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A B S T R A C T

A profound grasp of the quantitative spatial heterogeneity and distribution of the soil physicochemical attributes 
is crucial in understanding agricultural landscapes for ensuring the provisioning of soil ecosystem services. 
However, the analysis of data from remote sensing, like NDVI, can be of help in analysing the capacity of the 
landscape to provide supporting ecosystem services such as primary productivity. The research investigated and 
addressed the dispersion of important soil physico-chemical attributes in agricultural lands of the temperate 
Himalayan region of India using a geostatistical method and combining normalized difference vegetation index 
(NDVI) time-series data and the regression Kriging method. A 206 soil samples were gathered and assessed for 
soil parameters like pH, EC, OC, and available N, P, K, Ca, and Mg from Kishtwar district of Jammu. The co
efficient of variation (CV) for pH and electrical conductivity (EC) ranged notably from 8.75 % to 118.98 %, 
highlighting diverse soil characteristics critical for local management practices. Mean elevation averaged 
2743.32 m (m), with a moderate NDVI of 0.15, indicating dynamics in vegetation cover. Soil pH ranged from 
intensely acidic to marginally alkaline, with varying EC levels. Seemingly high organic carbon (OC), nitrogen 
(N), and potassium (K) levels, accompanied by medium phosphorus (P), calcium (Ca), and magnesium (Mg) 
levels were found in the region. The study employed ordinary kriging (OK) to map the spatial distribution of soil 
parameters, utilizing mean square error (MSE), root mean square error (RMSE), and the Moran’s I index. 
Exponential models were the best fit models for OC, while spherical models were fit for pH, EC, N, P, and Ca. 
Mathematical models were best fit for K and Mg. Spatial analysis using spherical and exponential models 
revealed distinct distribution patterns for pH, N, P, Ca, and Mg. The results of the degree of spatial dependence 
from the semi-variogram analyses indicated a strong (0.06 %) to moderate (0.51 %) to weak (2.81 %) depen
dence. The interpolated maps showed a distinct gradient in elevation (1053–4413 m), OC (0.13–2.80 %), NDVI 
(− 0.16–0.54), pH (4.80–8.00), EC (0.03–9.80 dS m− 1), N (201.15–993.19 kg ha− 1), P (3.00–96.00 kg ha− 1), K 
(124.88–1110.71 kg ha− 1), Ca (7.00–46.00 meq 100 g soil− 1), and Mg (2.30–21.50 meq 100 g soil− 1) at the 
regional scale, indicating a wide range of spatial soil heterogeneity. The heterogeneity maps of soil parameters 
generated by this research can be effectively used by land planners and farm managers at a regional scale for crop 
nutrient management to reduce soil contamination risk. These maps serve as baseline materials and effective 
tools for suitable land management strategies such as conservation-effective tillage, integrated nutrient man
agement, and organic farming based on the spatial distribution of soil properties and they can significantly 
enhance the long-term ecological sustainability of agro-ecosystems’ management.

* Corresponding authors.
E-mail addresses: irene.petrosillo@unisalento.it (I. Petrosillo), subhash.babu@icar.gov.in (S. Babu). 

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

https://doi.org/10.1016/j.ecolind.2024.112540
Received 14 June 2024; Received in revised form 1 August 2024; Accepted 23 August 2024  

Ecological Indicators 166 (2024) 112540 

Available online 27 August 2024 
1470-160X/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license ( http://creativecommons.org/licenses/by- 
nc/4.0/ ). 

mailto:irene.petrosillo@unisalento.it
mailto:subhash.babu@icar.gov.in
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2024.112540
https://doi.org/10.1016/j.ecolind.2024.112540
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2024.112540&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


1. Introduction

The Himalayan region in India spans eleven Indian states and terri
tories and comprises ~16 % of the entire landmass of the nation, and it is 
home to ~51 million people. Majority of hill populace is engaged in 
farming practices amid fragile and complex ecosystems, including high 
species-rich forests (Yadav et al., 2020). The valley land has substantial 
hydropower potential and supplies multiple perennial rivers that are 
dependent on the ongoing survival of glaciers (Nie et al., 2021). The 
temperate Himalayas are rich in biodiversity (Dar and Khuroo, 2020). 
The region stands out as one of the earth’s most diverse ecosystems. It is 
among one of biological hotspots due to its high levels of endemism, and 
outstanding biological and sociocultural diversity (Tripathi et al., 2015). 
This remarkable diversity arises from the region’s broad altitudinal 
range, intricate topography, diverse soil types and climatic conditions, 
and its distinctive spatial position (Maletha et al., 2022). This highlights 
the region’s unique ecological richness and cultural heritage compared 
to other global regions. Biodiversity hotspots represent regions that have 
an abundantly rich number of endemic organisms and are subject to 
substantial threats from human activities (Bellard et al., 2014). The 
Himalayan region’s distinction as a hotspot underscores its critical role 
in preserving numerous rare and endemic species, as well as maintaining 
the cultural traditions and practices of the diverse human populations 
that inhabit the area. Compared to other regions, the Himalayas face 
intense pressures from habitat destruction, climate change, and socio- 
economic challenges, making conservation efforts in this region partic
ularly crucial for both biological and cultural preservation (Yadav et al., 
2020; Dhyani, 2023). In general, half of the native plant species in India 
and a tenth of recognized elevated plant and animal species in the world 
are found in this region (Padma, 2014). The temperate forests of the 
Himalayas are the utmost diverse, dynamic, fertile, and wealthy eco
systems upon the globe., due to the variety of climate, slope inclination, 
land use, and topography; they are characterized by the presence of 
coniferous and oak woodlands stretching at altitudes between 1500 and 
3500 m (Salick et al., 2009; Kumar et al., 2022).

It is now widely recognized that the survival, health, and prosperity 
of humans also depend on the functioning of mountain ecosystems and 
on their capacity to supply a lot of essential ecosystem services; in fact, 
mountain areas provide numerous ecosystem services (ES), like biodi
versity conservation, tourism, climate regulation, freshwater and raw 
material supply, etc (Daily, 1997; Costanza et al., 1997; Zhang et al., 
2024). So it is of particular concern, the degeneration of the Himalayan 
ecosystem and its fragile landscapes that are particularly prone to nat
ural disasters (Ives and Messerli, 2003), and recurring worry exists 
regarding the effects of climate change, which may include unusual 
flood events, dry spells, landslides, loss of biodiversity, and menaces to 
food production (Upadhyay, 2016). In particular, mountain locations 
around the world are highly susceptible because of the many hazards to 
which they are particularly exposed (IPCC, 2022; Wang et al., 2022). In 
addition, the ecological and economic costs could be high if the region 
declines or stops providing vital ecosystem services. In this context, the 
Himalayas are a symbol area of the threats formulated by the IPCC (Rusk 
et al., 2022) in its Sixth Assessment Report on the rise of landslides, 
floods, and other associated with climate change (IPCC, 2021), as it is 
among the most fragile areas susceptible to major incidents. Included in 
this report are 127 crucial global hazards that could cause severe and 
adverse situations for ecological and social systems.

The forest-community structure vary in proportion to both natural 
and anthropogenic factors (Sanjay, 2008). Geographical position, pro
duction, genetic competition, and interaction among species are all 
closely linked with changes in plant communities, richness, diversity, 
and distribution (Sharma and Sood, 2020). Events that cause distur
bances capable of disrupting the ecosystem can radically affect the 
composition, spatial arrangement, and functioning of forest landscape 
(He et al., 2021). In this context, sustainable maintenance and security 
of the mountain ecosystem and its biodiversity are crucial for highland 

communities to safeguard their sustenance.
In this specific case, dramatic elevation fluctuations in India’s 

temperate Himalayas have led to a particularly distinct pattern of flora 
types, including temperate forests and grazing lands, moist temperate 
conifers, and subalpine and alpine meadows. The establishment of sus
tainable agricultural systems requires the assessment of soil restoration 
strategies (Singh et al., 2023). Precise predictive evaluation of the 
spatial distribution of soil heterogeneity is essential for mitigating the 
effects of intensive agriculture, for enhancing environmental sustain
ability and, more specifically, the sustainable resource management 
(Huang et al., 2021). The potential advantages of improving input uti
lization efficiency, enhancing the financial edges of agricultural pro
duction, and lowering environmental hazards have drawn a great deal of 
attention to tailored management of pH, OC, accessible N, accessible P, 
and accessible K (Safari et al., 2013; Luthra et al., 2023; Samant et al., 
2023). Hence, the understanding of the quantifiable regional spatial 
fluctuation in these soil attributes is essential for maintaining soil 
fertility through appropriate soil–plant-environment management 
methods, efficient land-use management, and interpreting ecosystem 
functioning. The intricate interplay between land use, geography, 
topography, and climate are the leading causes of variation in soil 
characteristics (Reza et al., 2016; Thakur et al., 2023). Land use man
agement practices may also result in unpredictability in their conse
quences (Safari et al., 2013), with soils that can display noticeable 
spatial diversity across macro- and micro-levels (Wang et al., 2017). In 
this perspective, this investigation strives to ascertain the spatial het
erogeneity of particular soil attributes, namely OC, pH, EC, N, P, K, Ca, 
and Mg, for a Jammu region of Indian Himalayas, using classical sta
tistics and geostatistical analysis. By employing both classical statistical 
methods and advanced geostatistical analysis, the study seeks to 
comprehensively understand how these soil attributes are distributed 
across the landscape. Utilization of spatial analysis methods, like var
iogram modelling and kriging, allows for the creation of detailed spatial 
heterogeneity maps, which not only reveal the spatial patterns of these 
soil attributes but also provide insights into the underlying processes 
driving their spatial distribution. Furthermore, by integrating classical 
statistical analyses with geostatistical methods the research endeavours 
to improve the precision and robustness of the spatial predictions, 
thereby facilitating more informed decision-making in soil management 
and farming methods. Overall, the investigation aids in a profound 
comprehension of soil kinetics in the temperate Himalayan region, of
fering valuable implications for sustainable land use planning, envi
ronmental conservation, and agricultural productivity enhancement in 
this ecologically sensitive area.

1.1. The utility of geostatistics to implement the sustainable management 
of agroecosystems

To successfully implement the sustainable management of agro
ecosystems the precision agricultural technologies, and the correct 
application maps for site-specific fertilization must be developed. Soil 
parameters like pH, OC, accessible N, P, and K can be shown on a 
regional heterogeneity map, and this spatial information can be useful to 
reduce fertilizer consumption, costs, and environmental pressure (Wani, 
2016). On the other side, geostatistics offers the tools for describing and 
quantifying spatial variation, using field data for logical interpolation, 
where variance assessment offers useful details to setup the sampling 
frequency to gauge a soil characteristic with accuracy. The geostatistical 
method is employed to estimate the values of soil attributes in areas that 
have not been studied or have had few taken samples (Yao et al., 2004). 
Geostatistical approaches by incorporating spatial data into forecasts 
can enhance maps’ prediction and clarity (Lopez-Granados et al., 2002). 
Therefore, spatial-interpolation-based geostatistical tools can produce 
heterogeneity maps of soil attributes (Putthividhya and Tanaka, 2012) 
and, compared to more conventional methods, the geostatistical 
methods are an useful and affordable tool for mapping soil quality 

O.A. Wani et al.                                                                                                                                                                                                                                 Ecological Indicators 166 (2024) 112540 

2 



characteristics (Kumar et al., 2016; Saleh, 2018).
In recent years, there has been a substantial escalation in the use of 

different interpolation methods and geostatistical tools for the concep
tion of spatial heterogeneity maps of soil attributes like pH (Shahbazi 
et al., 2013), EC (Tripathi et al., 2015), texture (Poggio and Gimona, 
2017), macro-and micronutrients (Fonseca et al., 2018), and carbon 
dynamics (Hounkpatin et al., 2018). Geostatistics provides powerful 
tools for understanding and modelling the spatial heterogeneity of soil 
attributes. Geostatistics provide us with statistical estimation of spatial 
heterogeneity. The process begins with collecting soil samples from 
various locations within a study area, followed by an exploratory data 
analysis (EDA) to outline the primary features of the data (Chipres et al., 
2009). A key step is variogram analysis, which quantifies the extent of 
spatial correlation among samples and models the spatial structure of 
the data. This involves fitting a conceptual framework, like spherical, 
exponential, or Gaussian, to the empirical variogram. The chosen model 
is crucial for accurate spatial predictions (Legendre and Legendre, 
2012). Kriging, an advanced geostatistical interpolation technique, uses 
the variogram model to anticipate soil characteristics at untested sites, 
incorporating both the distance between known points and the spatial 
correlation structure (Abdel-Rahman et al., 2020). This process gener
ates continuous surfaces that estimate soil property values across the 
study area, visualized as spatial heterogeneity maps. These maps reveal 
patterns and trends in soil attributes that are essential for precision 
agriculture, environmental monitoring, and land management. The ac
curacy of the maps is validated through cross-validation methods, 
comparing predicted values with actual measurements to ensure the 
reliability of the predictions.

2. Materials and methods

2.1. Study area

The study area spans from 32◦53′ to 34◦21′ N latitude and 75◦1′ to 
76◦47′ E longitude within Kishtwar District, situated in the Indian state 
of Jammu and Kashmir (J&K UT) (Fig. 1).

The temperate Himalayan region of India has been selected as study 
area for its unique environmental characteristics and distinct soil 
properties compared to other regions in the country. This region spans a 
diverse range of elevations, from low-lying valleys to towering peaks 
exceeding 7000 m, creating varied topographic and climatic conditions 
that profoundly influence soil formation and nutrient distribution (Sati 
and Kumar, 2004). Unlike the tropical climates prevalent in much of 
India, the temperate climate of the Himalayas affects soil moisture re
gimes, organic matter decomposition rates, and nutrient availability, 
shaping distinct soil profiles (Rawat et al., 2020). Moreover, the rich 
biodiversity of the Himalayan region contributes to unique soil biota and 
ecosystem functions, further influencing soil health and fertility (Khan 
et al., 2020). Agricultural practices in the Himalayas are tailored to these 
environmental conditions and include terraced farming, elevation- 
specific crop cultivation, and traditional soil management techniques 
that have evolved over centuries (Amrith and Yu, 2022). Studying soil 
properties and agricultural practices in this region is crucial for devel
oping strategies to enhance agricultural productivity, promote sustain
able land management, and preserve soil health amidst the challenges 
posed by its rugged terrain and diverse climate.

The area’s altitude varies from 900 to 6575 m above typical sea level 
(m amsl), having a mean altitude of 1107 m (equivalent to 3361 feet), 
encompassing an area of approximately 773,700 ha. The region of 
Kishtwar is recognized as the ’Area of Saffron and Sapphire’ and boasts 
abundant forest resources. Kishtwar is encircled by the Anantnag and 
Doda districts of J&K and also shares its borders with Himachal Pradesh. 
The mean yearly precipitation in the locality is ~887 mm and the 
rainfall fluctuates across different areas within the district according to 
the diverse topography. The area of Kishtwar falls within the temperate 
climate zone, with a range of minimum and maximum temperatures 
from − 10 ◦C to 30 ◦C and an average yearly precipitation of 887.8 mm. 
The chilliest month is January, having an average high temperature of 
approximately 6 ◦C and an average low temperature of about − 10 ◦C. 
The lowest temperature can occasionally dip below − 10 ◦C, and in the 
extremely mountainous areas of the region, the minimum temperature 
can plummet to around − 30◦ to − 40 ◦C. The Kishtwar district has 

Fig. 1. Study area.
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mainly Inceptisols and Entisol soil orders with soil groups like granite, 
gneiss, and schist and has a sandy clay loam predominant texture. 
Agriculture is the primary industry and income source within the area. 
The main agronomic crops are vegetables, pulses, wheat, maize, barley, 
paddy, and other grains. The major plantation crops in Kishtwar are 
apple, apricot, plum, pear, peach, and walnut. The region’s resources, 
particularly its forests, soil, and water, are experiencing considerable 
strain from the growth in the human and cattle populations. Due to the 
area’s mountainous terrain, undulating terrain, fragile ecosystems, 
weather patterns, and depletion of plant cover owing to extensive 
grazing, tree cutting, unauthorized logging, and intrusions, land 
degradation due to soil erosion emerges as a critical concern.

2.2. Collection of soil samples and analysis

A total of two hundred-six (206) soil samples up to a depth of 0–30 
cm representing soil attributes and nutrient dynamics were collected. 
The geo-coordinates were recorded using global positioning system 
(GPS) across the Kishtwar district of Jammu. The soil samples were 
gathered during the fall of 2020 using a stratified random sampling 
approach. Each chosen sampling location was subdivided into smaller 
sub-sections using a stratified random sampling technique. To accu
rately depict each location, a systematic sampling system was employed. 
Soil samples were combined, resulting in a total of three replicates, with 
each duplicate being comprised of six randomly gathered, combined, 
and sifted subsamples. After following the designated laboratory pro
cedures, the gathered soil samples underwent air-drying, grinding in a 
wooden pestle and mortar, and filtering through a 0.5 mm sieve before 
being examined for the specified soil characteristics. The organic carbon 
(OC) content of the soil was determined using the wet digestion method 
(Walkley and Black, 1934). pH levels were measured with a glass elec
trode pH meter while employing a 1:2.5 soil–water ratio, and the elec
trical conductivity (EC) was gauged using a conductivity meter 
(Jackson, 1973) in a 1:2.5 soil–water suspension. Additionally, the 
available nitrogen (N) was ascertained through the alkaline KMnO4 
method (Subbaiah, 1956), available phosphorus (P) using 0.5 N 
NaHCO3 (Olsen, 1954), available potassium (K) through neutral 1 N 
NH4OAC (Schollenberger and Simon, 1945), and available calcium (Ca) 
and magnesium (Mg) using the versenate method with EDTA (Heald, 
1965).

2.3. Classical statistical and geostatistical analysis

R software was utilized to conduct a range of descriptive statistical 
analyses, encompassing minimum, maximum, mean, median, standard 
deviation (SD), coefficient of variation (CV), skewness, normality test, 
and geostatistical analysis for assessing spatial heterogeneity. Shapiro- 
Wilk test with probability p ≤ 0.05 was employed to evaluate the 
normal distribution of the data. The soil parameters’ skewness was 
employed to look for deviations from normality. Positively skewed soil 
parameters imply that the variances are less reliable because the var
iograms’ confidence limits are broader than they would alternatively 
exist, whereas negatively skewed soil parameters imply the opposite. No 
data treatment was favoured because skewness was smaller than 1 for 
several soil factors (elevation, OC, NDVI, pH, N, P, and K) where, 
normalized difference vegetation index (NDVI) is among the most 
ancient remote sensing analytical index, frequently utilized as a metric 
for appraising vegetation and streamlining the complexity of multi- 
spectral images (Huang et al., 2021). NDVI acts as a valuable tool for 
understanding soil-vegetation relationships and assessing the ecological 
factors influencing soil heterogeneity, as well as the possible combined 
effects of land-use change and primary productivity (Petrosillo et al., 
2013; Petrosillo et al., 2022). NDVI provides information about vege
tation health and biomass, acting as a proxy for landscape ecological 
conditions, which influence soil heterogeneity (Shoshany et al., 2013). 
In this study, NDVI data are utilized alongside analyses of soil attributes, 

including pH, EC, OC, and the availability of key nutrients like N, P, K, 
Ca, and Mg. The NDVI data serve as an indicator of vegetation health 
and biomass, reflecting the interaction between vegetation cover and 
soil conditions. By analysing NDVI in conjunction with soil property 
measurements, the study aims to elucidate the relationship between 
vegetation dynamics and soil characteristics. Specifically, NDVI may 
provide insights into areas of vegetation stress or health, which can be 
correlated with variations in soil attributes like pH, nutrient levels, and 
organic matter content. This integrated approach between remote 
sensing techniques and field monitoring allows for a comprehensive 
assessment of soil-vegetation interactions and provides valuable infor
mation for understanding ecosystem dynamics and guiding land man
agement decisions towards the maintenance of ecological functioning 
and supporting ecosystem services (Fadl et al., 2024). Several studies 
have shown the relevance of the interplay among soil properties and 
vegetation traits, which involve plant variety, spatial distribution, and 
tree dimensions (Chen et al., 2020). Great plant variety boosts soil 
organic carbon (SOC) accumulation by growing carbon inputs (Lange 
et al., 2015). Forest diversity can grow productiveness and enhance soil 
health (Houlahan et al., 2018). Forest structure is linked to earth and 
atmospheric circumstances (Quesada et al., 2012). For example, varying 
types of N have important effects on the N cycle of woodland ecosys
tems, and flora features are strongly linked to soil N and its abundance 
(Wieder et al., 2015). Soil N is a fundamental nutrient crucial for every 
existence upon the planet. N is an essential control of organic produc
tivity, soil richness, and additional ecosystem services in forest envi
ronments (Stueken et al., 2016). Data transformation was performed in 
soil parameters like EC, Ca, and Mg where skewness was greater than 1 
(Webster and Oliver, 2007). The results of Q-Q plots were used to further 
analyse the normality of the data distribution. However, due to varia
tions in agricultural land-use patterns, the various soil parameters were 
not normally distributed. Additionally, a considerable divergence from 
normalcy was seen in the Shapiro-Wilk test.

The soil parameters under investigation were spatially interpolated 
using a geostatistical approach termed Ordinary Kriging (OK). By 
averaging the weights of nearby samples, the widely used geostatistical 
interpolation approach known as OK forecasts the values of unsurvey 
locations. OK assumes a stationary mean and calculates weights for 
neighbouring sample points based on their spatial proximity and simi
larity in soil properties (Webster and Oliver, 2007). The spatial self- 
correlation of recorded points is a technique used by OK to interpolate 
values in the spatial field with distance as a function that is specified by 
the variogram modelling. Experimental semi-variogram modelling was 
employed to evaluate the spatial dependence of the investigated soil 
parameters, as shown below: 

γ(h) =
1

2N(h)
∑N(h)

i=1
[Z(xi) − Z(xi + h)]2 

Where γ(h) stands for the experimental semi variance at a specified 
distance h, and N(h) represents the count of potential pairs of observed 
points at a designated distance (h), known as the “lag”. Z(xi) and Z(xi +
h) denote sample values of the variable Z that are spaced apart by dis
tance h (Bohling, 2005).

The nugget effect and nugget (n)/sill ratio were used to estimate the 
spatial dependence of specific soil parameters. When the n/s ratio is 
smaller than 0.25, there is a significant dependence. 0.25–0.75 and 
greater than 0.75, respectively, indicate a moderate and weak depen
dence (Cambardella et al., 1994).

The data set was randomly and uniformly divided into 10 subsamples 
of equal size, and the 10-fold cross-validation was used to assess how 
well the model performed in terms of spatial predictions of soil attri
butes. Each of the 10 subsamples is used as validation data exactly once 
during the ten validation cycles. We calculated the MSE for evaluating 
prediction accuracy (Utset et al. 2002) as shown below: 
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MSE =
1
N
∑n

i=1
[{Z(xi) − Ẑ(xi)}]2 

N represents the number of samples, Z(xi) denotes the observed value, 
and Z (̂xi) signifies the predicted value. The model harbouring the 
smallest MSE yields the highest accuracy. The spatial distribution of soil 
properties such as OC, pH, EC and nutrient content (N, P, K, Ca, Mg) was 
modelled. Consequently, the spherical model was employed for pH, EC, 
N, P, and Ca, the mathematical model for K, and Mg, and the exponential 
model for OC. These models were selected on the basis of their ability to 
fit the variogram structures observed in the dataset, ensuring robust 
predictions across the study area (Hengl et al., 2004). Parameters such as 
MSE, RMSE, and the Moran’s I index were utilized to assess model ac
curacy and spatial dependence of interpolated maps. Cross-validation 
techniques were employed to validate the predictive accuracy of krig
ing models, ensuring reliable estimation of soil properties at unsampled 
locations (Goovaerts, 1997).

3. Results

3.1. Classical statistics of soil attributes

The descriptive statistics of soil physicochemical attributes are 
depicted in Table 1. The elevation of the soil ranged from 1,053 to 4.413 
m, OC from 0.13 to 2.80 %, while NDVI ranged from − 0.16 to 0.54. The 
mean values for elevation, OC, and NDVI were 2743.32 m, 1.19 %, and 
0.15, with SD values of 667.22, 0.63, and 0.10, respectively. The soil pH 
in the region had a mean of 6.74, with values for SD and CV being 0.59 
and 8.75 %, respectively. The study area’s mean EC value was 1.37 dS 
m− 1, with SD and CV being 1.63 and 118.98 %. The lowest and highest 
measurements for pH and EC were 4.80 and 8.00, 0.03 and 9.80 dS m− 1, 
with the mean EC value being more than 1 dS m− 1 and having greater 
than 35 % CV. The minimum and maximum content of N, P, and K were 
201.15 and 993.19, 3.00 and 96.00, 124.88 and 1110.71 kg ha− 1, 
whereas Ca and Mg ranged from 7.00 to 46.00 and 2.30 to 21.50 meq 
100 g soil− 1, correspondingly. The average values for N, P, and K, were 
414.81, 30.97, and 526.30 kg ha− 1, while for Ca and Mg, values were 
17.64 and 7.54 meq 100 g soil− 1 (Table 1). The N, P, K, Ca, and Mg 
values in the study area had SD and CVs of more than 130 and 30 %, 18 
and 59 %, 250 and 45 %, 6 and 38 %, and 2 and 35 %, respectively. The 
skewness of soil attributes fluctuated from marginally adversely skewed 
(skewness; − 0.37) to highly positively skewed (skewness; 2.57).

3.2. Geostatistical analysis of soil attributes

The spatial diversity of essential soil characteristics in the surveyed 
region. Geostatistical semi-variogram analysis of the examined soil 

parameters reveals the spatial arrangement of chosen soil attributes 
following adjustment to various models (Tables 2, Fig. 2).

The spherical model better-described soil parameters: pH, N, P, and 
Ca. In contrast, the mathematical model described Ca and Mg, and the 
exponential model best explained the OC based on the lowest MSE. The 
nugget, representing the small-scale heterogeneity was found to increase 
in the order; pH<K<N<Mg < Ca < OC<P<EC. The K recorded the 
highest (0.24) partial sill, followed by OC (0.18), while the lowest was in 
EC (− 0.65). The spatial dependence expressed through the spectrum of 
the chosen soil parameters fluctuated greatly from 1,906.96 m (OC) to 
34,199.40 m (EC) and surpassing this spectrum showed no evidence of 
any spatial autocorrelation. Except for EC, N, P, and K, the estimated 
range values closely matched the sampling range values (1,500–6,500 
m). This structure hints at surface similarity or heterogeneity in the soil 
parameters. The semi-variogram analysis for the soil parameters re
flected strong to weak spatial dependence. The level of spatial interde
pendence (LSI) that indicates the intensity of soil characteristics’ spatial 
reliance varied from 0.06 to 2.81 % (Table 2). The semi-variogram 
analysis showed that K had a strong spatial dependence (DSD; 25 %), 
OC, N, P, and Mg had a moderate spatial dependence (DSD; 25 to 75 %), 
while pH, EC, and Ca had a weak spatial dependence (DSD; > 75 %). The 
kriging cross-validation method was utilized to assess the predictive 
precision of the semi-variogram models by considering the minimal 
MSE, the RMSE and Moran I value. After running the data through 
several models, the lowest MSE model was chosen (Table 2).

3.3. Spatial distribution of soil attributes

The spatial heterogeneity of cultivated areas was represented 
through a geostatistical analysis of the soil attributes. The semi-vario
gram’s model parameters were utilized in kriging to produce maps for 
specific soil attributes (Fig. 3). The north-western area displays elevated 
spatial distribution, while the southern regions exhibit lower elevation 
(Fig. 3a). Conversely, the SOC demonstrates an opposite pattern in 
spatial distribution compared to elevation. The lowest OC values were 
predicted along the north-western region, whereas the highest ones 
were found in the southwestern and south-eastern regions (Fig. 3b).

The NDVI was comparably observed to be higher in the north 
western and southwestern regions than in the north-eastern and south- 
eastern regions (Fig. 3c). The soil pH was recorded to be near neutral 
in the north-western and south-eastern regions, while it was slightly 
acidic in the south-western and north-eastern regions (Fig. 3d). The soil 
EC was higher in the north-western and south-western regions than in 
the eastern region of the study zone (Fig. 3e).

Comparatively, higher N content spatial distribution occurred in the 
northern part, which decreased in content towards the southern terrain 
(i.e., southwest and southeast) (Fig. 3f). The study area’s north-eastern 

Table 1 
Descriptive statistics of selected soil attributes.

Parameters Min Max Mean Med. Std. Dev. CV (%) Skew. Kurt. Std. Error Shapiro 
(P-value)

Elev. (m) 1,053.00 4,413.00 2,743.32 2,790.00 667.22 24.32 − 0.28 − 0.32 46.38 0.11
OC (%) 0.13 2.80 1.19 1.20 0.63 52.94 0.58 0.00 0.04 0.00
NDVI − 0.16 0.54 0.15 0.14 0.10 66.67 0.33 0.20 0.01 0.03
pH 4.80 8.00 6.74 6.80 0.59 8.75 − 0.37 − 0.02 0.04 0.02
EC (dS m¡1) 0.03 9.80 1.37 0.80 1.63 118.98 2.57 7.88 0.11 0.00
N (kg ha¡1) 201.15 993.19 414.81 396.02 134.65 32.46 0.65 0.50 9.36 0.01
P (kg ha¡1) 3.00 96.00 30.97 31.00 18.57 59.96 0.75 0.38 1.29 0.02
K (kg ha¡1) 124.88 1110.71 526.30 512.30 254.58 48.37 0.45 − 0.63 17.69 0.00
Ca (meq 100 g soil¡1) 7.00 46.00 17.64 16.50 6.84 38.78 1.23 1.92 0.48 0.03
Mg (meq 100 g soil¡1) 2.30 21.50 7.54 7.19 2.90 38.46 1.02 2.53 0.20 0.02

Elev. (m): elevation (meters); OC (%): organic carbon (percentage); NDVI: normalized difference vegetation index; pH: soil pH level; EC (dS m− 1): electrical con
ductivity (deciSiemens per meter); N (kg ha− 1): nitrogen (kilograms per hectare); P (kg ha− 1): phosphorus (kilograms per hectare); K (kg ha− 1): potassium (kilograms 
per hectare); Ca (meq 100 g soil− 1): calcium (milliequivalents per 100 g of soil); Mg (meq 100 g soil− 1): magnesium (milliequivalents per 100 g of soil); Min: minimum; 
Max: maximum; Mean: mean (average); Med.: median; Std. Dev.: standard deviation; CV (%): coefficient of variation (percentage); Skew.: skewness; Kurt.: kurtosis; 
Std. Error: standard error; Shapiro (P-value): shapiro–wilk test probability value.
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part is relatively higher in P than the north-western. However, the 
southwestern part has more P content than the south-eastern (Fig. 3g), 
and a similar trend in the spatial pattern of K was observed (Fig. 3h). Ca 
was found to be higher in the northeast and southwest part of the study 
area (Fig. 3i), whereas Mg was higher north-western area (Fig. 3l).

4. Discussion

Spatial variability of elevation reveals lower altitude on southern 
side and highest elevation on western side, and across the study area 
elevation varied randomly with high variability within the study area. 
Soil organic carbon (SOC) resulted lowest from northern side, while 
higher amount of SOC was recorded in the western side of study area. 
Alkaline pH was recorded in the northern side of study area, while acidic 
pH was recorded in the southern side of study area. EC was highest on 
western side of study area. Nitrogen varied across the study area, while P 
and K was highest in the western side and in the southern side varying 
randomly. Relative to the average OC content of cultivated soils in 
Jammu and Kashmir, respectively, which is 0.69 % and 0.85 %, the soils 
in the present study is relatively rich in OC within the region as 
demonstrated also in other studies (Bangroo et al., 2021; Tagore et al., 
2014). The majority of the studied region showed significant levels of 
OC, with the average being greater than 0.5 % and 1.0 %, considering it 
as the medium range. In particular, the study area showed a mean OC 
content of 1.19 %, which indicates richer organic matter in the Hima
layan soils, similar to findings by Sharma and Sood (2020), who noted 
higher OC levels in mountainous regions. As a result, they continue to be 
able to provide important nutrients through organically bound me
diums. Because of the region’s mountainous geography, maintaining the 
status of organic matter proves challenging; consequently, it is essential 
to utilize organic fertilizers frequently to make up for the topsoil erosion 
that the area frequently experiences (Babu et al., 2020a; Singh et al., 
2021, Das et al., 2022). The soil within the examined region was 
strongly acidic to slightly alkaline with slightly saline EC. Studies in 
similar regions by Suri et al. (2013) and Sharma et al. (2023) found that 
the soil pH were similar in range that affected crop suitability and 
nutrient availability. Our findings suggest that soil pH is advantageous 
for planting different agricultural commodities because multi-diverse 
agronomical crops thrive in different environments that are acidic to 
slightly alkaline. Numerous studies have found that agricultural prac
tices profoundly impact the changes in soil attributes in agroecosystems 
(Tong et al., 2017; Wang et al., 2019; Xiao et al., 2020; Babu et al., 
2020b; Kousalya et al., 2024). Sustainable agricultural management 
could have a higher impact on soil organic matter than natural drivers, 
like climate and soil, soil texture, pH, etc. (Guo et al., 2017; Yadav et al., 
2021, 2023; Babu et al., 2023).

The area’s mean EC value was considerably higher than 1 dS m− 1, 
which must be below 0.8 dS m− 1 for all crops to be within safer limits 
(Richards, 1954). The mean EC value of 1.37 dS m− 1 in our study, 

indicates slightly saline conditions, aligns with findings in other 
mountainous regions where EC levels influence soil salinity manage
ment practices (Gupta et al., 2018; Yadav et al., 2021). The EC>1 dS 
m− 1 demonstrates an inconsistent balance of the soil status that pro
motes both plant growth and microbial niche. Saline conditions in the 
study area can impact crucial microbial processes like N cycling, the 
production of nitrous and other N oxide gases, breathing, and break
down. Communities of roundworms that parasitize vegetation may also 
rise, and N losses may increase (Smith and Doran, 1996). The N in the 
soils ranged from medium to high, and in some areas, it was highest; this 
could be attributed to higher levels of OC. Our findings concurred well 
with those of Wani (2016). The soil P ranged from low to high, with most 
of the area having medium P levels. This might be related to beneficial 
soil reactions, the production of organo-phosphate complexes, and the 
encapsulation of iron and aluminium particles by humus (Rao et al., 
2008). The soil K had high availability levels. Our findings are consistent 
with nutrient distribution patterns observed in other temperate regions 
influenced by topography and agricultural practices (Li et al., 2021; Su 
et al., 2024). The illitic nature of these soils, further corroborated by the 
predominance of illitic clay in these soils, could cause increased K values 
across the region (Thangasamy et al., 2005). The median of a few soil 
attributes (NDVI, EC, N, K, Ca, and Mg) was lower than its mean, 
showing anomalous data did not significantly impact the sample value. 
The most frequent type of deviation from normalcy is skewness. Positive 
skewness causes the confidence bounds on the variogram to be wider 
than they otherwise would be, making the variances less dependable. 
When the skewness coefficient surpasses 1, necessitating a logarithmic 
conversion (Webster and Oliver, 2007). According to Hillel’s (2003)
standards, the CV collectively shows the range of soil attributes, from 
low to high values. The lowest findings were for soil pH (8.75 %), and 
the largest CV variation was recorded in EC (118.98 %). The undulating 
nature of the topography and inconsistent land management practices 
with deteriorated soil organic matter is to blame for this changeability, 
which results in observable differences in soil (Tesfaye et al., 2022). 
Based on a study of Wilding (1985) classification of heterogeneity, 
which places least, moderate, and most as having a CV of < 15 %, 15–35 
%, and > 35 %, respectively, the CV was selected to test the data for 
heterogeneity. The lowest heterogeneity was exhibited by soil pH, with 
moderate heterogeneity by elevation, N, while the remaining soil 
characteristics had greater heterogeneity. Comparable CV figures were 
revealed by Kalambukattu et al., (2018) and Sharma and Sood (2020).

Knowledge of the spatial heterogeneity of soil attributes and the 
spatial distribution of those attributes is essential for conserving natural 
resources, fostering input efficiency, and environmental stewardship for 
the cultivation areas in the Kishtwar district (Carrow et al., 2010). The 
spherical model provided the greatest fit to the current investigation’s 
semi-variograms of most soil parameters. This model is among the 
common models employed in the investigation of soil attributes (Bhatti 
et al., 1991; Goovaerts, 1998). Typically, nugget represents 

Table 2 
Semi-variogram parameters of selected soil attributes.

Parameters Model Nugget Partial Sill Range Ratio Spatial Dependence MSE RMSE Moran I P-value

OC (%) Exp 0.09 0.18 1906.96 0.33 Moderate 0.27 0.52 0.33 0.00
pH Sph 0.01 0.00 5115.07 1.63 Weak 0.38 0.61 − 0.03 0.70
EC (dS m¡1) Sph 1.00 − 0.65 34199.40 2.81 Weak 2.28 1.51 0.18 0.00
N (kg ha¡1) Sph 0.03 0.06 18063.09 0.32 Moderate 11227.80 105.96 0.40 0.00
P (kg ha¡1) Sph 0.17 0.16 24296.21 0.51 Moderate 226.93 15.06 0.37 0.00
K (kg ha¡1) Mat 0.02 0.24 7259.36 0.06 Strong 34422.70 185.53 0.50 0.00
Ca (meq 100 g soil¡1) Sph 0.06 0.00 4420.16 1.05 Weak 44.62 6.68 − 0.02 0.68
Mg (meq 100 g soil¡1) Mat 0.04 0.06 6231.39 0.38 Moderate 4.92 2.21 0.41 0.00

OC (%): organic carbon (percentage); pH: soil pH level; EC (dS m− 1): electrical conductivity (deciSiemens per meter); N (kg ha− 1): nitrogen (kilograms per hectare); P 
(kg ha− 1): phosphorus (kilograms per hectare); K (kg ha− 1): potassium (kilograms per hectare); Ca (meq 100 g soil− 1): calcium (milliequivalents per 100 g of soil); Mg 
(meq 100 g soil− 1): magnesium (milliequivalents per 100 g of soil); Exp: exponential model; Sph: spherical model; Mat: matérn model (mathematical); Model: model; 
Nugget: nugget effect; Partial Sill: partial sill; Range: range; Ratio: nugget to sill ratio; Spatial Dependence: spatial dependence; MSE: mean square error; RMSE: root 
mean square error; Moran I: Moran’s I index; P-value: probability value.
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heterogeneity brought on by experimental error or a smaller sampling 
scale. A greater nugget value indicates that a particular lower-scale 
process cannot be disregarded. The overall marginally positive nugget 
effects OC=0.09, pH=0.01, N=0.03, P=0.17, K=0.02, Ca = 0.06, and 
Mg = 0.04 could be a result of the intrinsic unpredictability and sam
pling error brought on by the differences in topography, slope, and 
aspect. In contrast to the other attributes, the lowest nugget value for 
soil pH implies that the chosen sampling distance performed well in 
capturing spatial dependence. It was observed that EC had the highest 
nugget value. This suggests that EC had significant spatial variation over 
a wider range. The sampling interval ought to be shorter than half the 
semi-variogram span, according to (Bogunovic et al., 2017). The partial 
sill represents the spatial correlation structure that depicts the amount of 

variation. Partial sill in the semi-variogram model is the distinction 
between the nugget and the sill. The term “range” in modelling pertains 
to the maximum distance at which measured values are associated in a 
semi-variogram. When determining the sampling frequency and design 
for mapping soil parameters, the range could be a useful tool (Awal 
et al., 2019). When compared to soil attributes with larger ranges, a 
small range means that the observed soil characteristic is further influ
enced by environmental and land management variables across small 
distances (Zhang et al., 2014). A study by Lal (2010), highlights that soil 
attributes, like pH, OC, and nutrient content, are highly responsive to 
variations in environmental conditions, including climate, vegetation 
cover, and land use practices. These factors influence soil processes, like 
nutrient cycling, soil organic matter decomposition, and soil erosion, 

Fig. 2. Semi-variograms and fitted models for the Elevation (a), NDVI (b), Organic Carbon (OC) (c), pH level (d), Soil Electrical Conductivity (EC) (e), Nitrogen (N) 
(f), Phosphorus (P) (g), Potassium K (h), Calcium (Ca) (i), and Magnesium (Mg) (l).
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Fig. 3. Prediction map of Elevation in m (a), Soil Organic Carbon (SOC) in percentage (b), NDVI (c), Soil pH level (d), Soil Electrical Conductivity (EC) in deci
Siemens per meter (e), Nitrogen (N) in kg ha− 1 (f), Phosphorus (P) in kg ha− 1 (g), Potassium (K) in kg ha− 1 (h), Calcium (Ca) in meq 100 g soil− 1 (i), and Magnesium 
(Mg) in meq 100 g soil− 1 (l).
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which ultimately shape soil attributes over small spatial scales. Simi
larly, Viscarra Rossel et al. (2006) and Arrouays et al. (2006) demon
strate that soil attributes exhibit significant spatial heterogeneity at fine 
spatial scales due to the heterogeneity of environmental factors and land 
management practices. Variations in soil attributes over short distances 
reflect the intricate interactions between soil formation processes, 
landscape characteristics, and anthropogenic activities. The work of Guo 
and Gifford (2002) and Lal (2004) emphasizes that land management 
practices, like tillage, irrigation, fertilization, and land use changes, can 
have localized effects on soil attributes. These practices alter soil 
structure, nutrient availability, and microbial activity, leading to 
spatially heterogeneous soil attributes, particularly in agricultural 
landscapes.

This suggests that in contrast to soil Ca and Mg, which have smaller 
ranges, measured values for soil N and P, which have larger ranges of 
roughly 18,063.09 m and 24,296.21 m, respectively, are influenced by 
nearby values over larger distances. Thus, soils having smaller ranges 
are considered to vary widely. Compared to soil attributes with lower 
ranges, large-range values show that measured soil attributes are 
affected by natural and anthropogenic causes over larger distances 
(Lopez-Granados et al., 2002). Also, the discrepancies in the ranges 
could be brought on by variations in the parent material’s impedance, 
slope and aspect, cation exchange capacity, and fluctuation in topog
raphy, erodibility, land management practices, and particle size distri
bution (Opolot et al., 2015; Rabia et al., 2022; Yadav et al., 2023). 
Comparable outcomes reflecting significant discrepancies in soil ranges 
attributes were also reported. For instance, Behera et al. (2018) found 
the ranges of 11,129 and 10,727 m for available P and K. DSD larger 
than 75 % indicates a lack of spatial dependence, and the sampling 
strategy is inappropriate for determining the variance in the process. 
Weak dependency implies that data heterogeneity comprises random, 
limited distance variation and that the measurement technique is 
consequently unsuitable for describing soil heterogeneity. The soil at
tributes revealing moderate DSD could be governed by external factors 
differential fertilizer rates, land-management methods, and tillage op
erations. In contrast, soil parameters like K showing strong DSD may be 
managed by intrinsic soil factors like clay minerology and soil separate 
sizes. The weak DSD in Ca may be due to external variables like fertil
ization and the redistribution of rainfall caused by the canopy differ
ences with topography (Liu et al., 2015). Our findings are in line with 
those of Sharma and Sood (2020). The low MSE values suggest that 
kriging soil property predictions align with actual values. Therefore, by 
producing prediction maps, the interpolation procedure could be useful 
for site-specific and soil-crop management (Shaddad et al., 2016; Ker
sebaum and Wallor, 2023).

The northwest and southwest regions of the research zone possessed 
the highest levels of soil attributes, which fell in levels toward the 
eastern side, according to the predicted maps. The difference in the 
elevation is due to pedogenic processes along with weathering of rock 
and heterogeneity in parent material present in the region (Brimhall 
et al., 1991). Low values of OC in the north-western region may be due 
to more significant erosion loss due to intensive tillage practices, less 
retained soil organic matter, and crop removal during harvesting season 
(Jin et al., 2021). High NDVI in the north-western and south-western 
regions may be due to greater plant, crop, and tree densities compared 
to the eastern part as an incidence of different wave-length reflectance. 
The differences in soil pH may be ascribed to variations in the added 
matter to the cultivated soil, like different chemical fertilizers and the 
addition of organics in different localities (Ozlu and Kumar, 2018). The 
variation in EC across the region could be due to crop type, rainfall in
tensity, land-use pattern, and chemical fertilizers (Assefa et al., 2020). It 
may also differ due to intrinsic factors like unalterable soil minerals, 
climate, and soil texture. When determining the spatial visual trend and 
measuring the heterogeneity rate at the farm-scale level for sustainable 
management, such knowledge about the spatial structure and distribu
tion of soil attributes is essential. The heterogeneity of soil attributes 

spatially might be ascribed to various factors (Iqbal et al., 2005). In 
addition to intrinsic soil attributes, agricultural practices with less input 
(Metwally et al., 2019; Kundu et al., 2023), tillage systems (Xue et al., 
2015), organic incorporation and cropping systems (McCormack et al., 
2013) could be the sources of heterogeneity. Nevertheless, more 
research is necessary to clarify the governing variables for spatial het
erogeneity in this study area in the future. The spatial investigation of 
important soil attributes, which may in the future be contrasted on a 
time scale for enhancing decision support and management strategies, is 
one of the study’s significant advantages. This makes it possible to locate 
problem areas quickly and set priorities for site-specific management. 
Therefore, the spatial heterogeneity of surface soil attributes may be 
used as a land management indicator for cultivated areas in the north
eastern part of Jammu.

5. Conclusions

Effective land use, management and environmental policies 
increasingly rely on comprehensive soil data to improve understanding 
and management of landscapes (Grealish et al., 2015; Brungard et al., 
2015). The analysis of soil spatial characteristics integrated with data 
from remote sensing (NDVI) can help in assessing the agricultural 
landscape capacity to provide ecosystem services (ES) from global to 
local (Zurlini et al., 2014), therefore these data are essential for 
informed landscape management (Gogoi et al., 2021; Jones et al., 2013) 
and to foster their adaptive capacity and sustainability (Zurlini et al., 
2013). Soil maps play a crucial role in implementing this knowledge, 
highlighting spatial distribution patterns and contributing to soil con
servation and sustainable environmental modelling (Yaalon, 1989). 
Accurate mapping of soil attributes at different scales is crucial for 
effective resource management and long-term sustainability efforts. 
Precise nutrient management and variable fertilisation rates are essen
tial to optimise agricultural productivity, including crops such as vege
tables, pulses and maize. The study identified significant variability in 
soil parameters in the region, therefore, sustainable nutrient manage
ment practices are essential to maintain soil fertility and crop produc
tivity. The spatial analysis revealed different patterns of soil 
distribution, emphasising the need for site-specific management ap
proaches to optimise resource use efficiency and minimise environ
mental impacts. Spherical and exponential models for pH, N, P, Ca and 
Mg highlight the different spatial relationships, guiding precision 
farming practices for sustainable crop production. The study emphasises 
the crucial need for tailored soil management strategies to achieve 
sustainable agriculture in the Himalayan region. It revealed substantial 
variability in soil parameters, such as nutrient content, pH levels and 
spatial distribution patterns, which are critical for optimising agricul
tural productivity and ensuring long-term soil health and sustainability. 
This study demonstrates the ability of remote sensing and GIS tech
niques integrated with geospatial statistics to improve sustainable land 
use in the Himalayan region, emphasising their utility for monitoring 
and spatially explicit assessment of soil properties at the landscape scale, 
with a focus on the ecological characteristics of the ecosystems under 
study. GIS technologies allow for integrated and spatially comprehen
sive processing of multiple variables simultaneously, which enables the 
identification and analysis of spatial inhomogeneity and key factors in 
the ecosystems under study.

Despite these insights, the study recognises the limitations inherent 
in studying heterogeneous natural systems and the complexities asso
ciated with scaling results to larger regional contexts. Future research 
should prioritise the study of temporal variations in soil properties, the 
integration of holistic soil management practices, and the resolution of 
scalability issues to improve the resilience of soils and ecosystems by 
adding geospatial tools to support accurate soil management. By 
addressing these challenges, future studies can provide more robust 
recommendations for effective soil conservation and sustainable agri
cultural practices in different environmental contexts. The spatial 
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variability maps produced using ordinary kriging will serve as a basis for 
future research. Hilly areas are very difficult to assess and the estimation 
of soil nutrients is difficult. Predictions based on gesostatistical model
ling will further improve site-specific nutrient management and drasti
cally reduce crop production costs and environmental impacts.
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González, G., Luizão, F.J., Malhi, Y., Monteagudo, A., Neill, D.A., Núñez Vargas, P., 
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