of

expression in 54.5% of cases. There were no
significant differences in the prevalence of

abnormal Rb expression between SCNEC and
LCNEC. The loss of Rb in NECs was associated

with a significantly higher response rate to
platinum-based chemotherapy compared to
those without (80% vs. 24% with normal Rb

expression).

[182]



Int. J. Mol. Sci. 2024, 25, 8568 13 of 29

Table 1. Cont.

Altered Gene/
Biomarker

NE Tumor
Type Type of Analyses Observations References

G3 P-NET
(n = 21)
P-NEC

(n = 18 LCNEC;
n = 31 SCNEC)

IHC
Real-Time PCR

The rate of Rb loss in G3 P-NEC is 54.5% and is
associated with a higher response rate to

first-line platinum-based regimens compared to
those without Rb loss. However, patients with
Rb loss tended to have shorter overall survival

rates than those without Rb loss.

[183]

Rb prostate NEC
(n = 1) NGS

A patient with heterozygosity loss in the RB1
gene displayed an aggressive course and

responded favorably to chemotherapy
containing platinum.

[186]

G3 NET (n = 10)
LCNEC (n = 31)

SCNEC
(n = 48)

IHC

Patients with G3 neuroendocrine neoplasms
(NENs) exhibit varying responses to treatment

with etoposide and platinum. However, the
objective response rate was notably higher in
NENs lacking the retinoblastoma (Rb) gene

(63% vs. 42%).

[191]

prostate NEC with
metastatic lung

nodule and brain
metastases (n = 1)

NGS

Combined platinum and etoposide
chemotherapy yields partial and complete
remissions of brain and lung metastases,

respectively, in a patient with a somatic and
germline BRCA2 mutation.

[192]

prostate NEC
(n = 1) NGS

A patient with a complete copy number loss of
BRCA2 and ATM in prostate NEC (but not in

his original adenocarcinoma) exhibited a
complete response to carboplatin plus

etoposide chemotherapy.

[193]

prostate NEC
(n = 1) NGS

A patient with a BRCA2 mutation (along with a
PTEN mutation) displays an aggressive disease
progression and showed a positive response to

chemotherapy containing platinum.

[186]

BRCA

prostate SCNEC
(n = 1) PCR

The patient with a germline BRCA2 mutation
achieved a complete response to

platinum-based chemotherapy but experienced
a limited duration of remission when treated

with olaparib (a PARP inhibitor) as
maintenance therapy.

[194]

colon LCNEC
(n = 1) CGP

Treatment with platinum-based therapy leads
to a full radiographic remission of the

metastases, with no indication of recurrence
after 6.5 years. The response to the therapy is

probably attributed to the loss of BRCA1
and/or BAP1 function.

[195]

prostate NEC
(n = 1)

NGC
IHC

BRCA2 is mutated in tumors but not in normal
tissue. BRCA2 somatic mutations are associated

with a strong response to platinum therapy.
[177]

Other Markers

β-catenin pancreatobiliary
NEC (n = 30) IHC

Higher levels of β-catenin are a predictive
factor for response to platinum-based

chemotherapy.
[196]

p16
G3 NET (n = 10)
LCNEC (n = 31)
SCNEC (n = 48)

IHC
The objective response rate is significantly

higher in NEN with high p16 levels
(66% vs. 35%).

[191]

4.2. Mitogen-Activated Protein Kinase (MAPK) Pathway

The MAPK pathway is an important regulator of the survival and proliferation of NENs,
activated by various growth factors [105,197–200]. Platinum drugs can also induce apoptosis
through the activation of MAPKs, contributing to tumor regression [105,197,201–203]. It
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has been demonstrated that the MAPK signal transduction pathway is associated with NE
differentiation, cell growth, autophagy and metastasis (Table S1) [133,202,204]. Downstream
of the growth factor receptors, the ERK cascade is initiated by RAS, which activates RAF
and recruits it from the cytosol to the cell membrane. RAF then activates MEK, which in
turn phosphorylates and activates ERK (Figure 4) [201]. Mutations in RAS and RAF family
members have been linked to different clinical behaviors and responses to chemotherapy in
NENs (Table S1).

The KRAS oncogene, a member of the RAS family, has the highest mutation rate
among all cancers and is associated with high mortality [183,205]. In NENs, it is rarely
mutated [201], but its mutational status appears to be related to different patterns of
sensitivity or resistance to platinum drugs [182,183,206]. Tanaka and colleagues showed
that patients with P-NEC who had KRAS mutations demonstrated an improved response
to platinum-containing therapy [183,205]. Hijioka et al. demonstrated that high-grade
P-NETs and P-NECs have distinct clinicopathologic features and that pancreatic NENs
(G3) with mutated KRAS had a significantly higher response rate (77%) to platinum-based
chemotherapy than those without (23%) [182]. Elvebakke et al. reported no influence of
KRAS mutations in treatment efficacy or survival for patients with colon NEC receiving
first-line platinum/etoposide chemotherapy. Conversely, BRAF mutations were associated
with a limited effect of first-line chemotherapy, although they did not affect progression-free
survival or overall survival (Figure 4; Table 1) [184].

4.3. Notch/ASCL1 Pathway

Notch (neurogenic locus notch homolog)/ASCL1 (Achaete-scute homolog 1) signaling
is known to regulate cellular differentiation, proliferation and survival. However, contradic-
tory findings have shown that Notch can act as both an oncogene and a tumor suppressor,
indicating that its role is highly dependent on the specific cellular context. The Notch signal-
ing pathway plays a crucial role in the growth and differentiation of GI-NETs [134], and its
low expression has been linked to a better prognosis in SCLC patients (Table S1) [131,207].
Conversely, the overexpression of Notch has been shown to inhibit cell proliferation and
to induce apoptosis in NET rather than promoting tumor growth [129,208,209]. This can
also lead to the modulation of ASCL1 expression, as ASCL1 levels decrease when Notch
signaling is active (Figure 4). ASCL1 is a transcription factor that is essential for the devel-
opment and neuroendocrine differentiation of pulmonary NE cells, SCLC, thyroid C cells,
and adrenal chromaffin cells [123]. Additionally, ASCL1 has been found to promote more
aggressive growth of pulmonary adenocarcinoma in vivo and can interact with the Rb-p53
axis in the carcinogenesis of NE lung cancers (Table S1) [38,123,210–214].

Notch-negative and ASCL1-positive NE cells appear to be particularly susceptible to
cytotoxic chemotherapy during initial treatment. However, epigenetic mechanisms that
induce Notch expression in residual cancer cells may lead to recurrence in patients after
repeated chemotherapy [38,207,215,216].

DLL3 (Delta-like protein 3) is a member of the Notch receptor ligand family that
inhibits Notch signaling and is considered a predictive marker of sensitivity to platinum-
based chemotherapy for LCNEC. Among patients with DLL3-negative LCNEC, platinum-
based adjuvant chemotherapy has been shown to significantly improve overall survival
and recurrence-free survival (Figure 4). However, patients with DLL3-positive LCNEC do
not demonstrate improved response to chemotherapy (Table 1) [185]. In contrast, Tendler
et al. found that an abnormal expression of ASCL1 and DLL3 in SCLC did not result
in differences in clinical outcome. However, patients with a low expression of Notch-1
had a better prognosis and higher sensitivity to platinum-based chemotherapeutic drugs
(Figure 4; Table 1) [131].

4.4. Pathways Involved in DNA Repair

Several studies have demonstrated that aberrations in DNA repair genes, including
MDM2, RB, BRCA2, and MEN-1 mutations, serve as biomarkers for a heightened response
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of platinum-based chemotherapy (Figure 4). The combination of platinum drugs and etopo-
side in NENs results in increased DNA damage, leading to the inhibition of DNA repair
and replication [217]. In P-NETs, mutations in PTEN, MEN1, and DAXX/ATRX genes were
found to be common. The loss of these tumor suppressors in NENs may render them more
susceptible to the cytotoxic effects of platinum-based drugs (Figure 4) [20,135–137,218].

The tumor suppressor p53, which is involved in cell cycle progression, DNA repair, and
apoptosis, is activated after the formation of platinum drug adducts to DNA [86,105,107].
Some researchers have suggested that the inactivation of p53 and downstream DNA repair-
related genes are responsible for platinum resistance mechanisms in NENs [219]. The role
of p53 regulation in NENs and its consequences on chemotherapy efficacy are controversial.
Mutant p53 proteins commonly lose wild-type function but can also acquire novel functions
in promoting metastasis and resistance to platinum drugs and etoposide [220]. In NSCLC
with NE differentiation, no significant correlation was found between altered p53 expression
and response to platinum-based chemotherapy, although the increased expression of p53
was related to progressive disease following chemotherapy [132]. Similarly, Elvebakken and
colleagues observed a limited response to treatment with platinum/etoposide in patients
with high-grade GEP-NEN. Moreover, also a significantly better survival was observed in
small-cell NEC [189]. In high-grade NENs, which often have alterations in the p53 gene
(Table S1), p53 expression was not related to improved chemotherapy response [20,191]. On
the other hand, some studies associated TP53 mutations or abnormal p53 protein expression
with higher sensitivity to platinum therapy [187,188]. Some discrepancies in these results
could be explained by the existence of different TP53 mutations which can differently
modulate p53 accumulation in the cell nuclei. Moreover, the prognostic value of TP53
mutations might depend on co-mutations and tumor type. Finally, mutational analyses
are recommended for the evaluation of clinical outcomes in order to bypass discordance
between protein p53 measurements and TP53 mutation frequency [189].

Although TP53 gene mutations are rare in NENs [138,219,221], epigenetic and regula-
tory aberrations interfere with p53 network activity and influence response to platinum
therapy (e.g., p53 negative regulators MDM2, MDM4 and WIP1) [139,186,219]. The E3
ubiquitin ligase MDM2 directly binds to p53 and promotes its nuclear export and pro-
teasomal degradation, thus suppressing p53’s transcriptional activity [222]. In NEN, Akt
activation and DAXX mutation may influence the stability of MDM2, regulating p53’s
location, stability, and transcriptional activity, and sustaining proliferation or tumorigene-
sis [219,223,224]. In neuroendocrine prostate cancer, MDM2 amplification was related to
the major effectiveness of platinum-based chemotherapy [186]. MDM2 can be inactivated
after cisplatin-induced DNA damage, thus stabilizing the p53 protein and enabling it to
induce cell cycle arrest and apoptosis [219,221].

Alterations of Rb (retinoblastoma protein), which are closely related to p53 mu-
tations in NECs (Table S1) [33,38,140,183], were associated with better prognosis and
response to platinum drugs-based therapy, especially in high-grade NENs (Figure 4;
Table 1) [20,182,183,186,190,191]. The absence of Rb seemed to be more frequent in G3
NECs compared to G3 NETs and in SCNEC compared to LCNEC (Table S1) [182,191].
Derks and colleagues observed that patients with LCNEC tumors that carry a wild-type
RB1 gene or express the Rb protein have a more favorable outcome when treated with
platinum plus gemcitabine or taxanes compared to standard platinum plus etoposide
chemotherapy, whereas no differences were observed when RB1 was mutated or the Rb
protein not expressed [33]. However, in general, chemotherapeutic outcomes were bet-
ter in tumors with abnormal Rb expression, sometimes associated with other genomic
aberrations, such as KRAS [182,183], p16 [191], and MDM2 [186] (Table 1).

The overexpression of p16, a tumor suppressor that inhibits the CDK4/6 cell cycle
regulators, can indicate a disruption of the Rb pathway. Several studies have confirmed
an inverse relationship between the expression of Rb and p16 proteins in high-grade lung
NETs. SCLC usually shows moderate or strong p16 staining in about 90% of the neoplastic
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cells [225]. Lacombe at al. observed a significantly higher response rate in NEC presenting
high p16 levels, together with Rb loss (Table 1) [191].

A significant response to platinum therapy was observed in patients with advanced
neuroendocrine prostate cancer who exhibited BRCA (breast cancer susceptibility gene)
mutations [177,186,192–194,226]. BRCA1 and BRCA2 are important DNA repair genes that
act as tumor suppressors. Their loss prevents DNA repair, leading to cell death after the
formation of cisplatin DNA cross-links [226]. The positive association between BRCA2
mutations and response to platinum-based chemotherapy was clearly demonstrated in
patients with prostate NEC. Both germline [192] and somatic [177,192,193] mutations
of BRCA2 were found in these patients and were correlated with a high response to
cisplatin/carboplatin and etoposide. Wood et al. also found somatic mutations in BRCA1
and BAP1 (BRCA1-associated protein) in colon LCNEC. Treatment with platinum-based
therapy resulted in a complete response of the metastases, with no evidence of recurrence
after 6.5 years. This led to the hypothesis that the loss or mutation of BRCA1 and/or BAP1
can predict response to platinum-based therapy, confirming the important role of genes
involved in DNA repair in response to platinum drugs (Table 1) [195].

4.5. Other Genomic Alterations

Other mutations have recently been linked to the efficacy of chemotherapy in NENs.
For instance, the speckle-type POZ protein, SPOP, is a zing finger protein with an onco-
genic role that is frequently mutated in prostate and endometrial cancers [227,228]. It
promotes the ubiquitination and degradation of proteins involved in tumor progression,
such as PTEN and DAXX, thereby facilitating proliferation and inhibiting apoptosis in
cancer cells [229]. Watanabe and colleagues showed that SPOP mutations in enzalutamide-
resistant prostate cancer with NE differentiation improved treatment with platinum drugs
(Table 1) [227].

The involvement of Wnt/β-catenin signaling in cancer was thoroughly described, and
the altered expression of its components has also been observed in NETs [230]. Furukawa
et al. demonstrated that β-catenin may serve as a reliable predictive biomarker for response
to platinum-based chemotherapy in pancreatobiliary NEC [196], as evidenced by the in-
creased expression of β-catenin in NET tissues and its correlation with tumor severity [231]
(Table 1).

5. Influence of Specific Cellular Pathways in the Response to Platinum-Based Therapy
in NENs

Bcl-2 is also closely related to NEN differentiation, as Bcl-2 expression is closely linked
to chromogranin A (CgA) positivity, and tumor progression [232]. The Bcl system includes
oncoproteins that affect apoptosis (such as Bax, Bad, Bid, and Bak) and proliferation
(such as Bcl-2, Bcl-xL, and Raf), making it a key factor in regulating these processes [141].
Chemotherapeutic agents, including platinum drugs, can exert their cytotoxic effects by
inducing intrinsic apoptosis through the mitochondrial pathway by modulating Bcl-2/Bax
levels (Figure 3). The overexpression of Bcl-2 and reduction in Bax levels have been linked
to resistance to platinum drugs in several cancers, including NENs [140–142,232,233]. In
SCLC patients, Bcl-2 has been found to be overexpressed [234] and related to increased
resistance to platinum chemotherapy in vitro [235], but its role in patients with NENs
undergoing platinum-based chemotherapy has not yet been established.

Genomic analysis has revealed that NENs show alterations in chromatin remodel-
ing genes, such as MEN1, DAXX (death domain-associated protein), and ATRX (α tha-
lassemia/mental retardation syndrome X-linked) [236]. DAXX and ATRX cooperate with
other genes in chromatin remodeling complexes. DAXX can also modulate the distribution
of PTEN between the nucleus and the cytoplasm (Figure 4) [229,237]. Menin, encoded
by MEN1, is involved in the regulation of DAXX and SMADs, ref. [238] and its loss of
function has been associated with impaired DNA repair capability in NETs (Figure 4) [218].
Although Menin acts as a tumor suppressor in endocrine tissues, recent studies have shown
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that it can also promote tumorigenesis in various tumors. In some neoplasms, MEN1
has been found to act as a hub gene, interacting with and modulating several pathways.
For example, Menin can inhibit the PI3K/Akt/mTOR pathway (by binding to Akt and
preventing its translocation to the plasma membrane) [239,240] and the RAS-RAF-MEK1/2-
ERK1/2 signaling pathway. Cherif et al. studied the in vitro response of prostate cancer
PC-3 cells (which are positive for NE markers) to cisplatin treatment after Menin inhibition.
They found that Menin activates the PI3K/Akt signaling pathway, which is associated
with platinum drug resistance, and that Menin inhibition enhanced cisplatin sensitivity
(by 69%) in PC-3 cells [240]. The role of MEN1 and DAXX/ATRX in the effectiveness of
platinum-based treatments has not yet been defined.

Finally, other pathways have been linked to the differentiation and progression of
NENs, but their involvement in cisplatin/carboplatin therapy has not yet been considered.
Among these, the SMAD signaling pathway operates downstream of TGF-β and BMP lig-
ands, regulating a diverse set of biological processes including proliferation, differentiation,
and apoptosis [241,242]. Murai et al. were the first to show that in small-cell lung cancer
(SCLC), TGF-β inhibited proliferation in vivo and tumor formation in vitro through the
TGF-β-SMAD-ASCL1 pathway [243]. The loss of the tumor suppressor SMAD4 occurs in
numerous solid organ neoplasms, included NENs, and it is associated with poor prognosis
(Table S1) [143–145].

6. Conclusions

This review stems from the need to better understand the predictive and prognostic
features of NENs. These features are still uncertain, and it is crucial to identify the major
molecular genetic alterations in each type of tumor. Establishing correlations between
specific abnormalities involved in tumorigenesis and the metastatic process could provide
potential targets for cancer therapy. Due to the heterogeneity of NENs, there is a significant
need to re-evaluate chemotherapeutic approaches, with a focus on studying combined
and personalized therapies that can offer greater selectivity and effectiveness. The review
incorporates recent and relevant studies in the field, providing a comprehensive analysis
of current knowledge and developments in NENs and platinum-based chemotherapy
responses, taking into account data and research findings up to the year 2024.

Among the available therapeutic options, platinum-based chemotherapy is consid-
ered the first-line treatment for well-differentiated G3 NETs and NECs, particularly when
the Ki-67 index is higher than 55% or in cases of rapid clinical progression. The cellular
response to platinum-based chemotherapy is a complex process that typically begins with
the induction of DNA damage, followed by a series of events involving signal transduction
and the activation of transcription factors. These factors induce the expression of numerous
genes involved in various cellular functions, such as DNA repair, cell cycle arrest, cell
death, and the inhibition of epithelial–mesenchymal transition (EMT) (Figure 3). Addi-
tionally, there may be crosstalk between different signaling pathways, resulting in diverse
downstream effects. Also, with this review, we underscore the pivotal role of molecular
genetic alterations in NENs and their impact on treatment outcomes. It is very important
to identify the major molecular genetic alterations specific to each tumor type, essential for
advancing personalized medicine in NENs. Current guidelines recommend using MEN1,
DAXX/ATRX, and RB1/TP53 to distinguish between P-NET G3 and P-NEC. The distinct
genetic abnormalities between P-NETs (G3) and P-NEC may explain why P-NETs have
a lower sensitivity to platinum-based chemotherapy compared to P-NECs. Consistently,
NECs are often characterized by the aberrant expression of p53 and/or Rb proteins, as well
as KRAS mutations (Table S1), which have been linked to a higher response to platinum-
based chemotherapy (Figure 4; Table 1). On the other hand, diagnosing LCNEC can be
challenging due to its histological similarities with non-small-cell lung cancer (NSCLC)
and, in some cases, small-cell lung cancer (SCLC) (as evidenced by the PI3K/Akt/mTOR
pathway and other gene alterations) (Table S1). As platinum-based chemotherapy is the
standard treatment for SCLC, it is often used for both LCNEC and NSCLC. Interestingly,
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although platinum-based chemotherapy is not typically used for neuroendocrine prostate
cancer, it has been reported to be effective in some cases. This is likely due to the presence
of BRCA2, PTEN, and MDM2 mutations, which make this type of cancer responsive to
platinum-based chemotherapy (Table 1).

The relationship between specific genetic abnormalities and the processes of tumorige-
nesis and metastasis presents a promising area for future research. Understanding these
correlations could lead to the identification of novel targets for cancer therapy, thereby
enhancing treatment efficacy. The heterogeneity of NENs suggests that personalized treat-
ments, based on the genetic characteristics of each tumor, could offer better selectivity
and effectiveness. The prospects for improved treatment outcomes through personalized
and combined therapeutic approaches represent a significant advancement in the field of
neuroendocrine neoplasms.
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