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The Internet of Things (IoT) has recently received a lot of attention from the information and communication 
technology community. It has turned out to be a crucial development for harnessing the incredible power of 
wireless media in the real world. The nature of IoT-Fog networks requires the use of defense techniques who 
are light and mobile-aware. The edge resources in such a distributed environment are open to various safety 
hazards. DDoS UDP flooding attacks are the most frequent threats to edge resources in IoT-Fog networks. It is 
crucial for sabotaging fog gateways and can overcome traditional data filtering techniques. This paper introduces 
M-RL, a lightweight intrusion detection system with mobility awareness that can detect DDoS UDP flooding 
attacks while taking into account adversarial IoT devices that engage in IP spoofing. To this end, this paper 
analyzes the malicious behaviors that result in anonymity against Rate Limiting and Received Signal Strength 
(RSS)-based approaches, combines their advantages, and addresses their vulnerabilities. We test our method 
in different contexts to achieve that goal, and we find that it may decrease the accuracy of the RL, RSS, and 
RSS-RL methods to 70%, 48.9%, and 64.3%, respectively. The outcomes demonstrate the proposed approach’s 
resistance to software-based source address forgery, impersonation, and signal modification. It offers more than 
99% accuracy and supports node mobility. In this case, the best possible accuracy of the previous methods is 
77%.
1. Introduction

The Internet of Things (IoT) is the outcome of a slew of devices 
linked together in a communicating-actuating network. Fog computing 
is a leading edge paradigm that provides delay-sensitive services to IoT 
applications by leveraging near-user edge resources rather than a re-

mote data center on the cloud layer (Laroui et al., 2021; Javanmardi et 
al., 2021a). Because of the essential nature of the fog paradigm settings 
in which the applications are deployed, IoT-Fog infrastructure is vulner-

able to security threats. Malicious IoT devices employ malware to infect 
IoT-Fog services and make them inaccessible. As a result, IoT-Fog secu-

rity is a significant concern in protecting the IoT-Fog system’s hardware 
and services. (Javanmardi et al., 2021b).
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IoT-Fog networks are particularly vulnerable to DDoS attacks. These 
attacks can overload the network’s resources and make the devices and 
services inaccessible to legitimate users. It can result in a loss of rev-

enue, damage to the network’s reputation, and potentially even compro-

mise the security of the devices and data within the network. Network 
administrators can ensure the availability and security of the fog de-

vices’ resources by detecting and mitigating DDoS attacks in real-time. 
It helps to maintain the trust of IoT devices and ensures the success of 
the IoT-Fog network. Accordingly, it is crucial to devise a lightweight 
IDS to avoid network downtime, protect users’ data, and maintain net-

work performance (Lawal et al., 2021).

DDoS attacks fall into three categories: Application layer attacks, In-

frastructure layer attacks, and zero days DDoS attacks; Volum-based and 
protocol-based attacks are the most common threats in the infrastruc-
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ture layer attacks. Among them, UDP flooding attacks are the common 
threat as volume-based attacks for the fog layer in IoT. Detecting UDP 
flooding attacks in IoT-fog networks is essential because they can cause 
significant disruption to the fog infrastructure and connected fog de-

vices (Sharma et al., 2021). It aims to degrade the availability of edge 
resources by flooding the links and network nodes with forged requests 
from hostile IoT devices (Vishwakarma and Jain, 2020). Accordingly, 
in this paper, we focus on DDoS UDP flooding attacks.

In UDP flooding attacks, malicious IoT devices transmit a large vol-

ume of traffic to the fog devices, preventing them from inspecting and 
allowing approved network traffic. Although Rate Limiting can be used 
to limit the number of requests received by fog layer servers/brokers to 
prevent UDP flooding attacks, it lacks the means for verifying the re-

quester. Accordingly, the network is prone to spoofing attacks. Because 
IP spoofing attacks are more common than MAC spoofing (Fichera et 
al., 2015; Conti et al., 2019), we only consider IP spoofing in this work. 
An IP spoofing attack occurs when an IoT device successfully imperson-

ates another device by faking its IP address (Aldabbas and Amin, 2021). 
Received Signal Strength (RSS) can be utilized to overcome the limita-

tion of Rate Limiting (RL), which determines the distance between the 
initiator node and the target node. RSS, however, fails when mobile IoT 
devices are in the network (Ghahramani et al., 2020b).

1.1. Motivation

In recent years, the origin of UDP flooding attacks has migrated to 
botnets composed of massive infected IoT devices. A large number and 
weak security protection capabilities characterize IoT devices. These 
features make IoT-Fog botnets highly flexible and cost-effective as the 
source of UDP flooding. As a result, UDP flooding is still a complex 
problem to solve as an ancient attack method (Vishwakarma and Jain, 
2020; Kumari and Jain, 2023; Javanmardi et al., 2023a). Researchers 
mainly focus on two issues: 1) How to apply a programmable network to 
realize a comprehensive, flexible, and cost-effective defense system; 2) 
How to optimize the cost of the network-level security defense. Further-

more, most of the UDP flooding defense mechanisms in the literature 
for IoT-Fog networks are not impersonated and rely on other spoofing 
detection methods.

Because fog devices have limited processing capability, complicated 
security methods cannot be employed. As a result, a lightweight IDS is 
necessary to detect intrusions in the IoT-Fog network while minimizing 
fog resource usage. Light IDS can analyze network traffic, identify sus-

picious activities, and alert the resource management system, thereby 
enhancing the overall security of the IoT-Fog network. Because of the 
importance of IoT applications in daily life activities and the face of ob-

stacles imposed by inherent IoT features (e.g., computational capacity 
limitation and price), developing lightweight IoT security approaches 
has received much attention (Khater et al., 2021). Following the above 
backdrop, the requirement for a light mobility-aware IDS that takes 
UDP flooding and spoofing attacks into account inspired us to present 
M-RL.

1.1.1. The angles of the motivations

The angles of the motivations of this research paper fall into two 
categories.

UDP flooding detection: Threats using UDP floods, commonly re-

ferred to as “bandwidth depletion attacks,” overwhelm the target sys-

tem’s bandwidth by producing excessive traffic in bits per second. These 
are the easiest to utilize because they launch the attack using ampli-

fication and reflection tactics. According to literature, up to 65% of 
attacks involve UDP/TCP floods (Vishwakarma and Jain, 2020). This 
paper presents countermeasures for this threats because UDP flooding 
is a frequent and straightforward attack on IoT devices.

Rate limitation is an appropriate response to flooding attacks. The 
effectiveness of rate limitation against UDP flooding attacks is illus-
2

trated and explained as a prominent anomaly detection method in the 
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literature (Mehdi et al., 2011; Javanmardi et al., 2021b, 2023b). It does, 
however, have two significant drawbacks. For starters, it is unable to de-

tect anomalous behavior in the presence of spoofed IP addresses. The 
second is that it is typically employed in firewalls by setting a speci-

fied threshold. The issue is that despite careful engineering to define 
the threshold number, if the attacker gets access to the threshold and 
knows the traffic-rate threshold number, it sends slightly less network 
traffic to the fog layer nodes than the threshold, causing the network to 
go down.

Spoofing detection: There are several approaches to fending 
against a UDP flooding attack. Unfortunately, adversaries might conceal 
their identity and breach intrusion detection systems using malware 
or malicious software. On the other hand, putting precise plans into 
practice could be costly and incompatible with the IoT’s goals. As a 
result, the proposed solution must be accurate while meeting IoT re-

quirements. By estimating the distance to the opponent, one of the 
lightweight solutions resistant to software forgeries is to use the re-

ceived signal strength. This concept has two major flaws. To begin 
with, while this approach is robust to software forgery, it is not resis-

tant to hardware fraud, and attackers who send packets with varied 
powers remain undetectable. Another downside of this technology is 
that it only supports static nodes, and packets received from moving 
nodes are treated as benign data by the RSS-based intrusion detection 
system (Ghahramani et al., 2020b). As a result, combining the benefits 
of earlier solutions is critical to creating a lightweight method for de-

tecting UDP flooding attacks that are immune to software and hardware 
forgery.

1.1.2. The purpose of this research paper

We have discovered that M-RL can improve UDP flooding mecha-

nisms that use spoofed identities. Hence, some questions arise that we 
aim to address in this study:

• Do methods with 100% accuracy work correctly in all situations, or 
are there certain situations that adversaries can use to bypass such 
methods?

• How can alternative techniques be suggested to improve the secu-

rity of vulnerable methods?

• Is an alternative solution secure against adversaries?

• Can we overcome the limitations of RL and RSS?

• How can we design a mobility-aware attack defense mechanism?

• Can we introduce a robust defense solution tackling the attackers 
who perform UDP flooding with fake identities?

The rest of the paper delineates the response to these queries.

1.2. Contribution of the paper

M-RL is a lightweight mobility-aware IDS considering UDP flooding 
employing the RL method and spoofing threats using the RSS method. 
It automatically disables IoT devices that begin to participate in harm-

ful activities to secure the IoT-Fog network. The attackers in this paper 
are assumed to be IoT devices capable of targeting the fog layer nodes. 
We evaluate and compare M-RL to two well-known anomaly detection 
algorithms, the RL and RSS algorithms, and a hybrid strategy named 
RL-RSS. We use RL to detect malicious behaviors based on high submis-

sion rates, RSS to detect the changes in IP addresses (spoofing attacks), 
and combine them with new equitation to detect mobility and signal 
strength changes to make M-RL able to overcome the limitations of RL 
and RSS approaches. In terms of accuracy, our proposal outperforms 
the RL, RSS, and RL-RSS methods, according to the findings. Our main 
contributions are as follows:

• We present M-RL, a new lightweight approach for detecting anoma-
lies in IoT-Fog networks that considers IoT devices’ mobility.
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• The proposed method employs both Rate and RSS simultaneously 
to detect malicious behavior. Rate is used to detect IP counterfeit-

ing, and RSS calculates distance and supports mobility.

• We employ a lightweight hybrid technique to detect anomalous 
behaviors that integrate the output of the RL and RSS algorithms 
and the distance parameter, which solves the disadvantages of the 
RL and RSS methods.

• We perform experiments to illustrate the M-RL’s security metrics 
in various conditions where the attackers spoof their identities and 
change their location.

The rest of the paper is structured as follows: Section 2 contains 
related literature on DDoS attacks on IoT networks. Section 3 provides 
an overview of the architecture in use and its key components. It also 
outlines the presented approach, which employs the RL and RSS, and 
how to overcome their flaws. Section 4 outlines how the performance of 
this work was evaluated using experimental results. Section 5 examines 
the issues pertinent to this work. Finally, Section 6 brings the paper to 
a close by describing some potential future paths.

2. Related works

In this section, we explain DDoS defense approaches in IoT net-

works. We divide it into subsections that reflect the critical angles of 
the related works. As the goal of this work is targeting DDoS flood-

ing attacks, we focused on the approaches for flooding attacks. We 
divided the related work section into non-impersonation-aware and 
impersonation-aware methods. We explained that most approaches to 
detect DDoS flooding attacks rely on other approaches to become im-

personation aware. Finally, we describe our proposal’s critical features 
with the existing literature. It highlights how the proposed approach 
can cover some related issues compared to state-of-the-art methods.

2.1. Non-impersonation-aware approaches

Liu et al. (2020) investigated particular vulnerabilities in the NSL-

KDD dataset that potentially affect sensor nodes in IoT networks. This 
work used bagging and boosting algorithms to identify malicious sen-

sor nodes in the NSL-KDD datasets. Eleven machine learning methods 
were applied, and the performance of their anomaly behavior detection 
was compared. According to this work, the ensemble and tree-based 
techniques were the most accurate. The XGBoost algorithm comes first, 
outperforming the other supervised algorithms tested. While this effort 
improves the accuracy of the IoT network, it neglects to account for 
client mobility and spoofing.

Malik et al. (2017) presented a method to countermeasure UDP 
flooding attacks in the Contiki operating system. Their idea makes use 
of an intrusion protection algorithm that is installed on IoT devices. This 
method employs D2D communication tightly coupled to services, mon-

itoring and intercepting requests to mitigate intrusions. In this paper, 
the authors implement an ICMP rate limitation method on IoT devices, 
effectively reducing bandwidth usage on IoT networks. This approach 
reduces the victim’s total transmission power by 55%; however, it does 
not account for mobile IoT devices and relies on spoofing detection ap-

proaches.

Reddy et al. (2021) published an experimental investigation re-

port for novel intrusion detection that used different machine learning 
methods for anomaly detection. Then, using XGBoost, they devised a 
method for implementing ensemble machine learning. Compared to ma-

chine learning techniques, the results demonstrated that XGBoost is a 
promising solution for intrusion detection in categorizing attacks. Their 
method is a greedy algorithm-based split finding strategy that employs 
several machine learning methodologies to detect various anomaly be-

haviors. Still, as there is no centralized controller, the network remains 
3

vulnerable to new emerging attacks. While this research covers a broad 
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spectrum of threats, it ignores IoT devices’ mobility and spoofing at-

tacks.

Sharma and Gupta (2021) developed a framework for detecting and 
mitigating DDoS flooding threats on smart city IoT networks. By utiliz-

ing SDN for feature extraction and security management, the proposed 
IoT-Fog framework intends to lower the latency of attack detection. It 
enables scalability by utilizing SDN-based IoT-Fog infrastructure for at-

tack mitigation. The authors used packet-level features that effectively 
distinguish between fog layer resources and attack data. Moreover, the 
authors trained and statistically compared five cutting-edge supervised 
machine learning models for attack detection, obtaining an accuracy of 
99.9% in attack detection without considering mobile clients. Besides, 
it relies on spoofing detection strategies to detect attackers with forged 
identities.

Sharma et al. (2021) developed an intrusion detection architecture 
for the IoT paradigm with various security concerns to detect DDoS 
attacks, where fraud detection occurs at the fog layer. Their research 
employs a single-variable statistical method known as CRPS. Because 
the applications in the IoT-Fog networks comprise wireless commu-

nication and big data management (Santos et al., 2021; Junior and 
Kamienski, 2021), the author proposed fog network performance im-

provement in a data resilience system. This paper covers many threats 
without considering the mobility of IoT devices. Moreover, it does not 
detect the attackers with falsified identities.

Bovenzi et al. (2020) suggested a new IDS with a hybrid two-stage 
methodology. They used a multimodal Deep Auto Encoder for the first 
stage and a soft output classifier for the second stage. They assessed 
their technique by utilizing the Bot-IoT dataset to demonstrate how 
their approach is acceptable for IoT design. The authors used a binary 
classification followed by a multiclass classification in their investi-

gation. The usage of the Deep Auto Encoder reduced dimensionality, 
resulting in a lightweight method for IoT networks. Without taking into 
consideration mobile IoT devices or attackers with forged identities, this 
article covers a broad spectrum of assaults.

Javanmardi et al. (2021b) presented FUPE, which uses multi-

objective optimization to protect IoT-Fog scheduling services from 
DDoS flooding attacks. It is made up of an IDS and a scheduler. 
FUPE first detects and eliminates malicious IoT devices, then uses a 
MOPSO technique to integrate security and efficiency into the applica-

tion scheduling step. FUPE employs a fuzzy function that uses TRW-

CB and RL techniques to differentiate between benign and malicious 
nodes. It then computes a final solution for application scheduling using 
MOPSO. FUPE can integrate efficiency and security goals. The prob-

lem addressed in this paper is critical to IoT-Fog networks. FUPE is the 
first to attempt to include DDoS defense mechanisms into RMS. This re-

search ignores mobility, and the attack detection method lacks spoofing 
methods.

Javanmardi et al. (2023b) proposed an approach named S-FoS, an 
SDN-based security-aware workflow scheduler for IoT-Fog networks. S-

FoS could defend scheduling services against UDP flooding and port 
scanning threats. S-FoS uses fuzzy-based anomaly detection algorithms 
to identify the source of attacks and block malicious requestors. To 
strike a balance between the load and delay, it uses an NSGA-III 
multi-objective scheduler optimization method. In addition, the authors 
also evaluate S-FoS with cutting-edge methods in IoT-based scenarios 
through extensive simulations. The results show that by altering the at-

tack rates, the number of IoT devices, and the number of fog devices, 
S-FoS can make better results than NSGA-II and MOPSO algorithms. 
This study disregards mobility, and the assault detection system lacks 
spoofing techniques.

2.2. Impersonation-aware approaches

Another method for detecting hostile conduct is to use authentica-

tion protocols (Ghahramani and Javidan, 2021). Cryptanalysis methods 

(Ghahramani et al., 2023) and (Ghahramani, 2023) can be used to de-
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tect the weaknesses of these protocols before they are put into practice 
on the global mobility networks (Ghahramani et al., 2020a). Many of 
these flaws are buried in such analyses, and attackers can penetrate the 
system using software techniques to change their behavior. Adversaries 
are not only able to penetrate the target system, but they can also ob-

tain confidential information of other devices that have communicated 
with this system (Ghahramani and Javidan, 2022). To deal with such 
issues, new solutions have been developed. One of these techniques is 
to use the strength of the received signals (Ghahramani et al., 2020b). 
This approach can detect harmful activities even if there is no previous 
information about the packet and the content is randomly produced or 
fabricated. The distance of the sender node is estimated using the inten-

sity of the received signal, regardless of the content of the packets, and 
poisoned data refers to packets delivered from the exact coordinates. 
Unfortunately, this strategy is ineffective against hardware fraud, sig-

nificantly when the signal strength can be modified or when the nodes 
move. While this approach detects attackers with spoofed identities, it 
fails in the presence of malicious mobile nodes.

For DDoS attack detection and mitigation, Mao et al. (2018) used 
various packet header features and employed a joint-entropy technique. 
This work utilized information theory to improve scalability, detection 
accuracy, and simplicity. Furthermore, the combined entropy approach 
detects DDoS attacks by taking into account flow time, source IP ad-

dress, packet length, and destination port. The authors conducted ex-

periments using packet length and source IP to compare the combined 
entropy approach to a single entropy method. The combined entropy 
method outperforms the single entropy method in terms of detection ac-

curacy and false-positive rate. The disadvantage of this technique is that 
it cannot identify an anomaly early because it takes extended to detect 
an attack. On the other hand, it mitigates DDoS abnormalities that use 
both spoofed and non-spoofed IP addresses. This Joint-Entropy-based 
technique for detecting DDoS attacks considers spoofing attacks while 
it does not consider mobile IoT devices.

2.3. Positioning of the proposed approach

M-RL is an IDS that protects Edge resources by constantly monitor-

ing the IoT-Fog network for abnormal behavior and hazardous network 
traffic and implementing UDP flooding and spoofing attack countermea-

sures. Unlike the previous solutions in this category, M-RL detects and 
mitigates UDP flood attacks by considering both mobile IoT devices 
and IoT devices with falsified identities in this study. We employed 
Rate Limiting (Birkinshaw et al., 2019), a connection-based algorithm, 
and an RSS detection technique (Ghahramani et al., 2020b) to protect 
against UDP flooding attacks that leverage forged IP addresses. Our 
suggested IDS is a hybrid technique that leverages both Rate and RSS 
simultaneously to combat hostile mobile IoT devices that perform UDP 
flooding assaults using forged source IP addresses. RSS is used to de-

termine distance and aid mobility, whereas Rate is used to detect IP 
forgery. M-RL uses RSS to provide a density parameter that, when mul-

tiplied by the Rate at which RSS forging and other vulnerabilities are 
identified, overcomes the limitations of the threshold technique. M-RL 
detects suspicious behavior and notifies the fog gateway’s resource man-

agement system, removing the rogue IoT device from the network. In 
the next section, we describe how to use 𝑇𝑟 and combine RL and RSS 
features for proposing a new equation (Equation (13)) to detect the at-

tacker’s mobility and malicious RSS modifications.

3. IDS approaches

In this Section we review the theoretical background and reference 
architecture to present M-RL, then we examine the problem statement, 
and discuss RSS, RL, and their disadvantages, finally, we present in 
4

detail M-RL, the proposed mobility-aware IDS.
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3.1. Reference architecture

The reference architecture, which connects the IoT devices (user de-

vices) to the IoT-Fog resources, is described in this section. We use an 
IoT-Fog architecture based on the most typical architecture with three 
layers, the Cloud layer, the Fog layer, and the IoT layer, as illustrated 
in Fig. 1 (Hu et al., 2017; Javanmardi et al., 2023a). The core networks 
deliver network services to users and are placed between the cloud and 
fog layers. The cloud data center (Shojafar et al., 2015) is located at the 
upper core level, far from the IoT devices. In IoT-Fog networks, the D2D 
(Bello and Zeadally, 2014), and broker approaches (Javanmardi et al., 
2021a,b) are the two most frequent ways to implement three-layer ar-

chitecture. In the first, IoT devices link directly to fog devices, whereas 
in the second, IoT devices connect to a node called a fog gateway, with 
the broker acting as an interface between them. A fog gateway is a type 
of fog server with advanced computing capabilities. In this research pa-

per, we use the broker approach. The fog gateways act like brokers and 
collect the relevant data received by IoT devices (e.g., sensors).

3.2. Problem statement

Assume an IoT device requests a fog gateway. For real-world appli-

cations, their request may be Voice over IP (VoIP), online games, or 
media streaming. An attacker who wishes to flood the resources at the 
fog layer with excessive network traffic may send UDP packets with a 
faked IP source address. The goal of this research article is to develop 
an approach for preventing the transmission of bogus data to IoT-Fog 
resources. M-RL mitigates UDP flooding attacks by using both spoofed 
and non-spoofed IP addresses while considering the mobility of the IoT 
device.

3.3. Rate limiting (RL) method

RL approach assumes that an IoT device does not send a high num-

ber of UDP packets in a short period, whereas an attacker IoT device 
does. This technique identifies UDP flooding behavior in threshold-

based approaches when the rate of UDP packets surpasses a predeter-

mined threshold value.

Suppose the sending rate of the 𝑗-th attack and the 𝑖-th node are 𝑀𝑟𝑗

and 𝐵𝑟𝑖
, respectively. In this case, if 𝑀𝑟𝑗

and 𝐵𝑟𝑖
are isolated bounded, 

the threshold 𝑇𝑟 can be adjusted so that the accuracy is 100%. This 
result can be mathematically represented as Equation (1).

∃ 𝛼1 < 𝛼2 < 𝛼3 < 𝛼4 𝑠.𝑡. ∶
∀ 𝑖 ∶ 𝛼1 ≤𝐵𝑟𝑖

≤ 𝛼2
∀ 𝑗 ∶ 𝛼3 ≤𝑀𝑟𝑗

≤ 𝛼4
𝛼2 + 1 ≤ 𝑇𝑟 ≤ 𝛼3 ⟹𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100%

(1)

Now the issue arises: why do we need a new method when we already 
have one that is 100% accurate? Unfortunately, the prior technique is 
vulnerable to malicious operations, and the accuracy of this method 
will suffer if an adversary fakes the source addresses.

3.4. Received signal strength (RSS) method

As previously stated, adversaries can diminish the accuracy of 
the preceding procedure by faking source addresses and terminating 
unidentified attacks. When received, packets in wireless media are sent 
by a wave that has a specific strength. The distance to the transmit-

ter can be calculated using the received signal strength (RSS), and the 
distance can be used to detect and validate the source addresses. Sim-

ilarly to the transmission rate, if we choose a given distance as the 
attack threshold, the adversary can travel a bit further away from it 
and launch its attack. A fuzzy method could be utilized to solve this 
problem. For example, the work (Janarthanan et al., 2020) detects as-
saults using fuzzy inputs, and after computing the RSS, fuzzy roles are 
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Fig. 1. M-RL architecture.
established based on the distance between the receiver and the sender. 
We shall cover two issues with RSS-based techniques further down.

3.5. RSS in reality

This section finds the location of the target node that sent a signal 
to the reference node at a distance of 𝑑0. According to Jin et al. (2015), 
if there are 𝑛 nodes in the network such that the distance between the 
𝑘-th node and the target node is equal to 𝑑𝑘, then the power difference 
of the received and transmitted signal is as Equation (2).

𝑃0 − 𝑃𝑘 = 10 × 𝜖 × log
(𝑑𝑘
𝑑0

)
+ 𝜈𝑘 (2)

In addition to the distance, this equation also depends on two pa-

rameters, shadowing effect 𝜈𝑘 and path loss exponent 𝜖, which change 
for different propagation environments. Therefore, the distance to the 
target node satisfies Equation (3).

𝑑𝑘 = 𝑑0 × 10
(
𝑃0−𝑃𝑘−𝜈𝑘

10×𝜖

)
(3)

After calculating the distance from the target node, the location of 
the target node can be obtained using Equation (4).

�̂� =
[
𝑥

𝑦

]
=
(
𝐴𝑇𝐴

)−1
𝐴𝑇𝐵. (4)

In the last equation, matrices 𝐴 and 𝐵 are defined as Equation (5), 
where 𝑘-th node is located at (𝑥𝑘, 𝑦𝑘) and 0 ≤ 𝑘 ≤ 𝑛 − 1.{

𝐴𝑘,1 = −2 ×
(
𝑥𝑛 − 𝑥𝑘

)
,𝐴𝑘,2 = −2 ×

(
𝑦𝑛 − 𝑦𝑘

)
𝐵𝑘,1 = (𝑥2

𝑘
+ 𝑦2

𝑘
+ 𝑑2

𝑛
) − (𝑥2

𝑛
+ 𝑦2

𝑛
+ 𝑑2

𝑘
) (5)

3.6. Simulating RSS

Equation (3) showed the relationship between distance and RSS in 
practice. Unfortunately, this relationship may not be established in all 
situations (Pagano et al., 2015). For example, the relationship in Tmote 
Sky nodes of the Cooja simulator is linear as shown in Equation (6), 
while Equation (3) shows a non-linear form (Tmote sky datasheet).

𝑑𝑘 ≈ 1.177 − 0.588 × (12 +𝑅𝑆𝑆) (6)

Additionally, 𝐴𝑇𝐴 may not be invertible if the actual instruments can-

not calculate the received signal strength with 100% accuracy. In such 
5

a case, calculating the precise location of the nodes is challenging, and 
Equation (4) has no solution. RSS is typically represented by a nega-

tive integer, which produces collisions at different targets, implying that 
the signal strength received from two transmitters in different locations 
may be the same. As a result, there is an error range in real implementa-

tions. When two benign nodes deliver packets inside an error range, they 
are misidentified as attackers. According to reference (Ghahramani et 
al., 2020b) the error range can be represented as a ring. The difference 
between this ring’s external and internal radius depends on various fac-

tors, including weather and hardware. Still, in simulators such as Cooja, 
it is roughly 60 cm. For 𝑛 ≥ 3 receivers, the target location (𝑥′

𝑖
, 𝑦′

𝑖
) max-

imizes Equation (7), where [𝑑𝑗
𝑚𝑖𝑛

, 𝑑𝑗𝑚𝑎𝑥] represent the error range of the 
𝑗-th receiver (Ghahramani et al., 2020b). Equation (8) also defines the 
function 𝐻 .

𝑛∑
𝑗=1

𝐻

(
(𝑥𝑗 − 𝑥′

𝑖
)2 + (𝑦𝑗 − 𝑦′

𝑖
)2 − (𝑑𝑗

𝑚𝑖𝑛
)
2)

+
𝑛∑

𝑗=1
𝐻

(
(𝑑𝑗𝑚𝑎𝑥)

2
− (𝑥𝑗 − 𝑥′

𝑖
)2 − (𝑦𝑗 − 𝑦′

𝑖
)2
) (7)

𝐻(𝜆) =
{

1 if 𝜆 ≥ 0
0 if 𝜆 < 0 (8)

The scenario becomes more complicated when only one receiver is 
present, and utilizing RSS, the exact amount of movement cannot be 
computed, albeit a range can be supplied. Unfortunately, RSS is not 
immune to hostile activity. RSS-based results will be unreliable if the 
transmitter does not adhere to conventional protocols and broadcasts 
packets while moving or continually changing its strength. Fig. 2 depicts 
a summary of these issues. The recommended remedy will address the 
issues.

3.7. Proposed M-RL approach

The suggested method comprises three factors to identify adversarial 
behavior and solve past problems:

1. Rate limiting

2. Movement

3. Impersonation prediction

We use the first parameter to prevent malicious behaviors and spec-

ify a sending rate less than 𝑇𝑟. The second is used to cover the moving 
nodes. Assume a random node at position (𝑥𝑖, 𝑦𝑖) with address 𝛽 deliv-
ers a packet to the receiver, and the signal strength received from this 
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Fig. 2. Error range and disadvantages of RSS.

Fig. 3. Movement parameters from 𝑖-th to 𝑗-th error range.

point at time 𝑡𝑖 is equal to 𝑅𝑆𝑆𝛽,𝑡𝑖
. Equation (9) can be used to calcu-

late the movement if there is a function 𝑓 such that (𝑥′
𝑖
, 𝑦′

𝑖
) = 𝑓 (𝑅𝑆𝑆𝛽,𝑡𝑖

)
estimates the location of the node. Equation (7) plays the role of 𝑓 . Sim-

ilarly, Equation (6) can be used if only one receiver is available.√(
𝑥′
𝑖+1 − 𝑥′

𝑖

)2
+
(
𝑦′
𝑖+1 − 𝑦′

𝑖

)2
(9)

Assume that the maximum allowable speed is 𝑣𝑚𝑎𝑥. However, Equa-

tion (10) shows the maximum permitted movement Δ for each node.( )

6

Δ= 𝑡𝑖+1 − 𝑡𝑖 × 𝑣𝑚𝑎𝑥 (10)
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Assume the error range’s width is 𝜔, and the sender is in the 𝑖rd 
error range at time 𝑡𝑖. When the transmitter is in the 𝑗th error range at 
time 𝑡𝑖+1, the lowest and maximum movement are as stated in Equation 
(11), with details in Fig. 3.

Δ𝑚𝑖𝑛 = (𝑗 − 1 − 𝑖) ×𝜔,Δ𝑚𝑎𝑥 = (𝑗 + 𝑖) ×𝜔 (11)

The final security parameter is essential to protect against RSS 
forgery. Assume an attacker disregards common IoT standards and 
sends packets of varying strengths. In this situation, the receiver can 
count the number of packets received from the 𝑖-th error range. Con-

sider physical devices to be a circle with a radius of 𝑟. Given that the 
size of the 𝑖-th error range is as stated in Equation (12), only 𝛿 physical 
devices, as defined in Equation (13), can exist. The parameter 𝛿 can be 
used to detect RSS hardware forgery. This parameter does not allow the 
adversary to choose any desired power in the hardware change of the 
signal. For example, if we consider the range covered by wireless sen-

sors as 120 meters, there are 120
𝜔

= 120
0.588 = 205 error ranges in this area. 

Equation (13) shows that the capacity of the i-th error range is equal 
to 𝛿. Therefore, using Equation (6), it can be concluded that the adver-

sary has to send signals in which 120−1.177−0.588 − 12 ≤𝑅𝑆𝑆 ≤ −11. In other 
words, the calculated error range should be less than 205; Otherwise, 
the attack is detected. On the other hand, if more than 205 hardware 
falsifications occur, more than one signal is detected in at least one of 
the error ranges, according to the pigeonhole principle. The worst case 
happens when 𝛿 forgery occurs in every error range (the maximum ca-

pacity is used). Therefore, if ( 120
𝑟
)2 hardware forgeries occur, the attack 

will be detected with probability 100%. Although this probability de-

pends on 𝑟, in networks such as smart transport systems where physical 
devices are cars with 𝑟 = 1, an adversary cannot overwhelm the network 
because sending more than 1202 adversarial packets will be detectable. 
Even if the devices are very small, for example, 𝑟 = 0.01, the attack can 
be prevented by checking the continuous growth of the RSS distribution 
before the adversary uses 12002 spoofs.

𝜋 ×
(
(𝑖 ×𝜔)2 − ((𝑖− 1) ×𝜔)2

)
= (2𝑖− 1) × 𝜋 ×𝜔2 (12)

𝛿 = (2𝑖− 1) × 𝜋 ×𝜔2

𝜋 × 𝑟2
= (2𝑖− 1) ×

(
𝜔

𝑟

)2
(13)

The steps of the proposed approach, which employs these security fac-

tors, are described in Algorithm 1. It demonstrates how to identify 
hostile data using security parameters.

The threshold 𝑇𝑟, a width of the error range 𝜔, the maximum speed 
allowed for moving nodes 𝑣𝑚𝑎𝑥, and the radius 𝑟 of the IoT devices are 
all provided as default parameters in line 1. The frequency distribution 
of RSS in available packages is calculated in lines 2 to 5, and the de-

tails are kept in the RSSD matrix. Because RSS is negative integers less 
than -11, they must be added by 10 to be correctly mapped to RSSD 
matrix members. Following this, the security parameters mentioned in 
the previous part must be calculated, which is done in lines 6 to 21.

The sending rate of each node with address 𝛽 is determined on line 
9. The origin 𝑖 and destination 𝑗 of the migrating nodes are estimated 
on lines 11 and 12. The 15th line provides the maximum amount of 
movement through Δ𝑚𝑎𝑥. The RSS density of each packet is determined 
at line 16 using RSSD. Finally, security parameters Δ and 𝛿 are defined 
in line 17 to detect hostile packets.

3.8. Complexity

Calculating the complexity of the proposed algorithm is not a diffi-

cult task. This algorithm uses the RSSD matrix with sizes n-10. Suppose 
the number of IP addresses is equal to k. As a result, the space complex-

ity is as Equation (14), where 𝑚 =max{𝑘, 𝑛 − 10}.

𝑂(𝑚) (14)

Similarly, the time complexity of this algorithm can be calculated. Ex-
cept for lines 3, 6 and 10, the complexity of all expressions is in 𝑂(1). 
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Algorithm 1 Adversarial packet detection.

1: Set: 𝑇𝑟 = 20000, 𝜔 = 0.588𝑚, 𝑣𝑚𝑎𝑥 = 25𝑚∕𝑠, and 𝑟 = 0.05𝑚.

Data set RSS density computation phase:
2: Create 1-by-(𝑛 − 10) zero matrix RSSD, where 𝑛 is the number of available RSS’s.

3: for 𝑥 = 1 to 𝑛 − 10 do

4: 𝑅𝑆𝑆𝐷[𝑥] ⟵ The number of packets with RSS equal to −(𝑥 + 10).
5: end for

6: for each packet 𝑝 do

7: 𝛽 ⟵ IP address of 𝑝.

8: 𝑅𝑆𝑆𝛽,𝑡𝑖
⟵ Received signal strength from 𝛽 at time 𝑡𝑖 .

Rate limiting computation phase:
9: 𝑅𝐿 ⟵ The number of packets with address 𝛽 .

Distance computation phase:
10: Find the next packet from 𝛽 at time 𝑡𝑖+1 with 𝑅𝑆𝑆𝛽,𝑡𝑖+1

.

11: 𝑖 ⟵
⌈ 1.177−𝜔×(12+𝑅𝑆𝑆𝛽,𝑡𝑖

)
𝜔

⌉
12: 𝑗 ⟵

⌈ 1.177−𝜔×(12+𝑅𝑆𝑆𝛽,𝑡𝑖+1
)

𝜔

⌉
13: The node with address 𝛽 moved between Δ𝑚𝑖𝑛 and Δ𝑚𝑎𝑥 , where:

14: Δ𝑚𝑖𝑛 = |𝑗 − 𝑖− 1|×𝜔, Δ𝑚𝑎𝑥 = (𝑗 + 𝑖) ×𝜔.

15: Set Δ𝑚𝑎𝑥 as a worst case for the movement of 𝛽 .

RSS spoofing prediction phase:
16: Set RSS density of 𝑝 to 𝑅𝑆𝑆𝐷[−(𝑅𝑆𝑆𝛽,𝑡𝑖

+ 10)].
Verification phase:

17: Set Δ = (𝑡𝑖+1 − 𝑡𝑖) × 𝑣𝑚𝑎𝑥 , and 𝛿 = (2𝑖 − 1) ×
(

𝜔

𝑟

)2
.

18: if 𝑅𝐿 > 𝑇𝑟 , Δ𝑚𝑎𝑥 >Δ, or 𝑅𝐿 × (RSS density) > 𝛿 then

19: The packet is adversarial.

20: end if

21: end for

The first and second for loops are repeated 𝑛 − 10 and 𝑘 times, respec-

tively. In the 10th line, to search for the next position of moving nodes 
in the worst case, 𝑘 searches should be performed. As a result, the time 
complexity of this algorithm is equal to 𝑂(𝑛 −10 + 𝑘2). This complexity 
can be summarized as Equation (15), where 𝑚 =max{𝑘, 𝑛 − 10}.

𝑂(𝑚2) (15)

Note that this algorithm can be implemented to reduce its time com-

plexity to 𝑂(𝑚). To this end, hashing techniques can be used. Suppose 
there is a hash function ℎ such that it maps IP addresses to an integer 
smaller than 𝑘. The information for each package is kept in certain po-

sitions of the array in this case; thus, there is no need to search in the 
10th line.

4. Performance evaluations

In this section, we give numerous scenarios for evaluating the per-

formance of Rate Limiting, RSS, and the proposed approach M-RL.

4.1. Simulation setup

For evaluation, we use the DDoS UDP flood Dataset

(CIC-DDoS2019). The client that initiates UDP floods in this dataset 
has attack rates of 24165 packets/second. We used this dataset and fed 
our detection algorithms the number of UDP packets sent by each client. 
To make this dataset suitable for evaluation, we employed SMOTE data 
augmentation to develop new data for malicious IoT devices because 
our goal needed to improve the number of malicious clients. We classi-

fied 30% of IoT devices as benign requests. Accordingly, we utilize 385 
benign IoT devices and 165 IoT devices that initiate UDP flooding at-

tacks. Because this dataset lacks RSS quantitative values, we analyzed 
our suggested technique by installing these 550 nodes in various loca-

tions and using the transmission rates as a new dataset.

Our study utilized real-world datasets within a custom Java simula-

tion environment to evaluate the proposed M-RL method. It’s essential 
to clarify that our focus was leveraging real-world data rather than sim-

ulating all IoT-Fog features. To this end, we incorporated values from 
real datasets into our simulation to ensure a representative evaluation. 
Moreover, the establishment of the topology and the duration for which 
7

packets were transmitted were inherently tied to the characteristics of 
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Fig. 4. Simulation Process. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

the real dataset. Accordingly, our simulation environment inherits the 
network topology and packet transmission patterns captured in the orig-

inal data.

Equation (23) is used to calculate the RSS value of benign nodes, 
whereas random values are provided for attackers to assist RSS forging. 
Calculating the packet reception time and storing two rates and RSS 
parameters in the database is sufficient to implement Algorithm 1 and 
compare it to the other methods described in the following sections. In 
addition, we propose several scenarios to illustrate the weaknesses and 
strengths of common RSS and rate-based methods. The results show 
that our proposed method is able to identify scenarios that can bypass 
the previous methods. This process is summarized in Fig. 4. The picture 
starts from the red circle, indicating capturing data from the dataset. As 
there is no completely ready suitable dataset, the second circle (blue) 
indicates filtering the dataset to test different approaches. RSS-RL can 
detect rate changing and IP spoofing, while M-RL can detect them as 
well as moving or RSS forging.

4.2. Movement simulation

To simulate the movement, each node is initially placed at a random 
position (𝑥0, 𝑦0) and sends a packet to the receiver. During movement, 
the position of the nodes changes, and another packet will be sent from 
the new position. Special patterns can be used to update the position 
of the nodes. For example, in vehicular networks that movement is on 
a straight horizontal road, Equation (16) can be used to update 𝑥𝑖+1. 
Similarly, on vertical movement 𝑦𝑖+1 is updated, where 𝑟𝑖 ∈ [−1, 1] is a 
random number and Δ is maximum allowed movement.{

𝑥𝑖+1 = 𝑥𝑖 + 𝑟𝑖 ×Δ, 𝑦𝑖+1 = 𝑦𝑖
𝑥𝑖+1 = 𝑥𝑖, 𝑦𝑖+1 = 𝑦𝑖 + 𝑟𝑖 ×Δ (16)

In random mode, the next position of the moving node should be in a 
circle with a radius of Δ. As a result, the random position of the moving 
node is updated as Equation (17). Fig. 5 depicts these strategies.{

𝑥𝑖+1 = 𝑥𝑖 + 𝑟𝑖 ×Δ

𝑦𝑖+1 = 𝑦𝑖 + 𝑟′
𝑖
×
√

Δ2 −
(
𝑥𝑖+1 − 𝑥𝑖

)2 (17)

4.3. Simulation metrics

In this study report, we evaluate performance using the metrics 
listed below.

𝑇𝑃𝑅 = (𝑇𝑃∕𝐴𝑐𝑡𝑢𝑎𝑙𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁) (18)

𝐹𝑁𝑅 = (𝐹𝑁∕𝐴𝑐𝑡𝑢𝑎𝑙𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 𝐹𝑁∕(𝑇𝑃 + 𝐹𝑁) (19)

𝑇𝑁𝑅 = (𝑇𝑁∕𝐴𝑐𝑡𝑢𝑎𝑙𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 ) (20)

𝐹𝑃𝑅 = (𝐹𝑃∕𝐴𝑐𝑡𝑢𝑎𝑙𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 𝐹𝑃∕(𝑇𝑁 + 𝐹𝑃 ) (21)
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (22)
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Table 1

RL accuracy evaluation.

Threshold TN FN TP FP TNR FNR TPR FPR Accuracy

20000 385 0 165 0 1.0 0.0 1.0 0.0 1.0

21000 385 16 149 0 1.0 0.09 0.90 0.0 0.97

22000 385 82 83 0 1.0 0.49 0.50 0.0 0.85

23000 385 121 44 0 1.0 0.73 0.26 0.0 0.78

24000 385 150 15 0 1.0 0.90 0.090 0.0 0.72

25000 385 157 8 0 1.0 0.95 0.048 0.0 0.71

26000 385 165 0 0 1.0 1.0 0.0 0.0 0.70
Fig. 5. Moving strategies.

Where TP stands for true positive and FN for false negative, while 
TN and FP stand for true negatives and false positives, respectively.

4.4. Implementation scenarios and experimental results

The following four scenarios are discussed in this section:

1. A scenario in which the attacker is stationary and delivers over 
20,000 packets per second (PPS).

2. A scenario in which the attacker is stationary and forges the 
sender’s IP address, sending fewer than 20,000 packets to each of 
the forged IP addresses but sending more than 20,000 PPS overall.

3. In A scenario in which the attacker is stationary, the enemy forges 
the sender’s IP address and RSS and transmits fewer than 20,000 
packets to each of the forged addresses but more than 20,000 PPS 
overall.

4. A scenario in which the attacker is on the move and forges the 
sender’s address and RSS, sending less than 20,000 packets to each 
of the faked addresses but more than 20,000 PPS overall.

4.4.1. First scenario

To begin this part, we obtained the accuracy of the Rate Limiting 
algorithm that uses a threshold technique. We presume that the attack-

ers do not use IP spoofing in this scenario. We want to indicate the 
drawback of utilizing a threshold-based Rate Limitation strategy in this 
experiment. Commercial firewalls nowadays have a default threshold 
for dealing with UDP flooding attacks. Even though the administrators 
can set a sensitivity level, the threshold is the cornerstone of the detec-

tion. For example, the default threshold in some firewalls is 500 PPS. As 
a result, a client sending 499 PPS is identified as a benign node, whereas 
a client sending 500 PPS is recognized as an attacker. In the first experi-

ment, the attackers send packets between 20516 and 25882 per second. 
We want to demonstrate the accuracy of the various thresholds in the 
threshold-based RL strategy. Table 1 summarizes the accuracy evalua-

tion for the threshold based RL approach.

According to Equation (1), in the analysed dataset, 𝛼1 = 0.000892, 
𝛼2 = 2.30775, 𝛼3 = 20516, and 𝛼4 = 25882. As seen in Table 1, the ac-

curacy for 𝑇𝑟 = 20000 < 𝛼3 is 100%. The higher the 𝑇𝑟, the lesser the 
8

accuracy, until it reaches 70% at 𝑇𝑟 = 26000.
Table 2

RSS accuracy evaluation: TN=20,FN=0 always.

Spoofed Ips TP FP TNR FNR TPR FPR Accuracy

2 330 365 0.051 0.0 1.0 0.948 0.489

3 495 365 0.051 0.0 1.0 0.948 0.585

4 660 365 0.051 0.0 1.0 0.948 0.650

5 825 365 0.051 0.0 1.0 0.948 0.698

6 990 365 0.051 0.0 1.0 0.948 0.734

7 1155 365 0.051 0.0 1.0 0.948 0.762

8 1320 365 0.051 0.0 1.0 0.948 0.785

9 1485 365 0.051 0.0 1.0 0.948 0.804

10 1650 365 0.051 0.0 1.0 0.948 0.820

4.4.2. Second scenario

To get around the threshold-based detection mechanism, an attacker 
might spoof the sender’s IP addresses and send malicious packets on 
their behalf without affecting the sender’s sending rate. The threshold-

based technique in this scenario classifies all incoming packets as in-

nocuous. In this adversarial scenario, the accuracy of the prior method 
is 385∕(385 + 165 × 𝑛), where 𝑛 is the number of faked IPs for each ad-

versary. In this section, we’ll put this scenario into action and discuss 
how to counter it The RSS accuracy is presented in the first section of 
this scenario. In this scenario, the nodes are in the space between (-75, 
75). Moreover, we calculate the RSS using Equation (23).

𝑅𝑆𝑆𝛽,𝑡𝑖
=

√
𝑥2
𝛽,𝑡𝑖

+ 𝑦2
𝛽,𝑡𝑖

− 1.177

−𝜔
− 12 (23)

Table 2 summarizes the accuracy evaluation for the RSS approach. 
The column Spoofed IPs in the table indicates the number of spoofed IPs 
used by malicious IoT devices. For example, Spoofed IPs 10 means each 
of the attackers uses ten spoofed IP addresses.

Assume that the transmitting rate of the false addresses is 1∕𝑛 that 
of the attacker in this situation. In our sample, there are 165 attacker 
nodes and 385 benign nodes. In this situation, the number of malicious 
packets is increased to 165 × 𝑛, but the number of safe packets remains 
unchanged. Only packages with distinct RSS are regarded benign in RSS 
technique (Ghahramani et al., 2020b), but installing nodes in random 
locations may result in the same RSS, and regular packets may be con-

sidered poisoned. Only 20 of our 385 benign nodes have distinct RSS, 
as seen in Table 1. As a result, 𝑇𝑁 = 20, 𝐹𝑃 = 365 and 𝑇𝑃 = 165 × 𝑛

in this circumstance. As previously stated, the threshold method’s min-

imal accuracy is 385∕(385 + 165 × 𝑛). In this situation, the number of 
falsified addresses must satisfy Equation (24) to enter the system.

𝛼4
𝑛

< 𝛼2 ⟹ 𝑛 >
𝛼4
𝛼2

= 25882
2.30775

= 11215.25 (24)

If 𝑛 = 11216, the RSS method’s accuracy will be as shown in Equa-

tion (25), which is perfect accuracy.

165 × 𝑛+ 20
165 × 𝑛+ 385

= 1850660
1851025

= 99.98% (25)

This scenario implies that RSS vulnerability is caused by resistance to the 
threshold approach, and vice versa. The RSS approach can be improved by 
combining it with the threshold method. Instead of recognizing regular 

packages with unique RSS, packets with RSS distributions smaller than 
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Table 3

RSS-RL accuracy evaluation.

Spoofed Ips TN FN TP FP TNR FNR TPR FPR Accuracy

2 130 0 330 255 0.337 0.0 1.0 0.662 0.643

3 130 0 495 255 0.337 0.0 1.0 0.662 0.710

4 130 0 660 255 0.337 0.0 1.0 0.662 0.755

5 130 0 825 255 0.337 0.0 1.0 0.662 0.789

6 130 0 990 255 0.337 0.0 1.0 0.662 0.814

7 130 0 1155 255 0.337 0.0 1.0 0.662 0.834

8 130 0 1320 255 0.337 0.0 1.0 0.662 0.850

9 130 0 1485 255 0.337 0.0 1.0 0.662 0.863

10 130 0 1650 255 0.337 0.0 1.0 0.662 0.874

Table 4

RSS-RL accuracy evaluation for RSS forgery scenario.

Spoofed Ips TN FN TP FP TNR FNR TPR FPR Accuracy

2 383 165 165 2 0.99 0.5 0.5 0.01 0.77

3 384 221 274 1 1 0.45 0.55 0 0.75

4 385 261 399 0 1 0.4 0.6 0 0.75

5 384 301 532 1 1 0.36 0.64 0 0.75

6 385 396 609 0 1 0.39 0.61 0 0.72

7 384 444 740 1 1 0.38 0.63 0 0.72

8 384 432 939 1 1 0.32 0.68 0 0.75

9 385 585 968 0 1 0.38 0.62 0 0.70

10 384 576 1158 1 1 0.33 0.67 0 0.73
the threshold are considered innocuous. This method is known as RSS-

RL.

4.4.3. Third scenario

In this scenario, we show a hybrid approach accuracy based on RL 
and RSS by setting the RL threshold to 20000. Table 3 summarizes the 
accuracy evaluation for the RSS-RL approach.

RSS and RSS-RL simulation results in adversarial circumstances are 
highly similar. Increasing 𝑛 increases 𝑇𝑃 to 165 ×𝑛 in both approaches, 
while the remaining three parameters remain constant. The RSS-RL 
method raises the RSS method’s 𝑇𝑁 value from 20 to 130 while 
lowering the 𝐹𝑃 number from 365 to 255. The RSS-RL accuracy for 
𝑛 = 11216 is shown in Equation (26), which is a great value.

165 × 𝑛+ 130
165 × 𝑛+ 385

= 1850770
1851025

= 99.99% (26)

4.4.4. Fourth scenario

In the situation above, it was demonstrated that RSS-RL could ac-

curately detect software forgery of IP addresses. We show that RSS-RL 
is not resistant to hardware forgery and that if adversaries send pack-

ets with forged addresses of varying powers, RSS-RL’s accuracy will be 
considerably diminished, and the approach will lose its effectiveness.

Table 4 shows the findings of this experiment. With this behavior, 
the adversary can degrade the accuracy of the RSS-RL approach, as seen 
in the table. Although this behavior is a flaw in the approach, it benefits 
benign nodes because it raises TN. In the prior instance, FP increased; 
however, aggressive behavior increases FN in this one. As a result, IP 
forgery causes benign nodes’ behavior to resemble that of attackers, 
whereas RSS forgery causes attacker nodes’ behavior to resemble that 
of benign. The change of RSS for a fixed address is the cause of this 
drop in accuracy. The same behavior happens when the benign nodes 
move and send packets from different distances. As a result, in the final 
scenario, we apply IP spoofing, RSS forging, and mobile nodes to the 
processed dataset and evaluate the suggested method’s correctness. To 
implement this scenario, the packet address 𝛽, its reception time 𝑡𝑖, 
and the strength of the received signal 𝑅𝑆𝑆𝛽,𝑡𝑖

at time 𝑡𝑖 are used in 
Algorithm 1. In the processed dataset, 𝛼1 = 0.000892 means that for 
the results to be fair, we must allow the moving nodes to send packets 
within 1∕𝛼1 = 11212 seconds, depending on their sending rate. Assume 
9

that the rate of the 𝑖st attacker node is 𝑇 𝑟𝐴
𝛽𝑖

, and that the rate of the 𝑖rd 
benign node is 𝑇 𝑟𝐵
𝛽𝑖

. In this situation, Equation (27) shows the number 
of received packets in the processed dataset.∑165

𝑖=1 𝑇 𝑟
𝐴
𝛽𝑖
+
∑385

𝑖=1 𝑇 𝑟
𝐵
𝛽𝑖

𝛼1
= 3676626

0.000892
= 4121778027 (27)

Given the time commitment of analyzing such a large number of pack-

ages, the performance of the suggested solution against the adversarial 
behavior of the previous scenario is described in this part, and Table 5

indicates the accuracy of our proposed method for the RSS forging case.

Table 6 compares the analyzed methods. In this table, 𝑆1 to 𝑆4 rep-

resent scenarios 1 to 4, and “×” means that the analyzed method is 
vulnerable to the proposed scenario.

5. Discussion

5.1. M-RL implementation feasibility considerations

Different adversarial scenarios were simulated on many detection 
methods in the previous section, and the benefits and drawbacks of 
each were analyzed. We also demonstrated that our suggested solution 
inherits the benefits of earlier methods while eliminating their draw-

backs by achieving greater than 99% accuracy. Table 7 summarizes the 
effectiveness of different strategies.

When using the RL approach, it was discovered that if the adver-

saries’ transmission rate is high, increasing the threshold increases FN 
and decreases TP, as demonstrated by “↑” and “↓”, respectively. Fur-

thermore, at their best, FP and TN are nearly constant. FP is almost low 
in this strategy, indicating that benign nodes are never identified as at-

tackers, while the greatest TN shows that all benign nodes are correctly 
identified. Unfortunately, by faking IP addresses, adversaries can lower 
the accuracy of this strategy. The more forgery, the larger FN and the 
lower TP, which is a dangerous weakness. This behavior can be detected 
using RSS-based approaches, and as the TP is increased, the accuracy 
against this adversarial behavior improves. These solutions solve the 
previous issue while taking TN and FP out of the ideal condition. Un-

fortunately, these systems are susceptible to RSS impersonation, which 
results in a rise in FN. Fortunately, our proposed solution overcomes 
all of these issues and is extremely near to being 100% accurate. Our 
technique identifies packages containing at least one of the following 

requirements as poisoned, proving this a straightforward effort.
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Table 5

Proposed method evaluation for RSS forgery scenario.

Spoofed Ips TN FN TP FP TNR FNR TPR FPR Accuracy

2 385 0 330 0 1 0 1 0 1

3 385 0 495 0 1 0 1 0 1

4 384 0 660 1 1 0 1 0 0.9990

5 385 2 831 0 1 0 1 0 0.9984

6 385 0 1005 0 1 0 1 0 1

7 385 5 1179 0 1 0 1 0 0.9968

8 385 4 1367 0 1 0 1 0 0.9977

9 385 5 1548 0 1 0 1 0 0.9974

10 385 0 1734 0 1 0 1 0 1

Table 6

Comparison of related works.

Method 𝑆1 𝑆2 𝑆3 𝑆4 TNR FNR TPR FPR Accuracy

RL ✓ × × × 1.0 0.0 1.0 0.0 1.0

RSS ✓ ✓ × × 0.05 0.0 1.0 0.95 0.82

RSS-RL ✓ ✓ × × 0.34 0.0 1.0 0.66 0.87

This paper ✓ ✓ ✓ ✓ 1.0 0.0 1.0 0.0 1.0

Table 7

Evaluation of different techniques.

Behavior Detection method TN FN TP FP Vulnerability

Constant rate RL 𝑚𝑎𝑥 ↑ ↓ 𝑚𝑖𝑛 IP spoofing

Impersonate IP RSS/RSS-RL ⋅ 𝑚𝑖𝑛 ↑ ⋅ RSS forging

Fake RSS RSS/RSS-RL ≈𝑚𝑎𝑥 ↑ ↑ ≈𝑚𝑖𝑛

Fake IP/RSS Proposed Method ≈𝑚𝑎𝑥 ≈𝑚𝑖𝑛 ↑ ≈𝑚𝑖𝑛
• 𝑅𝐿 > 𝑇𝑟
• Δ𝑚𝑎𝑥 >Δ
• 𝑅𝐿 ×𝑅𝑆𝑆𝐷[−(𝑅𝑆𝑆𝛽,𝑡𝑖

+ 10)] > 𝛿

The two last terms are used to advocate RSS forgery. The first con-

dition is an RL approach for identifying adversaries who do not alter 
settings. The second condition is utilized when the RSS changes, such 
as when it is moving. It is a regular occurrence for legal migrating 
nodes that should not be mistaken forgeries. The likelihood of achiev-

ing this requirement improves if the opponents imitate the RSS. The 
last condition also resolves the problems that plagued the prior meth-

ods. Physically, at most 𝛿, nodes can have the same RSS. To hide from 
our approach, adversarial behavior must meet none of these three char-

acteristics, which is a challenging task. The first criterion is satisfied by 
the high transmission rate, and the second condition is met by random 
RSS generation to imitate permissible moving nodes. Even if the adver-

sary avoids the second condition and generates the RSS in a way that is 
unrelated to the condition, the latter condition can still be used to iden-

tify it because IP forging and lowering the transmission rate for each of 
the forged addresses reduces RL while increasing the number of RSS’s, 
which are discrete values. As a result, in the worst situation, if the oppo-

nent employs various forging techniques, the maximum number of sent 
packets required to identify the adversary is as Equation (28), where 𝑛
denotes the number of available RSS’s.(
𝜔

𝑟

)2
×

𝑛∑
𝑖=1

(2𝑖− 1) =
(
𝜔 × 𝑛

𝑟

)2
(28)

If we set 𝑛 = 75∕𝜔, 𝑟 = 0.05, 𝜔 = 0.588, then any of 2250000 pack-

ets received on the network, regardless of whether they are adversarial 
or not, are considered attacks. In other words, the suggested system’s 
maximum throughput is 2.25 million IoT devices. All of the theoretical 
analyses in this section are based on the Tables 1 to 7 results; however, 
different results may be achieved for various datasets or circumstances. 
In our dataset, there were 165 attackers, each with a maximum of 10 
address RSS forgers. As a result, the suggested method’s high accu-

racy is assured in a condition with a maximum of 1650 attacks, but 
10

ensuring accuracy in more complex situations necessitates more inves-
tigation. Our simulation reveals that if a maximum of 9,000 attacks 
are made according to the observed dataset’s behaviors, the suggested 
method’s accuracy will still be over 99 percent. However, any number 
greater than this will severely diminish the method’s accuracy. How-

ever, this causes a significant drop in the accuracy of others. Statistical 
and mathematical methods can be used to overcome this problem, en-

suring that the outcomes are independent of the dataset. For example, 
the similarity of parameters that are prone to fraud can be employed. 
This concept has recently been utilized to accurately identify Android 
malware (Taheri et al., 2020).

Combining our proposed solution with the studies of Zhang et al. 
(2017) and Zhou et al. (2017) has the potential to produce outstanding 
outcomes. Hardware fraud can be identified by examining the inaccu-

racy in the propagated signals, and packet receipt time analysis leads to 
the identification of software forgeries and support for node mobility. 
Another option is to employ secret sharing techniques, such as those 
described in Ayat and Ghahramani (2019). Fake parameters might be 
thought of as a secret that the opponent knows how to manufacture to 
match this strategy. These parameters are created by a random gener-

ator on the adversary side, whereas the parameters in secure packets 
are independent. We discovered malicious traffic outnumbered regular 
traffic when we examined the real-world UDP flooding statistics. For 
example, the UDP flood in the BOUN dataset (Erhan and Anarım, 2020) 
includes attack rates of 1000, 1500, 2000, and 2500 PPS. Furthermore, 
GitHub was the target of a DDoS attack in February 2018, during which 
the perpetrators sent 126.9 million PPS.

Rate limiting and RSS methods can be used separately to counter-

measure UDP flooding and spoofing attacks. A popular strategy is to 
detect anomalies using a threshold based on the output of the detection 
algorithms. The primary disadvantage of threshold-based efforts is that 
they do not give the IDS sufficient sensitivity and specificity for accu-

rate categorization. For instance, if the threshold number is 500, the IDS 
recognizes the node as a common node even though 499 is quite close 
to the threshold. In this situation, the attacker can initiate an attack if 
they know the threshold. Using a fuzzy function (Makkar et al., 2021) 
is an alternative solution to countermeasure the attacks simultaneously, 

overcoming the disadvantages of the threshold technique. Furthermore, 
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fuzzy logic allows us to make the IDS mobility aware using the third 
parameter, distance.

5.2. RSS implementation feasibility considerations

Although RSS provides valuable information about the level of net-

work activity and potential attacks, the problem with RSS is that it 
needs to interpret with the same accuracy across different types of Link 
layer technologies, e.g., 5G vs. 802.11. In other words, devices do not 
use/report the same granularity; generally, the number gets tweaked 
based on a formula. One way to overcome the accuracy problem with 
RSS is to use a standardized unit of measurement. For example, the 
IEEE 802.11 standard defines the unit of measure for RSS as the dBm 
(decibel-milliwatt). It allows for more precise and consistent measure-

ment across different types of link layer technologies. Additionally, 
using multiple metrics to assess the quality of the link (e.g., signal-

to-noise ratio, bit error rate, latency) can provide a complete picture 
of the link’s performance and help compensate for inaccuracies in RSS 
measurements. Finally, calibration of the measurement equipment and 
consistent measurement techniques can also help improve RSS measure-

ments’ accuracy (Hoang et al., 2019).

The accuracy of Received Signal Strength (RSS) to determine where 
attackers are starting from is about 99%, which makes it hard for at-

tackers to simply modulate the strength of the signal to bypass it. For 
instance, in our former work (Ghahramani et al., 2020b), we indicated 
that the placement of the receivers would significantly affect the results, 
and internal inaccuracy of the receivers is not the only issue affecting 
estimation accuracy. We demonstrated that the probability of a false 
alarm in the case study is less than 1% by providing an explicit calcula-

tion for it. Moreover, we illustrated localization in theory and practice. 
99% accuracy is theoretically valid, but how do the receivers inside 
the fog gateways calculate the distance in practice? We explained thor-

oughly that it depends on the receiver type due to the different errors 
that affect the sender’s location estimation. We refer the enthusiastic 
readers to the former work (Ghahramani et al., 2020b) in which we 
comprehensively analyzed RSS’s theory and practice aspects for loca-

tion detection accuracy.

In the real world, RSS is significantly impacted by noise or envi-

ronmental phenomena, e.g., someone walking in front of the receiver. 
We can use several techniques to overcome the sensitivity of the RSS 
to environmental phenomena, such as someone walking in front of the 
receiver: Antenna Diversity (Boussad et al., 2021): One approach is to 
use multiple antennas in different locations so that the signal can be 
received from various paths, reducing the impact of obstructions. Sig-

nal Processing (Zhu et al., 2018): Another technique is to use signal 
processing algorithms such as equalization, channel estimation, and 
beamforming to improve the quality of the received signal and mini-

mize the effects of obstructions. Location Awareness (Wu et al., 2019): 
In some cases, it may be possible to estimate the location of the obstruc-

tions and adjust the receiver accordingly to minimize the impact on the 
RSS. Power Level Control (Geok et al., 2022): Another technique is to ad-

just the power level of the transmitter so that it is not too high or too 
low. It can reduce interference from other sources and improve the re-

liability of the RSS. As a result, we should use a combination of these 
techniques to overcome the RSS’s sensitivity to environmental phenom-

ena and make RSS proper in real-world applications.

6. Conclusions and future work

DDoS UDP flooding attacks differ from other IoT-Fog network at-

tacks in that they frequently do not display any first indicators of failure 
on the targeted edge resource. Instead, they gradually deplete all avail-

able resources and consume all network bandwidth, resulting in an edge 
resource shutdown. This research paper proposed M-RL, a combined hy-

brid IDS that combines the RL and RSS approaches while taking UDP 
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flooding attacks into account in IoT-Fog networks. M-RL overcomes the 
Computers & Security 140 (2024) 103778

disadvantages of the above-described techniques. The RL technique ad-

dresses the threshold problem, and the RSS approach solves the problem 
of mobile IoT devices. We investigate the adversarial behaviors that 
lead to anonymity when using RL and RSS-based approaches, combine 
their benefits, and address their flaws to propose an IDS that detects 
UDP flooding attacks. We detailed how to alter the RL method’s thresh-

old to obtain 100 percent accuracy, and we demonstrated that increas-

ing the threshold results in a 30% loss in accuracy. Implementation 
of the RSS approach revealed that if the source addresses are forged, 
this method can enhance the accuracy of the prior method by 30 to 63 
percent. Although the RSS-RL approach can boost the accuracy of the 
RSS-based method from 5.4 to 15.4 percent, the vulnerability of these 
methods to RSS forging makes it challenging to attain more than 77 per-

cent accuracy in the event of this harmful behavior. The findings of this 
research show that the suggested method is immune to software forgery 
of source addresses, as well as impersonation and alteration of sent sig-

nals. It not only allows for node mobility but also provides over 99% 
accuracy. We compared the suggested method against RL, RSS, and RL-

RSS and found that M-RL delivers more than 99% accuracy, while the 
other approaches’ most incredible potential accuracy was 77%.

We will employ different anomaly detection techniques for the fea-

ture work and apply fuzzy logic to create a balance between their output 
to countermeasure attacks in IoT-Fog architecture because the given ap-

proach is versatile and lightweight. Another interesting area of research 
is to properly protect fog nodes powered by energy harvesting devices 
(Kuzman et al., 2019; Caruso et al., 2019), when too many requests are 
received and the energy of the system is limited.
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