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1. Introduction

The present paper is a contribution to the classification of restricted Lie algebras 
of low dimension. Similar classifications for ordinary Lie algebras represent a classical 
problem and have been carried out by several authors over the years. Up to dimension 
5, the characterization of nilpotent Lie algebras over any field has been known for a long 
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time. In 1958, a classification in dimension 6 over fields of characteristic zero was given 
by Morozov in [13], and other results in this framework appeared in [1,7,14,22]. However, 
these classifications differ and it was hard to compare them until de Graaf [5] provided 
a complete classification over arbitrary fields of characteristic not 2. Some years later, 
de Graaf’s approach was revised and extended to characteristic 2 in [2]. Apparently, the 
classification in dimensions more than 6 seems to be still in progress (see e.g. [15,17]).

Let L be a Lie algebra over a field F of characteristic p > 0. We recall that [p] : L → L, 
x �→ x[p], is called a p-map if satisfies the following:

(1) (λx)[p] = λpx[p], for all x ∈ L, λ ∈ F ,
(2) adx[p] = (adx)p, for all x ∈ L,
(3) (x + y)[p] = x[p] + y[p] +

∑p−1
i=1 si(x, y), for all x, y ∈ L,

where the terms si(x, y) are determined by the relation

(ad(x⊗X + y ⊗ 1))p−1(x⊗ 1) =
p−1∑
i=1

isi(x, y) ⊗Xi−1

in the Lie algebra L ⊗F F [X] over the polynomial ring F [X]. A Lie algebra L with a 
fixed p-map is referred to as a restricted Lie algebra. Restricted Lie algebras play a 
predominant role in the theory of Lie algebras in positive characteristic, in connection 
with algebraic groups, homological algebra, representation theory and classification of 
simple Lie algebras (cf. [19–21]).

A restricted Lie algebra L is said to be p-nilpotent if there exists a positive integer n
such that x[p]n = 0, for all x ∈ L. By Engel Theorem, every finite-dimensional p-nilpotent 
restricted Lie algebra is nilpotent. On the other hand, every finite-dimensional nilpotent 
restricted Lie algebra is a central extension of a p-nilpotent restricted Lie algebra by a 
torus (see [21, Chapter 2, Corollary 4.2]).

Now, a classification of p-nilpotent restricted Lie algebras of dimension at most 4 over 
perfect fields was obtained by Schneider and Usefi in [16]. Afterwords, a description of 5-
dimensional p-nilpotent restricted Lie algebras over perfect fields of characteristic p > 3
was provided by Darijani and Usefi in [3]. Unfortunately, as explained in Section 2, the 
proof of the main result of [3] is partially incorrect and, actually, the list of isomorphism 
classes of restricted Lie algebras found by the authors is incomplete.

In this paper we provide a classification of p-nilpotent restricted Lie algebras of di-
mension 5 valid over algebraically closed fields of characteristic p > 3. This is achieved 
by means of a cohomological method that can be considered as the natural restricted 
analogue of the Skjelbred-Sund procedure for classifying ordinary nilpotent Lie algebras 
(cf. [18]). Similar ideas also appear in some recent work concerning the classification of 
other kinds of non-associative algebras: see e.g. [6,8,10–12].

Here we give a rough outline of the method that we use, for more details we refer to 
Section 2. It essentially consists of two steps. In the first step, we construct a possibly 
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redundant list containing all n-dimensional p-nilpotent restricted Lie algebras. Secondly 

we remove the isomorphic copies from the list.
In the first step, p-nilpotent restricted Lie algebras are constructed as central exten-

sions of p-nilpotent restricted Lie algebras of smaller dimension. Let L be a p-nilpotent 
restricted Lie algebra of dimension n − 1 and V a vector space of dimension 1 regarded 

as a trivial left L-module. Let H2
∗(L, V ) denote the second restricted cohomology group 

of L with coefficient in V . Every [θ] ∈ H2
∗ (L, V ) defines a restricted Lie algebra structure 

on L ⊕V , which is called the central extension of L by [θ]. By this construction we obtain 

all p-nilpotent restricted Lie algebras of dimension n (varying L and [θ]). As different 
restricted 2-cocycles may yield isomorphic restricted Lie algebras, we will use the action 

of the restricted automorphism group Autp(L) of L on H2
∗ (L, V ) in order to reduce their 

number. In fact, elements lying to the same Autp(L)-orbit yield isomorphic restricted Lie 

algebras. However, the converse is not true and so we still need to eliminate the remain-
ing redundancies from the list. As the conditions for isomorphism of two restricted Lie 

algebras are translated to polynomial equations, the assumption that the ground field is 
algebraically closed is used in a decisive way at this stage.

Note also that every 5-dimensional p-nilpotent restricted Lie algebra has nilpotency 

class at most 4. Therefore, as p > 3, all p-maps are p-semilinear, so the task of de-
termining H2

∗ (L, V ) and the action of Autp(L) is easier. In characteristic 2 and 3, the 

computations and the resulting list of restricted Lie algebras are somewhat different, 
which is the reason why these exceptional cases will be considered in a future paper.

The paper is organized as follows. In Section 2 we fix the notation, recall some basic 

facts about the second restricted cohomology space and describe our method for clas-
sifying p-nilpotent restricted Lie algebras. We also explain the main problems that the 

proof proposed in [3] present and how our approach is different. Sections 3, 4 and 5
are devoted to determine all the 1-dimensional central extensions of the 4-dimensional 
p-nilpotent restricted Lie algebras over an algebraically closed field F of characteristic 

p > 3. In Section 6 we eliminate redundancies, by detecting and removing isomorphic 

restricted Lie algebras from the list. Section 7 contains the statement of our main result, 
which provides the list of the p-nilpotent restricted Lie algebras of dimension 5 over F . 
Finally, in Section 8 we briefly discuss our results and compare the classification in [3]
to ours.

The main aim of this paper is to describe the methods used, and to present the main 

results. However, a detailed proof of these results involves many case distinctions, and is 
rather technical (Sections 3-6 contain a small part of it along with some guiding elabo-
rated examples). Therefore, in order to avoid tedious repetition of the same arguments, 
most of the explicit computations have been omitted from the paper and left to the 

interested reader.
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2. Preliminaries and summary of the method

Throughout this paper, F will denote an algebraically closed field of characteristic 
p > 3. Before explaining our method to classify p-nilpotent restricted Lie algebras of 
dimension 5 over F , we recall some known facts about the second restricted cohomology 
space with coefficient in a trivial module and the central extensions of restricted Lie 
algebras (cf. [3,4,9]). Let L be a restricted Lie algebra over F and V a vector space 
regarded as a trivial L-module. Following [4], for φ ∈ HomF (Λ2L, V ) and a map ω : L →
V , we say that ω has �-property with respect to φ if, for every x, y ∈ L and λ ∈ F , we 
have ω(λx) = λpω(x) and

ω(x + y) = ω(x) + ω(y) +
∑

xj=x or y
x1=x,x2=y

1
#x

φ([x1, x2, . . . , xp−1], xp),

where #x is the number of xi equal to x. If L is nilpotent of class less than p, note 
that ω has �-property precisely when it is p-semilinear. The set C2

∗(L, V ) consisting of 
all (φ, ω), where φ ∈ HomF (Λ2L, V ) and ω has �-property with respect to φ, is viewed 
as a vector space over F .

Let Z2
∗(L, V ) denote the set consisting of all (φ, ω) ∈ C2

∗(L, V ) with the properties 
that

φ([x1, x2], x3) + φ([x3, x1], x2) + φ([x2, x3], x1) = 0, φ(x, y[p]) = φ([x, y, . . . , y︸ ︷︷ ︸
p−1

], y), (1)

for all x, y ∈ L. The elements of Z2
�(L, V ) are called restricted 2-cocycles. For a linear map 

ψ : L → V , we define a map ψ̂ : L ×L → V as ψ̂(x, y) = ψ([x, y]), and a map ψ̃ : L → V

as ψ̃(x) = ψ(x[p]). The set {(ψ̂, ψ̃)| ψ : L → V is linear} is denoted by B2
∗(L, V ). It is 

routine to check that B2
∗(L, V ) is a subspace of Z2

∗(L, V ), and the elements of B2
∗(L, V )

are said to be restricted 2-coboundaries. The second restricted cohomology space of L
with coefficient in V is defined as H2

∗ (L, V ) = Z2
∗(L, V )/B2

∗(L, V ).
We denote by Aut(L) and Autp(L), respectively, the automorphism group and the 

restricted automorphism group of L. The vector spaces defined in the previous paragraph 
can be viewed as Autp(L)-modules. Indeed, for A ∈ Autp(L) and θ = (φ, ω) ∈ Z2

∗(L, V ), 
we define Aθ = (Aφ, Aω) ∈ Z2

∗(L, V ) by the conditions (Aφ)(x, y) = φ(A(x), A(y)) and 
(Aω)(x) = ω(A(x)). This action makes Z2

∗(L, V ) an Autp(L)-module and it is easy to 
see that B2

∗(L, V ) is an Autp(L)-submodule. Hence the quotient H2
∗(L, V ) can also be 

viewed as an Autp(L)-module.
Now, let L be a restricted Lie algebra, V a vector space over F and θ = (φ, ω) ∈

Z2
∗(L, V ). Following [9], we say that a restricted ideal I of L is strongly abelian if I is 

abelian and x[p] = 0 for every x ∈ I. We define a restricted Lie algebra Lθ as follows. 
The underlying space of Lθ is L ⊕ V . For x + v, y + w ∈ Lθ, Lie bracket and p-map on 
Lθ are defined by
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[x + v, y + w] = [x, y]L + φ(x, y), (x + v)[p] = x[p]L + w(x),

where [x, y]L and x[p]L denote the Lie bracket and the p-map of L, respectively. Then 
Lθ is a restricted Lie algebra and V is a strongly abelian ideal of Lθ contained in the 
center Z(Lθ). Moreover, Lθ/V ∼= L, therefore Lθ is a central extension of L. Further, 
if θ ∈ Z2

∗(L, V ) and η ∈ B2
∗(L, V ), then Lθ+η

∼= Lθ, so the isomorphism type of Lθ

only depends on the element [θ] = θ+B2
∗(L, V ) of H2

∗ (L, V ). Conversely, suppose that a 
restricted Lie algebra K has a strongly abelian restricted ideal V such that 0 �= V ⊆ Z(K)
and set L = K/V . Let π : K → L be the projection map and choose an injective 
linear map σ : L → K such that π(σ(x)) = x for all x ∈ L. Define φ : L × L → V

by φ(x, y) = [σ(x), σ(y)] − σ([x, y]), and ω : L → V by ω(x) = σ(x)[p] − σ(x[p]). Then 
θ = (φ, ω) ∈ Z2

∗(L, V ) and K ∼= Lθ. Note that θ depends on the choice of σ. However, the 
θ’s corresponding to two different σ’s differ by a coboundary. Therefore, [θ] is independent 
of σ and the central extension K of L determines a well-defined element of H2

∗(L, V ).
The previous argument applies, in particular, when K is a n-dimensional p-nilpotent 

restricted Lie algebra. Indeed, by Engel’s Theorem, K is nilpotent of class at most n −1, so 
we can find a central element x such that x[p] = 0 and V = Fx is a 1-dimensional strongly 
abelian restricted ideal contained in Z(K). We conclude that all p-nilpotent restricted 
Lie algebras of dimension n can be obtained as 1-dimensional central extensions of p-
nilpotent restricted Lie algebras L of dimension n − 1 (via restricted 2-cocycles). The 
number of isomorphic restricted Lie algebras obtained in this way can be then reduced 
by using the action of Autp(L) on H2

∗ (L, V ). In fact, it turns out that if [θ1] and [θ2]
belong to the same Autp(L)-orbit, then Lθ1

∼= Lθ2 by [3, Theorem 2.13]. However the 
converse is not true and, moreover, one can obtain isomorphic restricted Lie algebras as 
central extensions of non-isomorphic restricted Lie algebras. Thus we have to eliminate 
all redundancies from the list.

Our procedure to classify 5-dimensional p-nilpotent restricted Lie algebras can be 
summarized as follows.

1. Take a 4-dimensional p-nilpotent restricted Lie algebra (L, [p]) listed in Theorem 2.2, 
determine Autp(L) and H2

∗ (L, F).
2. Find a (possibly redundant) list of representatives of the orbits of Autp(L) acting on 

H2
∗ (L, F).

3. For each [θ] found in 2, construct Lθ.
4. Detect and remove isomorphic restricted Lie algebras from the list obtained by varying 

L and [θ].

Clearly, Autp(L) is determined as the subgroup of Aut(L) consisting of all A ∈ Aut(L)
such that A(x[p]) = A(x)[p] for all x ∈ L. The space H2

∗ (L, F) can be calculated in the 
following straightforward way. Let x1, x2, x3, x4 be a basis of L and (φ, ω) ∈ C2

∗(L, F). 
Then we have φ =

∑
1≤i<j≤4 cijΔij , where Δij denotes the skew-symmetric matrix with 

(i, j)-entry equal to 1, (j, i)-entry equal to −1 and all other entries equal to 0. Moreover, 
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as L is nilpotent of class at most 3 and p > 3, the map ω has �-property with respect to 
φ if and only if ω(λx) = λpω(x) and ω(x + y) = ω(x) + ω(y) for all λ ∈ F and x, y ∈ L, 
that is, ω is p-semilinear. Since ω is determined by its evaluation on x1, x2, x3, x4, we will 
write ω = αf1+βf2+γf3+δf4, where fi(xj) = δi,j , and α, β, γ, δ ∈ F . The set consisting 
of the elements (Δij , 0) and (0, fi) is a basis of C2

∗(L, F). We have that (φ, ω) ∈ Z2
∗(L, F)

if and only if the conditions (1) hold. As L has nilpotency class at most 3 and p > 3, 
note that the second condition in (1) reduces to φ(x, y[p]) = 0, for all x, y ∈ L. Also, the 
restricted 2-cocycles (φ, ω) ∈ B2

∗(L, F) are found by requiring that (φ, ω) = (ψ̂, ψ̃) for 
some linear map ψ : L → F , and H2

∗ (L, F) is the space of cosets of B2
∗(L, F) in Z2

∗(L, F).
For Step 2 there is no general method and it has to be handled by a direct case-

by-case analysis. As this process is quite tedious and involves a big amount of routine 
computations, we will include the details only in one case. For the other restricted Lie 
algebras listed in Theorem 2.2, a description of Autp(L), a basis of H2

∗ (L, F), and the 
1-dimensional central extensions of L are given without including the computations. We 
now provide an explicit description of the action of Autp(L) on H2

∗ (L, F). An element 
A ∈ Autp(L) is represented by an invertible matrix

A =

⎛
⎜⎝
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎠.

Let [θ] = [(φ, ω)] ∈ H2
∗ (L, F). If φ = aΔ12 + bΔ13 + cΔ14 + dΔ23 + eΔ24 + fΔ34 and 

ω = αf1 + βf2 + γf3 + δf4, by a direct computation we have Aφ = a′Δ12 + b′Δ13 +
c′Δ14 + d′Δ23 + e′Δ24 + f ′Δ34, where

⎛
⎜⎜⎜⎜⎝

a′

b′

c′

d′

e′

f ′

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

a11a22 − a12a21 a11a32 − a31a12 a11a42 − a41a12 a21a32 − a31a22 a21a42 − a41a22 a31a42 − a41a32
a11a23 − a21a13 a11a33 − a31a13 a11a43 − a13a41 a21a33 − a31a23 a21a43 − a23a41 a31a43 − a33a41
a11a24 − a14a21 a11a34 − a14a31 a11a44 − a14a41 a21a34 − a24a31 a21a44 − a24a41 a31a44 − a34a41
a12a23 − a22a13 a12a33 − a32a13 a12a43 − a13a42 a22a33 − a32a23 a22a43 − a23a42 a32a43 − a33a42
a12a24 − a14a22 a12a34 − a14a32 a12a44 − a14a42 a22a34 − a24a32 a22a44 − a24a42 a32a44 − a34a42
a13a24 − a14a23 a13a34 − a14a33 a13a44 − a14a43 a23a34 − a24a33 a23a44 − a24a43 a33a44 − a34a43

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a
b
c
d
e
f

⎞
⎟⎟⎟⎠

(2)

and Aω = α′f1 + β′f2 + γ′f3 + δ′f4, where

⎛
⎜⎝
α′

β′

γ′

δ′

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

ap11 ap21 ap31 ap41
ap12 ap22 ap32 ap42
ap13 ap23 ap33 ap43
ap14 ap24 ap34 ap44

⎞
⎟⎟⎟⎠

⎛
⎜⎝
α
β
γ
δ

⎞
⎟⎠ . (3)
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The first 3 steps of the procedure described above provide a complete (but redundant) 
list of isomorphism classes of p-nilpotent restricted Lie algebras of dimension 5. Therefore, 
it remains the problem to detect and remove redundancies from this list, so that the 
remaining algebras are pairwise non-isomorphic. As we will see in Section 6, deciding 
whether two restricted Lie algebras are isomorphic is equivalent to the existence of a 
solution over F of a set of polynomial equations.

We include here the list of nilpotent ordinary Lie algebras of dimension 5 (cf. [5]) 
and the list of p-nilpotent restricted Lie algebras of dimension 4 over algebraically closed 
fields of characteristic p > 3 (cf. [16]). For nilpotent ordinary Lie algebras we keep the 
same notation L5,j used in [5]. As usual, unspecified elements [xi, xj ] or x[p]

i are intended 
to be zero.

Theorem 2.1 ([5], Section 9). The isomorphism classes of all nilpotent Lie algebras of 
dimension 5 over an arbitrary field are the following:

• L5,1 = abelian;
• L5,2 = 〈x1, . . . , x5 | [x1, x2] = x3〉;
• L5,3 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4〉;
• L5,4 = 〈x1, . . . , x5 | [x1, x2] = x5, [x3, x4] = x5〉;
• L5,5 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x5, [x2, x4] = x5〉;
• L5,6 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5〉;
• L5,7 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5〉;
• L5,8 = 〈x1, . . . , x5 | [x1, x2] = x4, [x1, x3] = x5〉;
• L5,9 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5〉.

Theorem 2.2 ([16], Theorem 2.1). Let L be a nilpotent Lie algebra of dimension 4 over 
an algebraically closed field F of characteristic p > 3. Then the equivalence classes of the 
[p]-maps on L are as follows:

• If L = 〈x1, x2, x3, x4〉, then
(1) Trivial p-map;
(2) x

[p]
1 = x2.

(3) x
[p]
1 = x2, x[p]

3 = x4.
(4) x

[p]
1 = x2, x[p]

2 = x3.
(5) x

[p]
1 = x2, x[p]

2 = x3, x[p]
3 = x4.

• If L = 〈x1, x2, x3, x4 | [x1, x2] = x3〉, then
(1) Trivial p-map;
(2) x

[p]
1 = x3.

(3) x
[p]
1 = x4.

(4) x
[p]
1 = x3, x[p]

2 = x4.
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(5) x
[p]
3 = x4.

(6) x
[p]
3 = x4, x[p]

2 = x3.
(7) x

[p]
4 = x3.

(8) x
[p]
4 = x3, x[p]

2 = x4.

• If L = 〈x1, x2, x3, x4 | [x1, x2] = x3, [x1, x3] = x4〉, then
(1) Trivial p-map;
(2) x

[p]
1 = x4.

(3) x
[p]
3 = x4.

(4) x
[p]
2 = x4.

As mentioned in the introduction, by using a cohomological method different from 
ours, a classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect 
fields of characteristic p ≥ 5 was proposed by Darijani and Usefi in [3]. In their approach, 
the authors start with a 5-dimensional nilpotent Lie algebra H, a central element z ∈ H

and then aim to find all possible p-maps on H such that z[p] = 0. For this purpose, they 
consider the Lie algebra L = H/〈z〉 and all possible p-maps on L and then try to construct 
all 1-dimensional central extensions of L that lead to H by choosing θ = (φ, ω) ∈ Z2

∗(L, F)
such that Lθ is isomorphic to H as a Lie algebra. Unfortunately, some crucial arguments 
used in that paper are not correct. We briefly explain the main problems. Indeed, in [3], 
the following lemma is proved:

Lemma 2.3 ([3], Lemma 4.1). Let F be a perfect field of characteristic p ≥ 5. Let K = L5,2

and [p] : K → K a p-map on K such that x[p]
3 = 0. Let L = K

M , where M = 〈x3〉F . Then 
K ∼= Lθ, where θ = (Δ12, ω) ∈ Z2

∗(L, F).

Now, let S be the 4-dimensional abelian restricted Lie algebra with basis {x1, x2, x3, x4}
and p-map defined by x[p]

1 = x2, x[p]
2 = x

[p]
3 = x

[p]
4 = 0. Let φ = aΔ12 + bΔ13 + cΔ14 +

dΔ23 + eΔ24 + fΔ34. In Section 4.1 of [3], by using Lemma 2.3, it is claimed that since 
a = φ(x1, x2) = 0, then L5,2 cannot be obtained from S. This conclusion is not true. For 
instance, for θ = (Δ34, 0) ∈ Z2(L, F), the central extension Sθ is clearly isomorphic to 
L5,2 as an ordinary Lie algebra. Similar invalid arguments also occur in other parts of [3]
(see for instance the applications of Lemma 5.1 in Section 5 and Lemma 10.1 in Section 
10). As a consequence, the classification of Darijani and Usefi lacks of several restricted 
Lie algebras.

3. L abelian

In this section we focus on the central extensions of an abelian 4-dimensional restricted 
Lie algebra L := 〈x1, x2, x3, x4〉F by a 1-dimensional vector space V = Fx5. Note that the 
automorphism group Aut(L) of L as an ordinary Lie algebra consists of all the invertible 
matrices
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A =

⎛
⎜⎝
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎠.

According to Theorem 2.2, up to isomorphisms, the possible p-maps on L are the fol-
lowing:

1. Trivial p-map;
2. x[p]

1 = x2;
3. x[p]

1 = x2, x[p]
3 = x4;

4. x[p]
1 = x2, x[p]

2 = x3;
5. x[p]

1 = x2, x[p]
2 = x3, x[p]

3 = x4.

In the sequel we will freely use the following property

Remark 3.1. Let G be a group acting on the sets A and B. Consider the action of G
on A × B defined by g · (a, b) = (ga, gb), for all g ∈ G, a ∈ A, b ∈ B. Let S be an 
orbit representative system of the action of G on A. For every α ∈ S, let Jα be an orbit 
representative system of the action of the stabilizer Gα of α on B. Then {(α, β)| α ∈ S, 
β ∈ Jα} is an orbit representative system of the action of G on A ×B.

3.1. Strongly Abelian case

We deal with the central extensions of a 4-dimensional strongly abelian restricted Lie 
algebra L over an algebraically closed field F of characteristic p > 3 by a 1-dimensional 
vector space V . This will also serve as a guiding example showing how the computations 
can be performed in the remaining cases.

Let L be the abelian 4-dimensional restricted Lie algebra with trivial p-map. Then 
the restricted automorphism group Autp(L) of L is clearly given by

Autp(L) = GL(4,F).

Thus, Autp(L) consists of all matrices

A =

⎛
⎜⎝
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎠

with detA �= 0. Moreover, a basis for H2
∗(L, F) is given by the following elements (see 

Section 2 for the definition of the Δij):

[(Δ12, 0)], [(Δ13, 0)], [(Δ14, 0)], [(Δ23, 0)], [(Δ24, 0)], [(Δ34, 0)], [(0, f1)], [(0, f2)],

[(0, f3)], [(0, f4)].
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Let [(φ, ω)] ∈ H2
∗ (L, F). By Remark 3.1, in order to determine the orbits of Autp(L)

on H2
∗ (L, F), in a first stage we will only concern with the action of Autp(L) on the φ’s, 

regardless the ω’s. This allows to focus on elements of the form [(φi, ω)], where the φi are 
of a particularly convenient special form. In a second stage, for every φi, we determine 
the orbit representatives of the action on the ω’s by the subgroup of Autp(L) consisting 
of the restricted automorphisms A such that Aφi = φi.

By symmetry, without loss of generality we need only to consider the following cases:
C.1 φ = aΔ12 + bΔ13 + cΔ14 + dΔ23 + eΔ24 + fΔ34, where a, b, c ∈ F× = F \ {0},
C.2 φ = aΔ12 + bΔ13 + cΔ14 + dΔ23 + eΔ24 + fΔ34, where a, b, d ∈ F×,
C.3 φ = aΔ12 + bΔ13 + cΔ14 + dΔ23 + eΔ24 + fΔ34, where a, b, e ∈ F×,
C.4 φ = aΔ12 + fΔ34, a, f ∈ F×,
C.5 φ = aΔ12 + bΔ13, a, b ∈ F×,
C.6 φ = aΔ12, a ∈ F×,
C.7 φ = 0.

Indeed, for every φ ∈ Z2(L, F) one can easily reduce to one of the previous cases by 
means of a suitable restricted automorphism. For instance, if φ = aΔ12 + bΔ13 + cΔ14 +
dΔ23 + eΔ24 + fΔ34, where a, d, e ∈ F×, by considering

A =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ∈ Autp(L),

one has Aφ = −aΔ12 + dΔ13 + eΔ14 + bΔ23 + cΔ24 + fΔ34, which is of the form C.1 in 
the previous list.

We will then consider separately each of these cases.

3.1.1. Case C.1
Let λ1 = a−1b−1d − b−1c−1f + a−1c−1e ∈ F . If λ1 �= 0, take

A =

⎛
⎜⎝

1 1 + b−1c−1f a−1b−1d λ−1(a−1b−1d + b−1c−1f)
0 0 −a−1 −a−1λ−1

0 b−1 b−1 0
0 0 0 c−1λ−1

⎞
⎟⎠ ∈ Autp(L).

Then by (2) we have

Aφ =

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0
1

⎞
⎟⎟⎟⎟⎠ .

On the other hand, if λ1 = 0, by considering



N. Maletesta, S. Siciliano / Journal of Algebra 634 (2023) 755–789 765
A =

⎛
⎜⎝

1 1 + b−1c−1f a−1b−1d (a−1b−1d + b−1c−1f)
0 0 −a−1 −a−1

0 b−1 b−1 0
0 0 0 c−1

⎞
⎟⎠ ∈ Autp(L),

by (2) one has

Aφ =

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ .

Therefore, in this case [(φ, ω)] belongs to an orbit represented by [(φ′, ω′)], where φ′ is 
one of the following:

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0
1

⎞
⎟⎟⎟⎟⎠ .

Cases C.2 and C.3 can be managed in a similar way and yield the same orbits.

3.1.2. Case C.4
Consider A = diag(a−1, 1, 1, f−1) ∈ Autp(L). Then the action (2) gives

Aφ =

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0
1

⎞
⎟⎟⎟⎟⎠.

3.1.3. Case C.5
Consider

A =

⎛
⎜⎝

1 0 0 0
0 a−1 −a−1b 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ∈ Autp(L).

Then the action (2) gives

Aφ =

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠.
0
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Cases C.6 and C.7 are obvious, so we conclude that the representatives for the Autp(L)-
action on H2

∗ (L, F) are of the form [(φ, ω)], where φ is one of the following

φ1 =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ , φ2 =

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ , φ3 =

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0
1

⎞
⎟⎟⎟⎟⎠.

Case φ1 = (0, 0, 0, 0, 0, 0)T . In this case, we obviously have that Aφ = φ for every 
A ∈ Autp(L). Let ω = αf1 + βf2 + γf3 + δf4. Without loss of generality, it is enough to 
consider the following subcases:

1. α = β = γ = δ = 0.
2. α ∈ F×, β = γ = δ = 0.
3. α, β ∈ F×, γ = δ = 0.
4. α, β, γ ∈ F×, δ = 0.
5. α, β, γ, δ ∈ F×.

In fact, any other case can be reduced to one of the previous cases via a suitable restricted 
automorphism by using the action (3). Clearly, Subcase 1 leads to the class represented 
by (0, 0, 0, 0)T . Suppose that Subcase 2 holds. Consider the restricted automorphism

A = diag(α− 1
p , 1, 1, 1) ∈ Autp(L).

Then from (3) we have

Aω =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠.

If Subcase 3 holds, then from (3) we have

Aω =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎝
α− 1

p −β
1
p 0 0

0 α
1
p 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ Autp(L).

Next, suppose that Subcase 4 holds. Then

Aω =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎝
α− 1

p −α− 1
p −α− 1

p 0
0 β− 1

p 0 0
0 0 γ− 1

p 0

⎞
⎟⎟⎠ ∈ Autp(L).
0 0 0 1
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If Subcase 5 holds, then

Aω =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎜⎝
α− 1

p −α− 1
p −α− 1

p −α− 1
p

0 β− 1
p 0 0

0 0 γ− 1
p 0

0 0 0 δ−
1
p

⎞
⎟⎟⎟⎠ ∈ Autp(L).

Therefore, the set of ω’s such that [(0, ω)] is an orbit representative of the Autp(L)-action 
on H2

∗ (L, F) is as follows:
⎛
⎜⎝

0
0
0
0

⎞
⎟⎠ , 

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠.

Case φ2 = (1, 0, 0, 0, 0, 0)T . For every A ∈ Autp(L), in order to have Aφ = φ the 
following conditions must be satisfied:

a11a22 − a12a21 = 1;

a11a23 − a21a13 = 0;

a11a24 − a21a14 = 0;

a12a23 − a22a13 = 0;

a12a24 − a22a14 = 0;

a13a24 − a23a14 = 0.

Without loss of generality, we need only to consider the following cases:
1. α = β = γ = δ = 0;
2. α ∈ F×, β = γ = δ = 0;
3. γ ∈ F×, α = β = δ = 0;
4. α, β ∈ F×, γ = δ = 0;
5. γ, δ ∈ F×, α = β = 0;
6. α, γ ∈ F×, β = δ = 0;
7. α, β, γ ∈ F×, δ = 0;
8. α, γ, δ ∈ F×, β = 0;
9. α, β, γ, δ ∈ F×.

Clearly, the first case leads to (0, 0, 0, 0)T . If Subcase 2 holds, then by (3) we have

Aω =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , where A = diag(α− 1

p , α
1
p , 1, 1) ∈ Autp(L).

In Subcase 3 we have
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Aω =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , where A = diag(1, 1, γ− 1

p , 1) ∈ Autp(L).

Assume now that Subcase 4 holds. Then

Aω =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎝
α− 1

p −β
1
p 0 0

0 α
1
p 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ Autp(L).

Consider now Subcase 5. We have

Aω =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 γ− 1

p −δ
1
p

0 0 0 γ
1
p

⎞
⎟⎟⎠ ∈ Autp(L).

If Subcase 6 holds, then

Aω =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , where A = diag(α− 1

p , α
1
p , γ− 1

p , γ
1
p ) ∈ Autp(L).

Next, suppose that Subcase 7 holds. Then

Aω =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎝
α− 1

p −β
1
p 0 0

0 α
1
p 0 0

0 0 γ− 1
p 0

0 0 0 1

⎞
⎟⎟⎠ ∈ Autp(L).

If Subcase 8 holds, then

Aω =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , where

⎛
⎜⎜⎜⎝
α− 1

p 0 0 0
0 α

1
p 0 0

0 0 γ− 1
p −δ

1
p

0 0 0 γ
1
p

⎞
⎟⎟⎟⎠ ∈ Autp(L).

Finally, suppose that Subcase 9 holds. Then (3) yields

Aω =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎜⎝
α

1
p −β

1
p 0 0

0 α
1
p 0 0

0 0 γ
1
p −δ

1
p

0 0 0 γ
1
p

⎞
⎟⎟⎟⎠ ∈ Autp(L).

Now, by (3), we have
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Â

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , where Â =

⎛
⎜⎝

1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1

⎞
⎟⎠ ∈ Autp(L).

We conclude that the ω′s such that [(Δ12, ω)] are representatives of the orbits of the 
Autp(L)-action on H2

∗ (L, F) are the following
⎛
⎜⎝

0
0
0
0

⎞
⎟⎠, 

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠,

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠.

Case φ3 = (1, 0, 0, 0, 0, 1)T . One has that A ∈ Autp(L) satisfies Aφ = φ if and only if 
the following hold:

a11a22 − a12a21 + a31a42 − a41a32 = 1;

a11a23 − a21a13 + a31a43 − a41a33 = 0;

a11a24 − a21a14 + a31a44 − a41a34 = 0;

a12a23 − a22a13 + a32a43 − a42a33 = 0;

a12a24 − a22a14 + a32a44 − a42a34 = 0;

a13a24 − a23a14 + a33a44 − a34a43 = 1.

Without loss of generality, we need only to consider the following cases:

1. α = β = γ = δ = 0;
2. α ∈ F×, β = γ = δ = 0;
3. γ ∈ F×, α = β = δ = 0;
4. α, β ∈ F×, γ = δ = 0;
5. γ, δ ∈ F×, α = β = 0;
6. α, γ ∈ F×, β = δ = 0;
7. α, β, γ ∈ F×, δ = 0;
8. α, γ, δ ∈ F×, β = 0;
9. α, β, γ, δ ∈ F×.

Clearly, the first case leads to (0, 0, 0, 0)T . If Subcase 2 holds, then we deduce from
(3) that

Aω =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , where A = diag(α− 1

p , α
1
p , 1, 1) ∈ Autp(L).

Suppose that Subcase 3 holds. Then
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Aω =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , where A = diag(1, 1, γ− 1

p , γ
1
p ) ∈ Autp(L).

Next consider Subcase 4. We have

Aω =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎝
α− 1

p −β
1
p 0 0

0 α
1
p 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ Autp(L).

Assume now that Subcase 5 holds. Then

Aω =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 γ− 1

p −δ
1
p

0 0 0 γ
1
p

⎞
⎟⎟⎠ ∈ Autp(L).

Let ω̄ = (0, 0, 1, 0)T . Then by (3) we have

Āω̄ =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , where Ā =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ ∈ Autp(L).

Let Subcase 6 holds. Then we have

Aω =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , where A = diag(α− 1

p , α
1
p , γ− 1

p , γ
1
p ) ∈ Autp(L).

If Subcase 7 holds, then

Aω =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎜⎝
α− 1

p −β
1
p 0 0

0 α
1
p 0 0

0 0 γ− 1
p 0

0 0 0 γ
1
p

⎞
⎟⎟⎟⎠ ∈ Autp(L).

Now assume that Subcase 8 holds. Consider the restricted automorphism

Aω =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎜⎝
α− 1

p 0 0 0
0 α

1
p 0 0

0 0 γ− 1
p −δ

1
p

0 0 0 γ
1
p

⎞
⎟⎟⎟⎠ ∈ Autp(L).

Finally, assume that Subcase 9 holds. Then



N. Maletesta, S. Siciliano / Journal of Algebra 634 (2023) 755–789 771
Aω =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , where A =

⎛
⎜⎜⎜⎝
α− 1

p −β
1
p 0 0

0 α
1
p 0 0

0 0 γ− 1
p −δ

1
p

0 0 0 γ
1
p

⎞
⎟⎟⎟⎠ ∈ Autp(L).

We conclude that the set of ω’s such that [(Δ12 + Δ34, ω)] is a representative of the 
Autp(L)−action on H2

∗ (L, F) is as follows:
⎛
⎜⎝

0
0
0
0

⎞
⎟⎠, 

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, 

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠.

By summarizing, the central extensions obtained from a 4-dimensional strongly abelian 
restricted Lie algebra L by a 1-dimensional vector space V are the following:

• L1 = 〈x1, x2, x3, x4, x5〉;
• L2 = 〈x1, x2, x3, x4, x5| x[p]

1 = x5〉;
• L3 = 〈x1, x2, x3, x4, x5| [x1, x2] = x5〉;
• L4 = 〈x1, x2, x3, x4, x5| [x1, x2] = x5, x

[p]
1 = x5〉;

• L5 = 〈x1, x2, x3, x4, x5| [x1, x2] = x5, x
[p]
3 = x5〉;

• L6 = 〈x1, x2, x3, x4, x5| [x1, x2] = x5 = [x3, x4]〉;
• L7 = 〈x1, x2, x3, x4, x5| [x1, x2] = x5 = [x3, x4], x[p]

1 = x5〉;
• L8 = 〈x1, x2, x3, x4, x5| [x1, x2] = x5 = [x3, x4], x[p]

1 = x5, x
[p]
3 = x5〉.

3.2. p-map x[p]
1 = x2

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎝
a11 0 0 0
a21 ap11 a23 a24
a31 0 a33 a34
a41 0 a43 a44

⎞
⎟⎠.

Basis of H2
∗ (L, F):

[(Δ13, 0)], [(Δ14, 0)], [(Δ34, 0)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L9 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2〉;

• L10 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2, x

[p]
3 = x5〉;

• L11 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2, x

[p]
2 = x5〉;
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• L12 = 〈x1, x2, x3, x4, x5| [x3, x4] = x5, x
[p]
1 = x2〉;

• L13 = 〈x1, x2, x3, x4, x5| [x3, x4] = x5, x
[p]
1 = x2, x

[p]
3 = x5〉;

• L14 = 〈x1, x2, x3, x4, x5| [x3, x4] = x5, x
[p]
1 = x2, x

[p]
2 = x5〉;

• L15 = 〈x1, x2, x3, x4, x5| [x3, x4] = x5, x
[p]
1 = x2, x

[p]
2 = x5, x[p]

3 = x5〉;
• L16 = 〈x1, x2, x3, x4, x5| [x1, x4] = x5, x

[p]
1 = x2〉;

• L17 = 〈x1, x2, x3, x4, x5| [x1, x4] = x5, x
[p]
1 = x2, x

[p]
3 = x5〉;

• L18 = 〈x1, x2, x3, x4, x5| [x1, x4] = x5, x
[p]
1 = x2, x

[p]
2 = x5〉;

• L19 = 〈x1, x2, x3, x4, x5| [x1, x4] = x5, x
[p]
1 = x2, x

[p]
4 = x5〉.

3.3. p-map x[p]
1 = x2, x[p]

3 = x4

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎝
a11 0 a13 0
a21 ap11 a23 ap13
a31 0 a33 0
a41 ap31 a43 ap33

⎞
⎟⎟⎠.

Basis of H2
∗ (L, F):

[(Δ13, 0)], [(0, f2)], [(0, f4)].

Central extensions:

• L20 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2, x

[p]
3 = x4〉;

• L21 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2, x

[p]
2 = x5, x

[p]
3 = x4〉;

• L22 = 〈x1, x2, x3, x4, x5| [x1, x3] = x5, x
[p]
1 = x2, x

[p]
3 = x4〉;

• L23 = 〈x1, x2, x3, x4, x5| [x1, x3] = x5, x
[p]
1 = x2, x

[p]
2 = x5, x[p]

3 = x4〉.

3.4. p-map x[p]
1 = x2, x[p]

2 = x3

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎝
a11 0 0 0
a21 ap11 0 0
a31 ap21 ap

2

11 a34
a41 0 0 a44

⎞
⎟⎟⎠.

Basis of H2
∗ (L, F):

[(Δ14, 0)], [(0, f3)], [(0, f4)].
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Central extensions:

• L24 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2, x

[p]
2 = x3〉;

• L25 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2, x

[p]
2 = x3, x

[p]
3 = x5〉;

• L26 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2, x

[p]
2 = x3, x

[p]
4 = x5〉;

• L27 = 〈x1, x2, x3, x4, x5| [x1, x4] = x5, x
[p]
1 = x2, x

[p]
2 = x3〉;

• L28 = 〈x1, x2, x3, x4, x5| [x1, x4] = x5, x
[p]
1 = x2, x

[p]
2 = x3, x

[p]
3 = x5〉;

• L29 = 〈x1, x2, x3, x4, x5| [x1, x4] = x5, x
[p]
1 = x2, x

[p]
2 = x3, x

[p]
4 = x5〉.

3.5. p-map x[p]
1 = x2, x[p]

2 = x3, x[p]
3 = x4

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎝
a11 0 0 0
a21 ap11 0 0
a31 ap21 ap

2

11 0
a41 ap31 ap

2

21 ap
3

11

⎞
⎟⎟⎠.

Basis of H2
∗ (L, F):

[(0, f4)].

Central extensions:

• L30 = 〈x1, x2, x3, x4, x5| x[p]
1 = x2, x

[p]
2 = x3, x

[p]
3 = x4〉;

• L31 = 〈x1, x2, x3, x4, x5|x[p]
1 = x2, x

[p]
2 = x3, x

[p]
3 = x4, x

[p]
4 = x5〉.

4. Case L = 〈x1, x2, x3, x4|[x1, x2] = x3〉

In this section we focus on the 1-dimensional central extensions of

L := L4,2 = 〈x1, x2, x3, x4|[x1, x2] = x3〉F .

The automorphism group Aut(L) of L as an ordinary Lie algebra consists of the invertible 
matrices of the form

A =

⎛
⎜⎝
a11 a12 0 0
a21 a22 0 0
a31 a32 r a34
a41 a42 0 a44

⎞
⎟⎠,

where r = a11a22 − a12a21.
According to Theorem 2.2, up to isomorphisms, the possible p-maps on L are the 

following:
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(1) x
[p]
1 = x

[p]
2 = x

[p]
3 = x

[p]
4 = 0.

(2) x
[p]
1 = x3, x

[p]
2 = x

[p]
3 = x

[p]
4 = 0.

(3) x
[p]
1 = x4, x

[p]
2 = x

[p]
3 = x

[p]
4 = 0.

(4) x
[p]
1 = x3, x

[p]
2 = x4, x[p]

3 = x
[p]
4 = 0.

(5) x
[p]
3 = x4, x

[p]
1 = x

[p]
2 = x

[p]
4 = 0.

(6) x
[p]
3 = x4, x

[p]
2 = x3, x[p]

1 = x
[p]
4 = 0.

(7) x
[p]
4 = x3, x

[p]
1 = x

[p]
2 = x

[p]
3 = 0.

(8) x
[p]
4 = x3, x

[p]
2 = x4, x[p]

1 = x
[p]
3 = 0.

We are going to consider these cases, separately, in the next subsections.

4.1. p−map x[p]
1 = x

[p]
2 = x

[p]
3 = x

[p]
4 = 0

Autp(L) = Aut(L).
Basis of H2

∗ (L, F):

[(Δ13, 0)], [(Δ14, 0)], [(Δ23, 0)], [(Δ24, 0)], [(0, f1)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L32 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3〉;
• L33 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x

[p]
4 = x5〉;

• L34 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
3 = x5〉;

• L35 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x5〉;

• L36 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5〉;
• L37 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x

[p]
3 = x5, x

[p]
4 = x5〉;

• L38(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x
[p]
1 = αx5, x

[p]
3 = x5〉, where 

α ∈ F ;
• L39 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x

[p]
4 = x5〉;

• L40 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x
[p]
2 = x5〉;

• L41 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x
[p]
1 = x5〉;

• L42 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5〉;
• L43 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x

[p]
4 = x5〉;

• L44 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
3 = x5〉;

• L45 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
1 = x5〉;

• L46 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
2 = x5, x

[p]
4 = x5〉;

• L47 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
2 = x5〉;

• L48 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, [x2, x3] = x5〉;
• L49 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, [x2, x3] = x5, x

[p]
4 = x5〉;
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• L50 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, [x2, x3] = x5, x
[p]
3 = x5〉;

• L51 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, [x2, x3] = x5, x
[p]
2 = x5〉;

• L52 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, [x2, x3] = x5, x
[p]
1 = x5〉.

4.2. p-map x[p]
1 = x3

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎝
a11 0 0 0
a21 ap−1

11 0 0
a31 a32 ap11 a34
a41 a42 0 a44

⎞
⎟⎟⎠.

Basis of H2
∗ (L, F):

[(Δ14, 0)], [(Δ24, 0)], [(0, f1)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L53 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x3〉;

• L54 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x3, x

[p]
4 = x5〉;

• L55 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x3, x

[p]
3 = x5〉;

• L56 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x3, x

[p]
2 = x5〉;

• L57 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x3 + x5〉;

• L58 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x4] = x5, x
[p]
1 = x3〉;

• L59(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x4] = x5, x
[p]
1 = x3 + αx5, x

[p]
4 = x5〉, 

where α ∈ F ;
• L60 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x4] = x5, x

[p]
1 = x3, x

[p]
3 = x5〉;

• L61(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x4] = x5, x
[p]
1 = x3 + x5, x

[p]
2 = αx5〉, 

where α ∈ F ;
• L62 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x4] = x5, x

[p]
1 = x3, x

[p]
2 = x5〉;

• L63 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
1 = x3〉;

• L64(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
1 = x3, x

[p]
2 = αx5, x

[p]
4 =

x5〉, where α ∈ F ;
• L65 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x

[p]
1 = x3, x

[p]
3 = x5〉;

• L66 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
1 = x3, x

[p]
2 = x5〉;

• L67 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
1 = x3 + x5〉.

4.3. p-map x[p]
1 = x4

Autp(L): Invertible matrices of the form
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A =

⎛
⎜⎝
a11 0 0 0
a21 a22 0 0
a31 a32 a11a22 0
a41 a42 0 ap11

⎞
⎟⎠.

Basis of H2
∗ (L, F):

[(Δ13, 0)], [(Δ23, 0)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L68 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x4〉;

• L69 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x4, x

[p]
4 = x5〉;

• L70 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x4, x

[p]
3 = x5〉;

• L71 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x4, x

[p]
3 = x5, x

[p]
4 = x5〉;

• L72 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x4, x

[p]
2 = x5〉;

• L73 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x
[p]
1 = x4〉;

• L74 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x
[p]
1 = x4, x

[p]
4 = x5〉;

• L75(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x
[p]
1 = x4, x

[p]
3 = x5, x

[p]
4 =

αx5〉, where α ∈ F ;
• L76 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x2, x3] = x5, x

[p]
1 = x4, x

[p]
2 = x5〉;

• L77 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5, x
[p]
1 = x4〉;

• L78(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5, x
[p]
1 = x4, x

[p]
3 = αx5, x

[p]
4 =

x5〉, where α ∈ F ;
• L79(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5, x

[p]
1 = x4, x

[p]
2 = αx5, x

[p]
3 =

x5〉, where α ∈ F ;
• L80 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5, x

[p]
1 = x4, x

[p]
2 = x5〉.

4.4. p-map x[p]
1 = x3, x[p]

2 = x4

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎝
a11 a12 0 0
0 ap−1

11 0 0
a31 a32 ap11 ap12

a41 a42 0 ap
2−p

11

⎞
⎟⎟⎠.

Basis of H2
∗ (L, F):

[(0, f1)], [(0, f3)], [(0, f4)].

Central extensions:

• L81 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x[p]
1 = x3, x[p]

2 = x4〉;
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• L82 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x[p]
1 = x3 + x5, x[p]

2 = x4〉;
• L83 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x[p]

1 = x3, x[p]
2 = x4, x[p]

3 = x5〉;
• L84 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x[p]

1 = x3, x[p]
2 = x4, x[p]

4 = x5〉.

4.5. p-map x[p]
3 = x4

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎝
a11 a12 0 0
a21 a22 0 0
0 0 r 0
a41 a42 0 rp

⎞
⎟⎠,

where r = a11a22 − a12a21.
Basis of H2

∗ (L, F):

[(Δ13, 0)], [(Δ23, 0)], [(0, f1)], [(0, f2)], [(0, f4)].

Central extensions:

• L85 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x[p]
3 = x4〉;

• L86 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x[p]
1 = x5, x[p]

3 = x4〉;
• L87 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x[p]

2 = x5, x[p]
3 = x4〉;

• L88 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x[p]
3 = x4, x[p]

4 = x5〉;
• L89 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5, x[p]

3 = x4〉;
• L90 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5 x

[p]
1 = x5, x[p]

3 = x4, x[p]
4 = x5〉;

• L91 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5 x
[p]
1 = x5, x[p]

3 = x4〉;
• L92 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5 x

[p]
2 = x5, x[p]

3 = x4, x[p]
4 = x5〉;

• L93 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5, x[p]
2 = x5, x[p]

3 = x4〉;
• L94 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x5, x[p]

3 = x4, x[p]
4 = x5〉.

4.6. p-map x[p]
2 = x3, x[p]

3 = x4

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎝
ap−1
22 a12 0 0
0 a22 0 0
0 0 ap22 0
a41 a42 0 ap

2

22

⎞
⎟⎟⎠.

Basis of H2
∗ (L, F):

[(0, f1)], [(0, f2)], [(0, f4)].
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Central extensions:

• L95 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
2 = x3, x

[p]
3 = x4〉;

• L96 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x5, x

[p]
2 = x3, x[p]

3 = x4〉;
• L97 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x

[p]
2 = x3 + x5, x

[p]
3 = x4〉;

• L98 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
2 = x3, x

[p]
3 = x4, x[p]

4 = x5〉.

4.7. p-map x[p]
4 = x3

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎝
a11 a12 0 0
a21 a22 0 0
a31 a32 r a34
0 0 0 a44

⎞
⎟⎠,

where r = a11a22 − a12a21 = ap44.
Basis of H2

∗ (L, F):

[(Δ14, 0)], [(Δ24, 0)], [(0, f1)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L99 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
4 = x3〉;

• L100 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x5, x

[p]
4 = x3〉;

• L101 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
3 = x5, x

[p]
4 = x3〉;

• L102 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = x5, x

[p]
4 = x3 + x5〉;

• L103 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
4 = x3 + x5〉;

• L104 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
4 = x3〉;

• L105(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
1 = αx5, x

[p]
4 = x3 + x5〉, 

where α ∈ F ;
• L106(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x

[p]
2 = αx5, x

[p]
4 = x3 + x5〉, 

where α ∈ F×;
• L107 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x

[p]
2 = x5, x

[p]
4 = x3〉;

• L108 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5, x
[p]
1 = x5, x

[p]
4 = x3〉;

• L109 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x4] = x5 x
[p]
3 = x5, x

[p]
4 = x3〉.

4.8. p-map x[p]
2 = x4, x[p]

4 = x3

Autp(L): Invertible matrices of the form
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A =

⎛
⎜⎜⎝
ap

2−1
22 a12 0 0
0 a22 0 0
a31 a32 ap

2

22 ap42
0 a42 0 ap22

⎞
⎟⎟⎠.

Basis of H2
∗ (L, F):

[(0, f1)], [(0, f3)], [(0, f4)].

Central extensions:

• L110 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
2 = x4, x

[p]
4 = x3〉;

• L111 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
2 = x4, x

[p]
3 = x5, x

[p]
4 = x3〉;

• L112(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x
[p]
1 = αx5, x

[p]
2 = x4, x

[p]
4 = x3 + x5〉, 

where α ∈ F ;
• L113 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, x

[p]
1 = x5, x

[p]
2 = x4, x

[p]
4 = x3〉.

5. Case L = 〈x1, x2, x3, x4| [x1, x2] = x3, [x1, x3] = x4〉

In this section we deal with the 1-dimensional central extensions of L := L4,3 =
〈x1, x2, x3, x4|[x1, x2] = x3, [x1, x3] = x4〉F . The automorphism group Aut(L) of L con-
sists of the invertible matrices of the form

A =

⎛
⎜⎝
a11 0 0 0
a21 a22 0 0
a31 a32 a11a22 0
a41 a42 a11a32 a2

11a22

⎞
⎟⎠.

According to Theorem 2.2, up to isomorphisms, the possible p-maps on L are the fol-
lowing:

(1) x
[p]
1 = x

[p]
2 = x

[p]
3 = x

[p]
4 = 0.

(2) x
[p]
1 = x4, x

[p]
2 = x

[p]
3 = x

[p]
4 = 0.

(3) x
[p]
3 = x4, x

[p]
2 = x

[p]
3 = x

[p]
4 = 0.

(4) x
[p]
2 = x4, x

[p]
1 = x

[p]
3 = x

[p]
4 = 0.

5.1. p-map x[p]
1 = x

[p]
2 = x

[p]
3 = x

[p]
4 = 0

Autp(L): Invertible matrices A of the form

A =

⎛
⎜⎝
a11 0 0 0
a21 a22 0 0
a31 a32 a11a22 0

2

⎞
⎟⎠.
a41 a42 a11a32 a11a22
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Basis of H2
∗ (L, F):

[(Δ14, 0)], [(Δ23, 0)], [(0, f1)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L114 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4〉;
• L115 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x

[p]
4 = x5〉;

• L116 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
3 = x5〉;

• L117 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
2 = x5〉;

• L118 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = x5〉;

• L119 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5〉;
• L120 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x

[p]
4 = x5〉;

• L121 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
3 = x5〉;

• L122 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
2 = x5〉;

• L123 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 = x5〉;

• L124 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5〉;
• L125 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, x

[p]
4 = x5〉;

• L126 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, x
[p]
3 = x5〉;

• L127 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, x
[p]
2 = x5〉;

• L128 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, x
[p]
1 = x5〉;

• L129 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5〉;
• L130(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] =

x5, x
[p]
4 = αx5〉, where α ∈ F×;

• L131(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] =
x5, x

[p]
3 = αx5〉, where α ∈ F×;

• L132(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] =
x5, x

[p]
2 = αx5〉, where α ∈ F×;

• L133(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] =
x5, x

[p]
1 = αx5〉, where α ∈ F×.

5.2. p-map x[p]
1 = x4

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎝
a11 0 0 0
a21 ap−2

11 0 0
a31 a32 ap−1

11 0
a a a a ap

⎞
⎟⎟⎠.
41 42 11 32 11
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Basis of H2
∗ (L, F):

[(Δ23, 0)], [(0, f1)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L134 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = x4〉;

• L135 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = x4, x

[p]
4 = x5〉;

• L136 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = x4, x

[p]
3 = x5〉;

• L137 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = x4, x

[p]
2 = x5〉;

• L138 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = x4 + x5〉;

• L139 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 = x4〉;

• L140(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 =

x4, x
[p]
4 = αx5〉, where α ∈ F×;

• L141(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 =

x4, x
[p]
3 = αx5〉, where α ∈ F×;

• L142(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 =

x4, x
[p]
2 = αx5〉, where α ∈ F×;

• L143(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 = x4 +

αx5〉, where α ∈ F×.

5.3. p-map x[p]
3 = x4

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎜⎝

a11 0 0 0
a21 a

2−p
p−1
11 0 0

0 0 a
1

p−1
11 0

a41 a42 0 a
p

p−1
11

⎞
⎟⎟⎟⎠.

Basis of H2
∗ (L, F):

[(Δ23, 0)], [(0, f1)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L144 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
3 = x4〉;

• L145(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
3 = x4 + αx5, x

[p]
4 = x5〉, 

where α ∈ F ;
• L146 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x

[p]
3 = x4 + x5〉;

• L147(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = x5, x

[p]
3 = x4 + αx5〉, 

where α ∈ F ;
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• L148(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
2 = x5, x

[p]
3 = x4 + αx5〉, 

where α ∈ F ;
• L149 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x

[p]
2 = x5, x

[p]
3 = x4〉;

• L150 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = x5, x

[p]
3 = x4〉;

• L151 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
3 = x4〉;

• L152(α, β) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
3 = x4 +

αx5, x
[p]
4 = βx5〉, where (α, β) ∈ F2 \ (0, 0);

• L153(α, β) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 =

βx5, x
[p]
3 = x4 + αx5〉, where (α, β) ∈ F2 \ (0, 0);

• L154(α, β) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
2 =

βx5, x
[p]
3 = x4 + αx5〉, where (α, β) ∈ F2 \ (0, 0);

• L155(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 =

αx5, x
[p]
3 = x4〉, where α, ∈ F×.

5.4. p-map x[p]
2 = x4

Autp(L): Invertible matrices of the form

A =

⎛
⎜⎜⎜⎝
a

p−1
2

22 0 0 0
0 a22 0 0
a31 a32 a

p+1
2

22 0
a41 a42 a

p−1
2

22 a32 ap22

⎞
⎟⎟⎟⎠.

Basis of H2
∗ (L, F):

[(Δ23, 0)], [(0, f1)], [(0, f2)], [(0, f3)], [(0, f4)].

Central extensions:

• L156 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
2 = x4〉;

• L157 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
2 = x4, x

[p]
4 = x5〉;

• L158 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
2 = x4, x

[p]
3 = x5〉;

• L159(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x
[p]
1 = αx5, x

[p]
2 = x4 + x5〉, 

where α ∈ F ;
• L160 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, x

[p]
1 = x5, x

[p]
2 = x4〉;

• L161 = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
2 = x4〉;

• L162(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
2 =

x4, x
[p]
4 = αx5〉, where α ∈ F×;

• L163(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
2 =

x4, x
[p]
3 = αx5〉, where α ∈ F×;
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• L164(α, β) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 =

βx5, x
[p]
2 = x4 + αx5〉, where (α, β) ∈ F2 \ (0, 0).

6. Detecting isomorphisms

In the previous sections we determined the 1-dimensional central extensions of the 4-
dimensional p-nilpotent restricted Lie algebras. This gives a complete (but redundant) list 
of isomorphism classes of p-nilpotent restricted Lie algebras of dimension 5. In order to 
eliminate redundancies, we proceeded in the following way. We first separated the classes 
according with the 5-tuple of invariants (dimL′, dimZ(L), dimL[p], dimL[p]2 , dimL[p]3), 
where L[p]i denotes the restricted subalgebra generated by all the elements x[p]i . Now, 
if two restricted Lie algebras K1 and K2 have different 5-tuple of invariants, then it is 
clear that K1 � K2. On the other hand, if K1 and K2 have the same invariants, we first 
established whether they are isomorphic as ordinary Lie algebras. If so, by means of a 
suitable change of basis, we reduced to one of the 9 Lie algebras listed in Theorem 2.1
and, finally, we looked for possible restricted isomorphisms f : K1 → K2. This gives rise 
to the study of a set of polynomial equations. Of course, the given restricted Lie algebras 
are isomorphic if and only if such a system admits solutions. Here the assumption that 
the ground field is algebraically closed has been used in a crucial way. As it would be 
impractical to include here all the straightforward computations needed to detect and 
remove isomorphic p-nilpotent restricted Lie algebras, this has been omitted from this 
work. However, we illustrate by an example how the problem has been solved. Consider

• L140(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
1 =

x4, x
[p]
4 = αx5〉, α ∈ F×;

• L152(α, β) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
3 = x4 +

αx5, x
[p]
4 = βx5〉, α ∈ F , β ∈ F×;

• L162(α) = 〈x1, x2, x3, x4, x5| [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, x
[p]
2 =

x4, x
[p]
4 = αx5〉, α ∈ F×.

If L is any of the previous restricted Lie algebras, then we have dimL′ = 3, dimZ(L) = 2, 
dimL[p] = 2, dimL[p]2 = 1, dimL[p]3 = 0. Clearly, all these restricted Lie algebras are 
isomorphic to L5,9 as ordinary Lie algebras. Therefore, Aut(L) is the set of the invertible 
matrices of the form

A =

⎛
⎜⎜⎜⎝

a11 a12 0 0 0
a21 a22 0 0 0
a31 a32 r 0 0
a41 a42 a11a32 − a31a12 a11r a12r
a51 a52 a21a32 − a31a22 a21r a22r

⎞
⎟⎟⎟⎠,

where r = a11a22 − a21a12.
We first show that L140(α) ∼= L140(1). Indeed, let f1 : L140(α) → L140(1) be the 

element in Aut(L) defined by the following conditions: f1(x1) = α
1

p2−2p+3x1, f1(x2) =
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α
p−2

p2−2p+3x2, f1(x3) = α
p−1

p2−2p+3x3, f1(x4) = α
p

p2−2p+3x4 and f1(x5) = α
2p−3

p2−2p+3x5. Then it 
is easy to verify that f1 is a restricted isomorphism. Similarly, let f2 : L162(α) → L162(1)
be the element in Aut(L) defined by the following conditions: f2(x1) = α

p−1
2p2−p−3x1, 

f2(x2) = α
2

2p2−p−3x2, f2(x3) = α
p+1

2p2−p−3x3, f2(x4) = α
2p

2p2−p−3x4, f2(x5) = α
p+3

2p2−p−3x5. 
Then one can check that f2 is a restricted isomorphism, so L162(α) ∼= L162(1).

Finally, we consider f3 : L152(α, β) → L152(0, 1) ∈ Aut(L) defined by f3(x1) =
β

p−1
p2+p−3x1 − αβ

2−p

p2+p−3x2, f3(x2) = β
2−p

p2+p−3x2, f3(x3) = β
1

p2+p−3x3, f3(x4) =
β

p

p2+p−3x4 − αβ
3−p

p2+p−3x5, f3(x5) = β
3−p

p2+p−3x5. Then f3 is a restricted isomorphism 
and so L152(α, β) ∼= L152(0, 1).

We now show that the restricted Lie algebras L140(1), L152(0, 1) and L162(1) are 
pairwise non-isomorphic. Denote by [p]1, [p]2, [p]3, respectively, the p-maps of L140(1), 
L152(0, 1), L162(1). Let f : L152(0, 1) → L162(1) ∈ Aut(L) and suppose by contradiction 
that f is restricted. Then we must have 0 = f(x[p]2

1 ) = f(x1)[p]3 = ap21x4 + ap41x5 and 
0 = f(x[p]2

2 ) = f(x2)[p]3 = ap22x4 + ap42x5. Consequently, we have a21 = a22 = 0, thus f
is not bijective, a contradiction. Hence L152(0, 1) � Lp

162(1).
Let h : L152(0, 1) → L140(1) ∈ Aut(L) and suppose by contradiction that h

is restricted. Then we must have 0 = h(x[p]2
1 ) = h(x1)[p]1 = ap11x4 + ap41x5 and 

0 = h(x[p]2
2 ) = h(x2)[p]1 = ap12x4 + ap42x5. It follows that a11 = a12 = 0, hence h is 

not bijective, a contradiction. Thus, L152(0, 1) � L162(1).
Finally, let g : L162(1) → L140(1) ∈ Aut(L) and suppose, if possible, that g is restricted. 
We must have 0 = g(x[p]3

1 ) = g(x1)[p]1 = ap11x4 + ap41x5 and 0 = g(x[p]3
5 ) = g(x5)[p]1 =

ap12r
px5. Then, as a11 = a12r = 0, g is not bijective, a contradiction. Therefore we have 

that L162(1) � L140(1).
We now re-list the central extensions taking into account of the isomorphisms found 

by the just described method. The title of each subsection will refer to the underlying 
Lie algebra L5,i to which the central extensions are isomorphic as ordinary Lie algebras 
(cf. Theorem 2.1).

6.1. Underlying Lie algebra L5,1

L1; L2 ∼= L9; L10 ∼= L20; L11 ∼= L24; L21 ∼= L26; L25 ∼= L30; L31.

6.2. Underlying Lie algebra L5,2

L3 ∼= L32; L4 ∼= L53; L5 ∼= L99; L12 ∼= L33 ∼= L103; L13 ∼= L54 ∼= L102;

L14 ∼= L15; L16 ∼= L35 ∼= L57 ∼= L68; L17 ∼= L100; L18 ∼= L110; L19 ∼= L56 ∼= L81;

L22 ∼= L72 ∼= L82; L23 ∼= L113; L27 ∼= L69 ∼= L112(0); L28;

L29 ∼= L84 ∼= L112(α), α �= 0; L34 ∼= L85; L55 ∼= L95;

L70 ∼= L86 ∼= L87 ∼= L97; L71; L83 ∼= L96; L88; L98; L101; L111.
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6.3. Underlying Lie algebra L5,3

L36 ∼= L114; L37; L38(α) ∼= L144; L39; L40 ∼= L134; L41 ∼= L156;

L73 ∼= L117 ∼= L159(0); L74; L75(α) ∼= L75(1) ∼= L78(α′), α, α′ �= 0;

L75(0) ∼= L148(0) ∼= L149; L76 ∼= L137 ∼= L159(α), α �= 0;

L77 ∼= L118 ∼= L138; L78(0); L79(α) ∼= L147(0) ∼= L150; L80 ∼= L160;

L89 ∼= L116 ∼= L146; L90 ∼= L92 ∼= L94; L91 ∼= L136 ∼= L147(α), α �= 0;

L93 ∼= L158 ∼= L148(α), α �= 0; L115; L135; L145(α) ∼= L145(1), α �= 0;

L145(0); L157.

6.4. Underlying Lie algebra L5,4

L6; L7 ∼= L8.

6.5. Underlying Lie algebra L5,5

L48; L49; L50; L51; L52.

6.6. Underlying Lie algebra L5,6

L129; L130(α) ∼= L130(1); L131(α) ∼= L131(1);

L132(α) ∼= L132(1); L133(α) ∼= L133(1).

6.7. Underlying Lie algebra L5,7

L124; L125; L126; L127; L128.

6.8. Underlying Lie algebra L5,8

L42; L43 ∼= L46 ∼= L58 ∼= L61(0) ∼= L105(0); L44; L45 ∼= L63 ∼= L67;

L47 ∼= L104; L59(α) ∼= L106(α) ∼= L107; L60;

L61(α) ∼= L62 ∼= L64(α′) ∼= L105(α′′), α, α′′ �= 0; L65; L66 ∼= L108; L109.

6.9. Underlying Lie algebra L5,9

L119; L120; L121 ∼= L151 ∼= L152(α, 0) ∼= L153(α, 0) ∼= L154(α, 0);

L122 ∼= L139 ∼= L143(α) ∼= L164(α, 0); L123 ∼= L161; L140(α) ∼= L140(1);

L141(α) ∼= L141(1); L142(α) ∼= L142(1) ∼= L164(α, β), β �= 0;
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L152(α, β) ∼= L152(0, 1), β �= 0;

L153(α, β) ∼= L153(0, 1) ∼= L154(α′, β′) ∼= L155(α′′) ∼= L163(α′′′), β, β′ �= 0;

L162(α) ∼= L162(1).

7. The classification theorem

In the previous sections we found the 1-dimensional central extensions of the 4-
dimensional p-nilpotent restricted Lie algebras and removed isomorphic copies from the 
list. Thus we are now in position to state the main result of this paper. Let [p]1 and [p]2
be two p-maps on a Lie algebra L defined over a field of characteristic p > 0. Following 
[16], we will say that [p]1 and [p]2 are equivalent if the restricted Lie algebras (L, [p]1)
and (L, [p]2) are isomorphic. We have

Theorem 7.1. Let L be a p-nilpotent restricted Lie algebra of dimension 5 over an alge-
braically closed field F of characteristic p > 3. Then the equivalence classes of the p-maps 
on L are as follows:

• If L = L5,1 = 〈x1, . . . , x5〉 is abelian, then

(a) Trivial p-map;
(b) x

[p]
1 = x2;

(c) x
[p]
1 = x2, x

[p]
3 = x4;

(d) x
[p]
1 = x2, x

[p]
2 = x3;

(e) x
[p]
1 = x2, x

[p]
2 = x3, x

[p]
4 = x5;

(f) x
[p]
1 = x2, x

[p]
2 = x3, x

[p]
3 = x4;

(g) x
[p]
1 = x2, x

[p]
2 = x3, x

[p]
3 = x4, 

x
[p]
4 = x5.

• If L = L5,2 = 〈x1, . . . , x5 | [x1, x2] = x3〉, then

(a) Trivial p-map;
(b) x

[p]
1 = x3;

(c) x
[p]
4 = x3;

(d) x
[p]
4 = x5;

(e) x
[p]
1 = x3, x

[p]
4 = x5;

(f) x
[p]
4 = x5, x[p]

5 = x3;
(g) x

[p]
1 = x4;

(h) x
[p]
1 = x5, x

[p]
4 = x3;

(i) x
[p]
2 = x4, x

[p]
4 = x3;

(j) x
[p]
1 = x3, x

[p]
2 = x4;

(k) x
[p]
1 = x4, x

[p]
2 = x5;

(l) x
[p]
1 = x5, x

[p]
2 = x4, x

[p]
4 = x3;

(m) x
[p]
1 = x4, x

[p]
4 = x5;

(n) x
[p]
1 = x4, x

[p]
4 = x5, x

[p]
5 = x3;

(o) x
[p]
1 = x3, x

[p]
2 = x4, x

[p]
4 = x5;

(p) x
[p]
3 = x4;

(q) x
[p]
2 = x3, x

[p]
3 = x4;

(r) x
[p]
1 = x4, x

[p]
3 = x5;

(s) x
[p]
1 = x4, x

[p]
3 = x5, x[p]

4 = x5;
(t) x

[p]
1 = x3, x

[p]
2 = x4, x

[p]
3 = x5;

(u) x
[p]
3 = x4, x

[p]
4 = x5;

(v) x
[p]
2 = x3, x

[p]
3 = x4, x

[p]
4 = x5;

(w) x
[p]
3 = x5, x

[p]
4 = x3.

(x) x
[p]
2 = x4, x

[p]
3 = x5, x

[p]
4 = x3.

• If L = L5,3 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4〉, then
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(a) Trivial p-map;
(b) x

[p]
3 = x4, x

[p]
5 = x4;

(c) x
[p]
3 = x4;

(d) x
[p]
5 = x4;

(e) x
[p]
1 = x4;

(f) x
[p]
2 = x4;

(g) x
[p]
2 = x5;

(h) x
[p]
2 = x5, x

[p]
5 = x4;

(i) x
[p]
1 = x5, x

[p]
3 = x4, x

[p]
5 = x4;

(j) x
[p]
2 = x5, x

[p]
3 = x4;

(k) x
[p]
1 = x4, x

[p]
2 = x5;

(l) x
[p]
1 = x5;

(m) x
[p]
1 = x5, x[p]

5 = x4;
(n) x

[p]
1 = x5, x

[p]
3 = x4;

(o) x
[p]
1 = x5, x

[p]
2 = x4;

(p) x
[p]
3 = x5;

(q) x
[p]
3 = x5, x

[p]
5 = x4;

(r) x
[p]
1 = x4, x

[p]
3 = x5;

(s) x
[p]
2 = x4, x

[p]
3 = x5;

(t) x
[p]
4 = x5;

(u) x
[p]
1 = x4, x

[p]
4 = x5;

(v) x
[p]
3 = x4 + x5, x[p]

4 = x5.
(w) x

[p]
3 = x4, x

[p]
4 = x5;

(x) x
[p]
2 = x4, x

[p]
4 = x5.

• If L = L5,4 = 〈x1, . . . , x5 | [x1, x2] = x5, [x3, x4] = x5〉, then

(a) Trivial p-map; (b) x
[p]
1 = x5.

• If L = L5,5 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x5, [x2, x4] = x5〉, then

(a) Trivial p-map;
(b) x

[p]
4 = x5;

(c) x
[p]
3 = x5;

(d) x
[p]
1 = x5;

(e) x
[p]
2 = x5.

• If L = L5,6 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5〉, 
then

(a) Trivial p-map;
(b) x

[p]
4 = x5;

(c) x
[p]
3 = x5;

(d) x
[p]
2 = x5;

(e) x
[p]
1 = x5.

• If L = L5,7 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5〉, then

(a) Trivial p-map;
(b) x

[p]
4 = x5;

(c) x
[p]
3 = x5;

(d) x
[p]
2 = x5;

(e) x
[p]
1 = x5.

• If L = L5,8 = 〈x1, . . . , x5 | [x1, x2] = x4, [x1, x3] = x5〉, then

(a) Trivial p-map;
(b) x

[p]
3 = x5;

(c) x
[p]
4 = x5;

(d) x
[p]
1 = x5;

(e) x
[p]
2 = x5;

(f) x
[p]
2 = x5, x

[p]
3 = x4;
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(g) x
[p]
2 = x4, x

[p]
4 = x5;

(h) x
[p]
1 = x4, x

[p]
3 = x5;

(i) x
[p]
1 = x4, x

[p]
4 = x5;

(j) x
[p]
1 = x4, x

[p]
2 = x5;

(k) x
[p]
3 = x4, x

[p]
4 = x5.

• If L = L5,9 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5〉, then

(a) Trivial p-map;
(b) x

[p]
4 = x5;

(c) x
[p]
3 = x5;

(d) x
[p]
2 = x5;

(e) x
[p]
1 = x5;

(f) x
[p]
1 = x4, x

[p]
4 = x5;

(g) x
[p]
1 = x4, x

[p]
3 = x5;

(h) x
[p]
1 = x4, x

[p]
2 = x5.

(i) x
[p]
3 = x4, x

[p]
4 = x5;

(j) x
[p]
1 = x5, x

[p]
3 = x4;

(k) x
[p]
2 = x4, x

[p]
4 = x5.

8. Comments

Let L be a p-nilpotent restricted Lie algebra of dimension 5 over any field F of charac-
teristic p > 3 and denote by F̄ the algebraic closure of F . Since p-nilpotency is preserved 
under extensions of the ground field, L ⊗F F̄ is clearly isomorphic to one of the restricted 
Lie algebras in Theorem 7.1. In particular, this allows to compare the classification by 
Darijani and Usefi in [3] with ours. According to the conditions given in the main results 
of [3], it is easily seen that all the variables appearing in the parametrized families of 
their classification can be settled to 1 over algebraically closed fields.

We first point out that, in the notation of [3], the abelian restricted Lie algebras L5
5,1

and L6
5,1 are isomorphic over any field. We also note that the restricted structures (f), 

(n) and (t) on L5,2 are missing in [3]. Moreover, the p-maps (h), (o) and (v) on L5,3 do 
not appear in [3]. Finally, the classification in [3] lacks of the p-map (f) on L5,8. It is also 
worth noticing that the restricted Lie algebras L6

5,9 and L9
5,9 in [3] are isomorphic over 

algebraically closed fields.
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