
Received 11 October 2023, accepted 31 October 2023, date of publication 8 November 2023, date of current version 15 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3331592

Laplacian Eigenvalue Allocation Through
Asymmetric Weights in Acyclic
Leader-Follower Networks
GIANFRANCO PARLANGELI , (Member, IEEE)
Dipartimento di Ingegneria dell’Innovazione, Università del Salento, 73100 Lecce, Italy

e-mail: gianfranco.parlangeli@unisalento.it

This work was supported by the Agreement Between IEEE and Conferenza dei Rettori delle Universitá Italiane (CRUI).

ABSTRACT This paper tackles the eigenvalue allocation problem through an appropriate choice of the
edge weights for the class of combinatorially-symmetric Laplacian matrices of acyclic graphs, namely
Laplacian matrices showing symmetric zero/nonzero values in its entries according to a tree graph pattern.
The mathematical setting of the problem is remarkably suited for several current multi-agent systems
engineering applications, when the communication graph is bidirectional but each agent can set the weight
of each incoming neighbor value. The resulting algorithm is inherently iterative and it requires a finite time
execution, so that it is well fit for real-world applications as a preliminary routine. For this reason, a special
focus is devoted to a distributed implementation of the main algorithm. As a final theoretical result, it is
proved that, under the strict interlacing property, the solution is positive, and the algorithm can be iterated.
An illustrative example closes the paper, showing how the algorithm works in practice.

INDEX TERMS Laplacian eigenvalue allocation, consensus networks, tree graphs, spectral graph theory.

I. INTRODUCTION
Over the last decades, ever-increasing research activity has
been focused on the analysis and design of complex systems
made of several interconnected devices, trying to explain the
role and effects of local interactions on global features of the
system [1].

One major challenge in such a framework is the design
of iterative algorithms based on local data that allow to
reach a common decision, and the concept of consensus is
used as a primary tool from various scientific communities
[2]. This topic has been investigated with a large effort
from researchers of several diverse fields for its impact on
several technological areas, ranging from the electric grid
and microgrids control [3], [4] distributed signal processing
[5], formation control of vehicles and devices [6], robotic
networks [7], and several applications of distributed Artificial
Intelligence [1], [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

The dynamical properties of such evolving networks are
closely connected and intertwinedwith the spectral properties
of the interconnection graph and in particular with its
Laplacian matrix [9], and a renewed thrust of research was
devoted to spectral graph theory and the properties of the
Laplacian matrix [10].

Graph Laplacians are graph-theoretic matrices whose
spectral properties are strictly related to several modern
research fields such as graph clustering [11], sparse coding
and classification problems [12], consensus, synchronization,
and other multi-agent self-organized activities on graphs [13],
clustering, and other key tasks in unsupervised learning [14]
among others. In recent years, spectral graph theory has been
explored also to model and understand signal propagation in
the human brain [15], [16].

The spectrum of the Laplacian is strongly related to
the fundamental features and limitations of any network
dynamics [12], [17], [18]. For example, the smallest positive
eigenvalue of a Laplacian is a common measure of how well
connected the network is and how fast the system converges,
while the largest eigenvalue is fundamental for the stability

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 126409

https://orcid.org/0000-0003-4991-3698
https://orcid.org/0000-0002-1899-2808

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

of discrete-time consensus and several continuous-time
formation control algorithms [19]. Grounded Laplacians,
namely Laplacian principal submatrices, have been also
widely investigated [20]. The properties of a grounded
Laplacian play also a key role in leader-follower networks and
opinion dynamics in the presence of stubborn agents [21].

However, real-world applications can be affected by
several unavoidable inaccuracies and errors, and some draw-
backs may arise. For example, poorly connected networks
with a large number of participants may suffer from slow
convergence rates. In the presence of slow converge rates
together with small disturbances or communication errors,
the network evolution often deviates from the nominal
evolution toward another fault-driven unpredicted evolution,
it may not converge to consensus, and even become unstable
[22], [23].

Another real-world urgent issue is the possible presence
of a misbehaving agent that behaves to disrupt the network
evolution and to ruin the network mission goal [17]. It is often
a consequence of the architecture of such networks, which
is usually spatially distributed in a large area where other
non-interacting agents may be present.

In such applications, the knowledge of the nominal
behavior is of great importance to have predictive ability
on the network evolution [17], and more specifically the
knowledge of the Laplacian eigenvalues is often required
for the design of network monitoring filters for detecting
topology variations [24], [25]. In this framework, it is worth
remarking that pole placement is a well-assessed technique
for the design of fault detection filters [26], [27].

The goal of this paper is to thoroughly study the Laplacian
eigenvalue allocation problem for a tree graph by an
appropriate assignment, possibly asymmetric, of the edge
weights.

From a mathematical standpoint, the problem afforded in
this paper can be cast into the so-called inverse eigenvalue
problems (IEPs) [28]. Indeed, from a mathematical stand-
point, the goal of this paper is to understand if it is possible to
set the spectrum of some matrices to some prescribed values
by the choice of some available parameters. This kind of
problem is known as the inverse eigenvalue problem [28], and
a different yet close problem that falls into this same research
area is the pole allocation of a dynamical system by means
of state or output feedback [28], which is a long-standing
fundamental problem in systems theory [29], [30]. For this
reason, we name the problem of this paper as the eigenvalue
allocation problem by edge weight assignment.

The idea of setting the Laplacian eigenvalues of a graph by
an appropriate choice of the edge weights is not new in the
control systems community.

Several authors studied the weight design for a graph to
impose a favorable spectral structure to the related Laplacian
matrix. When dealing with symmetric Laplacians, the exact
allocation problem is not solvable and it is usually cast into
optimization problems [31], [32]. However, in the last years,
there have been attempts to solve the eigenvalue allocation

problem bymeans of asymmetric edge values [19], [33], [34].
In [33], the authors study the problem of the edge weights
assignment for directed graphs to impose a prescribed
spectrum to their Laplacian matrix, and provide necessary
and sufficient conditions for their solvability, together with
an explicit solution, in the case of graphs with two and
three vertices. In [19], the authors seek conditions for weight
allocation in order to bind Laplacian eigenvalues within a
prescribed threshold. The mathematical setting adopted in
this paper is the same as [34], [35], and [36].

The results of this paper extend those for path graphs [37]
to the general class of acyclic graphs. The contribution of
this paper is twofold. On one hand, the results achieved in
this paper concur to have a thorough insight into the spectral
properties of the Laplacian matrix of acyclic graphs and,
moreover, they can be directly applied to several multi-agent
systems and robotic network applications, as those provided
for example in Section II. Though this paper is focused on the
real eigenvalue allocation problem, most of the results can
be adapted to the general complex case. However, in view
of the additional mathematical details and for the sake of
clarity, we devote a separate future investigation for the latter
framework.

A. PAPER ORGANIZATION AND NOTATION
This paper is organized as follows. In Section II, a
mathematical framework stemming from a number ofmodern
engineering applications is described, and the problem
formulation is stated. In Section III some preliminary results
on star and path graphs are reported. In Section IV the main
theoretical results are derived, which are the basis of the
algorithm proposed in this paper. Section VI is devoted to a
distributed implementation of the resulting Algorithm, and
finally Section VII describes how the algorithm works in
practice when it is applied to a 9-nodes tree network.

In the following, we adopt the standard notation of N, R,
R≥0, R+ for the natural, real, non-negative real numbers, and
positive real numbers. The symbol eji denotes the i-th element
of the canonical basis of Rj, e.g. e51 =

[
1 0 0 0 0

]⊤.
For a square matrix A ∈ Rn×n, [A]ij is the (i, j)-th entry and

(A)ij ∈ R(n−1)×(n−1) is the submatrix obtained by removing
the i-th row and j-th column of A. The Laplace expansion rule
for the determinant is:

detA =

n∑
j=1

(−1)i+j[A]ij det (A)ij .

A matrix A is non-negative (positive) if its entries satisfy
[A]ij ≥ 0 ([A]ij > 0). A matrix A ∈ Rn×n is combinatorially
symmetric [38] or structurally symmetric when [A]ij ̸= 0 if
and only if [A]ji ̸= 0.

A graph is a pair G = (V, E) with V = ({1, 2, . . . , n} and
E ⊂ V × V; whenever (i, j) ∈ E , then i and j are called
neighbors, and we denote it as i ∼ j. The set of neighbors
of a node i ∈ V is denoted as Ni = {j ∈ V|(i, j) ∈ E}.

126410 VOLUME 11, 2023

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

A graph G is undirected when (j, i) ∈ E if and only if
(i, j) ∈ E , otherwise it is called directed. A graph with no
cycles is called a tree if it is connected, otherwise it is called
forest. For a vertex w of a tree T , T (w) denotes the forest
obtained from T by deleting w, and it is made of |Nw| trees.
For any v neighbor of w, T (w)

v denotes the tree of T (w) having
v as a vertex. Finally, T̄ (w)

v denotes the subgraph of T (w)
v after

deleting vertex v and all edges incident to v. If node w is clear
from the context (e.g., when w is the leader node), we use the
simplified notation Tv and T̄v.
Let G = (V, E) be an undirected graph, with associated

binary adjacency matrix A ∈ Rn×n defined as [A]ij = 1 if
(i, j) ∈ E and [A]ij = 0 if (i, j) /∈ E . The weighted adjacency
matrix is defined as [Aw]ij = αij with αij > 0 if (i, j) ∈ E
and [Aw]ij = 0 if (i, j) /∈ E . The corresponding weighted
Laplacian matrix is defined as [Lw]ij = −[Aw]ij if i ̸= j
and [Lw]ii =

∑n
j=1,i ̸=j[Aw]ij. Finally, the R(n−1)×(n−1) matrix

obtained by deleting the ℓ-th row and ℓ-th column of Lw
is called the grounded Laplacian (or Dirichlet Laplacian
matrix) (see f.i. [39], [40]) and it is denoted in the following
by L̄(ℓ)w ; if node ℓ is clear from the context (e.g. if ℓ is the
leader node) we also use the simplified notation L̄w.

The dynamical behavior of a multi-agent networked
system is related to the spectral properties of the Laplacian
matrix of the communication graph of the network [10].
By construction, Lw1 = 0 for any Lw ∈ Lw and, by arguments
based on the Geršgorin Theorem, its eigenvalues are non-
negative, i.e. the Laplacian matrix is a combinatorially
symmetric positive semi-definite zero-row sum matrix.
In the following, we describe some eigenvalue-related

quantities of great importance in modern applications. The
spectrum of A ∈ Rn×n is the set of its eigenvalues and
the spectral radius of A, denoted by ρA, is the maximum
modulus of its eigenvalues. Organize the eigenvalues of Lw
as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn; the eigenvalue λ2 is
known as the algebraic connectivity (also known as Fiedler
value or Fiedler eigenvalue) of Lw, it is nonzero if G is
connected and it dictates the convergence rate of consensus
processes [10]. Finally, two quantities of great importance for
the synchronization of multi-agent systems are the spectral
gap δ̄ = max{|1−λ2|, |1−λn|} [41] in case of discrete-time
systems, and the eigen-ratio r = λn/λ2 [13] for continuous
time dynamic networks [13].

Conversely, for a graph G, we use the symbol Lw(G) to
denote the set of all possible Laplacian matrices whose graph
is G.

II. PROBLEM SETTING
Before stating the problem properly, we briefly describe
the abstract mathematical framework of reference, which is
adopted in several modern engineering applications in the
area of distributed networked systems [10], [42], [43]. After,
we briefly provide some examples of fields of application.

In fact, in a few words, the goal of this paper is to derive
an algorithm to set the 2 · (n − 1) eigenvalues of some

matrices to some prescribed values by the choice of 2 · (n−1)
parameters. This kind of problem is known as the inverse
eigenvalue problem [28]. From a mathematical perspective,
it is necessary to preliminary inquire the feasibility of the
problem, namely the conditions on T , 3 and 3(1) that
ensure the existence of a solution. In this respect, it is
worth remarking that the general IEP problem regarding
the existence of the solution for a tree graph is a long-
standing, widely debated and, surprisingly, it is still an open
problem [44].

However, the engineering applications motivating this
research activity require a working assumption which in
turn ensures the existence of a solution for any choice of
the desired spectrum. We start by describing the reference
framework of this paper.

A. CONSENSUS-BASED NETWORKS
Consider a set of networked agents, i ∈ {1, . . . ,N } each
holding a variable xi(t) which is updated by each node
according to ẋi(t) = ui(t), where ui(t) is an input signal that
can be set by node i.

Each node i is assumed to be able to exchange its
own value with a subset of neighbor nodes according to
a communication graph G = {V ,E} which describes the
communication among nodes, so that each node i can set ui(t)
as

ui(t) =

∑
j∈Ni

kij(xj(t) − xi(t)) (1)

with gains kij set by node i.
Consider now that one node, say node 1, adds a driving

signal v1(t) to its own u1(t) as a control input for the team
[42]. In this framework, known as leader follower network
[8], [45], [46], [47], the system dynamics is:

G1(s) = eT1 (sI + Lκ)−1e1 =
det(sI + L̄(1)k)

det (sI + Lκ)
=
b(s)
a(s)

.

where e1 =
[
1 0 . . . 0

]⊤ and Lk ∈ Lκ .
It is now worth noting that the poles and zeros of

the networked system are, respectively, the eigenvalues of
Lκ and L̄(1)k , and hence their placement allows to fix the
fundamental input-output properties of the whole network
from the leader node such as the zero-pole distance, the
algebraic connectivity, the spectral gap or the eigen-ratio.

B. SOME FIELDS OF APPLICATION
The above abstract setting is applied to several modern
technological applications, for example:
Robotic networks [43], where the multi-agent setting

allows robots to coordinate and perform global actions
without relying on a central supervisory device. Common
global tasks are robot rendezvous (agents meeting at a
common location), deployment (agents spreading out in a
desired pattern), and formation control (agents maintaining
a specific formation). Artificial intelligence. Consensus is a

VOLUME 11, 2023 126411

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

long-debated topic in the field of computer networks [48].
In modern applications, it is one key tool of distributed
artificial intelligence, and it is applied in several modern
applications, such as blockchain [49]. Wireless Sensor
Networks. The multi-agent setting is employed to address
fundamental issues in wireless sensor networks, such as
synchronization [50], or averaging algorithms [51].Electrical
Power Systems. With the evolution of the electric grid toward
a smart grid, the multi-agent setting is widely adopted to
tackle new emerging challenges such as load balancing,
fault detection and isolation, demand response, and others
[52], [53].
Remark 1: The above examples deeply inspire the math-

ematical framework of this paper, which is formalized
below. However, the results achieved in this paper are
mainly mathematical, namely, how to fix the eigenvalues
of an asymmetric Laplacian matrix through the choice of
its nonzero entries. These results can be applied also to
completely different scenarios, when eigenvalue position is
necessary to satisfy some assumption or property required to
solve a different problem.

C. PROBLEM STATEMENT
We are now ready to state the problem tackled in this paper.

Problem Statement. Given a tree graph T = (V, E), and
two sets 3 = {λ2, ..,λn} and 3(1)

= {µ1, .., µn−1} where
λi, µi ∈ R such that

0 < µ1 < λ2 < · · · < µn−1 < λn (2)

find weights αij, such that αij = 0 if (j, i) /∈ E and αij > 0 if
(j, i) ∈ E so that det[sI − Lw] = s(s − λ2) . . . (s − λn) and
det[sI − L̄(1)w] = (s− µ1) . . . (s− µn−1).
Remark 2: The problem statement is formulated under

the strictly interlacing property to avoid spectrum overlap
between 3 and 3(1) in order to ensure full controllability
and observability by the leader upon the follower team [54]
when using the edge weights resulting from the proposed
Algorithm. This condition, in turn, ensures the feasibility of
the problem for any 3 ⊂ R and 3(1)

⊂ R [28]. Most of
the results of this paper can be extended also to the complex
plane, however, in view of the additional mathematical details
for the sake of clarity, we keep our investigation limited to the
real axis.

III. PRELIMINARY RESULTS ON STAR
AND PATH GRAPHS
In this Section, we describe some preliminary results
regarding star and path graphs which are useful in the
following of the paper. Indeed the general solution turns out
to be iterative, and the final steps of the resulting iterative
algorithm require to deal with either path or star shaped
subgraphs, which are the outermost portions of any tree
graph.

FIGURE 1. Sketch of all possible graphs and weighted Laplacians studied
in this paper for 2, 3 and 4 nodes.

Consider case (c) of Fig.1 first. The related matrices are:

A =

0 1 1
1 0 0
1 0 0

 ,Aw =

 0 α12 α13
α21 0 0
α31 0 0

 , (3)

with associated Laplacian and grounded Laplacian

Lw =

α12 + α13 −α12 −α13
−α21 α21 0
−α31 0 α31

 , L̄(1)w =

[
α21 0
0 α31

]
. (4)

Simple computations show that:

pw(s) = det[sI − Lw] = s(s2 − a1s+ a2),

qw(s) = det[sI − L̄(1)w] = (s− α21) (s− α31) (5)

with a1 = α21+α31+α12+α13 and a2 = α21α31+α12α31+

α13α21. By recurring to the polynomial identity principle, it is
possible to derive that, for any 0 < µ1 < λ1 < µ2 < λ2, the
choice of

α21 = µ1 α31 = µ2

α12 =
(λ2 − µ1)(λ1 − µ1)

(µ2 − µ1)

α13 =
(µ2 − λ1)(λ2 − µ2)

(µ2 − µ1)

solve the problem. The above result can be generalized to the
case of a n-star graph, when the leader is the center. In fact,
the following Proposition holds.
Theorem 3: Let S be a star graph having n rays, and the

central node is selected as leader node. Then, for any given
set 3 = {0,λ2,λ3, ..,λn} and 3(1)

= {µ1, µ2, .., µn−1}

such that 0 < µ1 < λ2 < · · · < µn−1 < λn there exist
positive weights αij ∈ R+ that solve the problem as follows:

Lw =


a11 −α12 . . . −α1n

−α21 α21 0 . . .
... 0

. . .

−αn1 0 . . . αn1

 (6)

126412 VOLUME 11, 2023

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

where coefficients αij can be computed as:
αj1 = µj for j = 2, .., n

α1j =

∏n
k=1(λk − µj)∏n
k=1
k ̸=j

(µk − µj)
(7)

and a11 =
∑n

i=2 α1i.
The proof is omitted for the sake of brevity. It can be proved

as a special case of general tree graphs, which is thoroughly
studied in the next Section.

Further, for the sake of completeness, we provide a
statement on the solution of path graphs, which has been
recently studied in [37] and, preliminarly in [55]. The
interested reader can find any related detail, proof, algorithm
in [37].
Theorem 4: Let P be a path graph and node 1 one leaf

node, and let Lw, L̄
(1)
w its weighted Laplacian matrix and

grounded Laplacian and λi+1, µi, i = 1, .., n − 1 satisfying
the Problem Statement. Finally, a(s) = sn + an−1sn−1

+

an−1sn−1
+ ..a1s and b(s) = sn−1

+ bn−1sn−1
+ ..b1s + b0

are two polynomials having λi and µi as zeros.
It is always possible to compute αij ∈ R such that det[sI −

Lw] = p(s) and det[sI − L̄(1)w] = q(s), by solving iteratively
backwards the equations:{

φj(s) = (s− α(j−1),j)φ(j−1)(s)−sαj,(j−1)ψ(j−1)(s)
ψj(s) = φ(j−1)(s) − αj,(j−1)ψ(j−1)

(8)

with the final conditions φn(s) = a(s), ψn(s) = b(s).

IV. MAIN RESULTS ON TREE GRAPHS
In this Section, we are ready to tackle the general case
of tree graphs. We proceed by induction, starting from the
results achieved in the previous Section. There are several
differences and additional challenges when dealing with
tree graphs compared with star and path graphs. The main
difference, from amathematical perspective, is the cardinality
of the neighbor set, starting from the leader node. For path
graphs, it is equal to 1, while for tree graphs it is a positive
integer. It turns out that, as regards path graphs, the recurrence
is realized by each node by computing its own edge weight
and sending the remainder to its neighbor (being only one),
while in the tree case each node must define a set of
polynomials to distribute to its neighbors.

The first result is a technical Lemma which explains how
p(s) = det[sI − Lw] and q(s) = det[sI − L̄(1)w] can be
written as functions of the weights α1,j, αj,1 and the analogous
polynomials associated to each subtree T (1)

j , j ∈ N1. The
following analysis is often explored in analogous inverse
eigenvalue problems and it is often called neighbors formula
(see e.g. [28]). In this paper, Lemma 4 provides a key tool
to trigger the iterative procedure that allows each node for
computing its own weight.
Lemma 5: Let T be a tree graph and Lw its weighted

Laplacian with associated polynomials p(s) = det[sI − Lw]
and q(s) = det[sI − L̄(1)w], 1 be the leader node and

ℓ = |N1|. Let Tj, j = 1, . . . , ℓ denote the subtrees of T after
removing node 1, and pTi (s) (resp., qTi (s)) the characteristic
polynomials of the weighted Laplacian (weighted grounded
Laplacian) of each Ti. The following relations hold:

p(s) = sq(s) −

ℓ∑
i=1

α1ipTi (s)
ℓ∏

j=1,
j ̸=i

(
pTj (s) − αj1qTj (s)

)

q(s) =

ℓ∏
i=1

(
pTi (s) − αi1qTi (s)

)
.

(9)
Proof: As a first step, we write the general weighted

Laplacian for a tree, with the labeling as follows. Let N1 =

{i1, .., iℓ}, so that T (1) is made of ℓ subtrees. We label
sequentially each subtree, and the first label of each subtree
T (1)
ik is assigned to the neighbor of node 1. It follows that:

Lw=



a11 −α1i1 0−α1iℓ 0 . . .

−αi11
0
...

L̄i1 . . . 0i1×iℓ

...
...

...

−αiℓ1
0
...

0iℓ×i1 . . . L̄iℓ


(10)

where L̄i = LTi + αii1e
i
1e
i
1
⊤

with LTi being the weighted
Laplacian of Ti, and a11 =

∑ℓ
k=1 α1ik .

As a first remark, it is worth noting that the grounded
Laplacian can be easily written as the product:

qw(s) =

ℓ∏
k=1

det[sI − L̄ik] (11)

where, analogously, L̄ik = LTik + αiik 1e
ik
1 e

ik
1

⊤

, and that each
polynomial det[sI − L̄ik] can be directly written as function
of pTik (s) and qTik (s):

det[sI − L̄ik] = pTik (s) − αik1qTik (s) (12)

so that the second of (9) follows.
We now compute p(s) = det[sI − Lw] using the Laplace

rule along the first row:

p(s) = (s− aii)
ℓ∏

k=1

det[sI − L̄ik]

− α1i1αi11qi1 (s)
ℓ∏

k=2

det[sI − L̄ik]

− α1i2αi21qi2 (s)
ℓ∏

k=1,
k ̸=2

det[sI − L̄ik] − . . . (13)

VOLUME 11, 2023 126413

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

Using (12) it is possible to write

α1jpTj (s)
ℓ∏

k=1,
k ̸=j

det[sI − L̄ik]

= α1j

ℓ∏
k=1

det[sI − L̄ik] + α1jαj1qj(s)
ℓ∏

k=1,
k ̸=j

det[sI − L̄ik]

(14)

and, remembering that a11 =
∑
α1j, (13) can be rewritten as

p(s) = s
ℓ∏

k=1

det[sI − L̄ik]

−

ℓ∑
j=1

−α1jpTj (s)
ℓ∏

k=1,
k ̸=j

det[sI − L̄ik]

 . (15)

Putting together (12) with (15), also the first of (9)
follows. □

Equations (9) can be put in a convenient form to set up a
two-step algorithm which can be run iteratively with respect
to the nodes of the graph. More in detail, the algorithm starts
at the leader node with the desired characteristic polynomials
pw(s) and qw(s) as inputs, and it returns the gain for the edges
of the leader node together with a set of 2 · |N1| polynomials
related to the |N1| subtrees of Tw. The resulting equations are
derived in the next Theorem.
Theorem 6: Let T be a tree graph, considering the

notation in Section I-A, p(s) = det[sI − Lw], q(s) = det[sI −

L̄(1)w], a(s) = s(s − λ2) . . . (s − λn), b(s) = (s − µ1) . . . (s −

µn−1), λi, µi satisfying the Problem Statement. It is always
possible to compute a set of 2ℓ coefficients {α1i, αi1}i∈{i1,..,iℓ}
and a set of 2ℓ polynomials {pi(s), qi(s)}i∈{i1,..,iℓ}, with pi(s) =

sp̂i(s) and degrees ∂ p̂i(s) = ∂qi(s) = ni − 1, which satisfy (9)
with p(s) = a(s) and q(s) = b(s) (the resulting Algorithm is
fully described in the next Subsection (VI)).

Proof: The proof is constructive and the resulting
algorithm that solves the stated problem is described in detail
after this proof.

Divide {µ1, .., µn−1} into ℓ = |N1| sets, say 3i1 , 3i2 ,..,
3iℓ , and build qi(s) =

∏
µi∈3i

(s − µi) so that q(s) =∏ℓ
i=1 qi(s). Set q̄i(s) =

∏ℓ
j=1,
j ̸=i

qj(s), so that qk (µi) = 0 for

any µi ∈ 3k and qk (µi) ̸= 0 for any µi ∈ 3j with j ̸= k ,
and conversely q̄k (µi) ̸= 0 for µi ∈ 3k and q̄j(µi) = 0 for
µi ∈ 3j with j ̸= k . Finally set{

γ (s) = p(s) − sq(s)
xi(s) = α1ipTi (s) i = i1, .., iℓ

(16)

where xi(s) i = 1, .., ℓ is a set of ℓ unknown polynomials
of degree equal to ni and with a simple zero in 0, namely
xi(s) = xnis

ni + xni−1sni−1
+ ..+ x1s.

Under the above notation, the first of Eq.(9) takes the form:

γ (s) = −

ℓ∑
i=1

xi(s)q̄i(s) (17)

where we recall that q̄i(s) =
∏ℓ

j=1,
j ̸=i

qj(s) and it is a generalized

polynomial Diophantine equation (an ordinary Diophantine
equation for ℓ = 2) (see, e.g., [56]). The existence and
structure of the solution can be studied recurring to the
methods of [56] using a vector representation of (17) as
γ (s) = Q̄(s)x(s) where Q̄(s) = [q̄1(s) q̄2(s) . . . q̄ℓ(s)]
and x(s) = [x1(s) x2(s) . . . xℓ(s)]T . However, in order to
trigger an effective induction procedure, it is important to
seek solutions with appropriate degree, namely ∂pTi (s) =

|Ti| = ni. A convenient way to compute the coefficients of
xi(s) with a prescribed degree ni is as follows.
Compute Eq. (17) at s = µi for each µi ∈ 3(1); by

construction of q̄i(s), it results:

p(µi) = −x1(µi)q̄1(µi) ∀µi ∈ 3̄1

p(µi) = −x2(µi)q̄2(µi) ∀µi ∈ 3̄2

... (18)

and in general

p(µi) = −xk (µi)q̄k (µi) ∀µi ∈ 3̄k k = 1, .., ℓ. (19)

The above equations have the advantage of decoupling the
computation for each subtree Tk . Considering the unknowns
xnk , xnk−1, .. for a given k , equations (19) can be put as
follows:


µ
nk−1
1 µ

nk−2
1 . . . 1

µ
nk−1
2 µ

nk−2
2 . . . 1

... 0
. . .

...

µ
nk−1
nk−1 µ

nk−2
nk−1 . . . 1


︸ ︷︷ ︸

Vk


xnk
xnk−1
...

x1

=



−
p(µ1)

q̄k (µ1)µ1

−
p(µ2)

q̄k (µ2)µ2
...

−
p(µnk−1)

q̄k (µnk−1)µnk−1


(20)

where Vk is a Vandermonde matrix built on the zeros of qk (s).
Its determinant is equal to

detVk =

∏
1≤i<j≤nk

(µj − µi),

so that it is nonsingular under the strict interlacing property,
and it allows to compute the polynomial xk (s) = xnk s

nk +

xnk−1snk−1
+ ..+ x1s for a Tk with nk = |Tk |.

Once that xk (s) is determined, the complete solution can
be easily computed. As a first remark, it is worth noting that
xnk ̸= 0. Indeed, xnk = α1k and if α1k = 0, then the standing
Assumption of strict interlacing inequality would be violated
(see, e.g., Eq. (10)).

126414 VOLUME 11, 2023

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

Considering the second of (16), it is easy to compute α1k
and pTk (s) as:α1k = xnk

pTk (s) = snk +
xnk−1

xnk
snk−1

+ ..+
xnk−1

xnk
s (21)

and finally αk1 and qTk (s) can be easily retrieved using
the above solution (21) together with relation qk (s) =∏
µi∈3i

(s− µi) = pTk (s) − αk1qTk (s) so that

αk1 =
xnk−1

xnk
+

∑
µi∈3i

µi

qTk (s) =
1
αk1

[(
snk +

xnk−1

xnk
snk−1

+ ..+
xnk−1

xnk
s
)

−

∏
µi∈3i

(s− µi)
]
.

(22)

As a final remark, it is easily seen that qTk (s) is a monic
polynomial of degree nk − 1. □

V. DISCUSSION ON THE POSITIVITY OF THE SOLUTION
AND ON THE ITERATIVENESS OF ALGORITHM 1
In this Section, we address two main technical issues that are
necessary to ensure that the resulting Algorithm provides an
effective solution for any possible graph and leader node, and
every choice of reference polynomials a(s), b(s), and it can
be iterated until all edge weights are assigned.

In this respect, it is worth noting that matrices Lw are not
symmetric, so they do not necessarily have a real spectrum,
nor they are granted to satisfy the interlacing property in
advance with any principal submatrix. However, to iterate the
result of Theorem 6, these two properties of p(s) and q(s)
should hold since they are required as assumptions of the next
step of iteration.

Hence, one main point is to study the properties of
polynomials pTk (s), qTk (s) as solutions of the Algorithm
resulting from Theorem 6, and to understand if their zeros
are real or complex, simple or multiple, and finally, if they
satisfy a strict interlace condition between themselves.

A different yet close investigation is about the sign of
the edge weights achieved through the Algorithm. Indeed,
considering the motivating applicative scenarios, we are
primarily interested in positive values for the resulting edge
weights.

Fortunately, it comes out that it is possible to prove that
the resulting polynomials of Theorem 6 have the required
features, as we describe in the next Theorem, and it ensures
that the algorithm of Theorem 6 can be iterated without any
restriction.
Proposition 7: Consider the setting and the notation of

Theorem 6, and set p(s) = det[sI − Lw] and q(s) = det[sI −

L̄(1)w]. The resulting solutions have the following features:
• The 2ℓ coefficients {α1i, αi1}i∈{i1,..,iℓ} are positive.
• The set of 2ℓ polynomials {pTi (s), qTi (s)}i∈{i1,..,iℓ} have
real distinct roots which satisfy the interlacing property

between themselves and, moreover, pTi (s) interlaces
with qi(s) =

∏
µi∈3i

(s− µi).
Proof: In this proof, we use the notation Ii = {k ∈

V |µk ∈ 3i} and Īi = V\Ii, namely the sets of indices
of all µi belonging to a 3i, and to a 3̄i. Since we set
a(s) = s(s− λ2) . . . (s− λn), b(s) = (s− µ1) . . . (s− µn−1),
recurring to the simple partial fraction expansion it is possible
to write

(s− λ2) . . . (s− λn)
(s− µ1) . . . (s− µn−1)

= 1 +
R1

s− µ1
+ · · · +

Rn−1

s− µn−1
(23)

where Ri =

∏n
j=2(µi − λj)∏n−1
i=1
j ̸=i

(µi − µj)
, and it easily seen that the

interlacing property among λi and µi ensures that Ri < 0 for
any i. Based on (23), it is possible to write:

a(s) − sb(s) =

n−1∑
i=1

Ris n−1∏
j=1
i ̸=j

(s− µj)

 . (24)

It is now useful to organize the right-hand side according
to the following logic. Group together the terms of the sum
according to the sets 3i, so that Eq. (24) can be rewritten as
follows:

a(s) − sb(s) =

∑
i∈I1

Ris
∏
j∈I1
i ̸=j

(s− µj)

 ∏
k∈Ī1

(s− µk)

+

∑
i∈I2

Ris
∏
j∈I2
i ̸=j

(s− µj)

 ∏
k∈Ī2

(s− µk) +

(25)

Considering that each
∏

k∈Īj (s − µk) is equal to q̄j(s),
and comparing Eq.(25) to Eq.(16), it is easy to see that the
structure of xi(s) is:

xi(s) =

∑
k∈Ii

Ris
∏
j∈Ii
j ̸=k

(s− µj) (26)

and, in turn, Eq.(26) together with (16), reveals that α1k =

−
∑

k∈Ii Rk > 0.
As for the localization of the roots, note that the value of

xi(µk) changes sign for successive µk so that, if νi denotes a
zero of xi(s), it is easy to infer that

µ1 < ν2 < µ2 < · · · < νn−1 < µn−1. (27)

Consider now Eq.(22). As for αk1, upon defining ν1 = 0, it is
worth noting that the first of Eq.(22) can also be written as
αk1 =

∑nk−1
i=1 (µi − νi) and it is positive in view of Eq.(27).

VOLUME 11, 2023 126415

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

As a final result, denote the zeros of qTi (s) as ςi. Considering
the second of (22), namely

qTi (s) =
pTi (s) −

∏
j∈Ii (s− µj)

αi1
,

together with the condition previously achieved (27), it is
possible to prove analogously that 0 < ς1 < ν2 < · · · <

ςn−2 < νn−1. □

VI. A DISTRIBUTED IMPLEMENTATION
OF THE ALGORITHM
Theorem 6 basically allows to splitting of the desired
polynomials into a set of reference polynomials of lower
degree, together with a set of weights to be assigned to the
edges of the leader node. The idea is that such a scheme
should be iterated by the leader’s neighbors, and so on, to let
each node of the network retrieve its own edge weights.
In this respect, it is possible to put the solution in a form
so that each node can retrieve its own gains by simply
means of local data, and transmit the resulting polynomials
to its neighbors, thus providing a distributed structure to
the resulting Algorithm. In more detail, it is possible to
execute the whole Algorithm for the Laplacian eigenvalue
assignment as discussed in Theorem 6 as follows. The leader
node sets the reference polynomials, it runs Eq. (20), (21)
to retrieve the weights of its incoming edges, and finally it
transmits the reference polynomials of each subtree to the
neighbor nodes. Then, each node applies Eq. (20), (21), (22)
to retrieve the weights of its incoming edges, and finally
it transmits the reference polynomials to its neighbors, and
so on.

The leader node triggers the procedure by running the
following algorithm:

Algorithm 1 Leader Node
Input: 3 = {λ2,λ3, . . . ,λn},

3(1)
= {µ1, µ2, .., µn−1}

Output: α1k and pTk (s), k = 1, .., ℓ
1 Split 3(1) into ℓ disjoint sets 3i1 ,.., 3iℓ such that

|3ik | = |Tik | = nik ;
2 Build polynomials a(s), qi(s) and compute γ (s) as in

(16);
3 for k = 1, . . . , ℓ do
4 Solve (20);
5 Use (21) to retrieve α1k and pTk (s).;
6 end

and it transmits pTk (s), qk (s) to each neighbor k ∈ N1. Upon
receipt of such data, and based on it, each node k runs the
algorithm below:

In general, the lines of Algorithm 1 and Algorithm 2 do
not require a special computational effort by the elaborating
node k . As regards line 4 of Algorithm 1, it is worth noting
that the Vandermonde matrix has been widely studied, and
its inverse is well known in closed form (see, e.g., [57]).

Algorithm 2 Node k
Input: pTk (s), qk (s)
Output: αkj and pTj (s), j ∼ k

1 Compute (22) to retrieve αkℓ and qTk (s) ;
2 Compute the real simple roots of qTk (s);
3 Split the roots of qTk (s) into ℓk disjoint sets 3i1 ,..,
3iℓk

such that |3ik | = |Tik | = nik ;
4 for k = 1, . . . , ℓ do
5 Solve (20);
6 Use (21) to retrieve αkj and pTj (s) for each j ∼ k;
7 end

Lastly, line 2 of Algorithm 2 requires to compute the roots of
qTk (s), and it requires an interative numerical computation.
However, this step is made easy by the previous result of
Proposition 7, namely the feature that qTk (s) has all real
simple roots which are roughly localized thanks to the bounds
of the interlacing property. In our simulations, we used the
technique [58], where it is possible to find all the numerical
details of this routine. In particular, it is possible to find all
the details in terms of precision of the solution with respect
to the cost (i.e. number of bit operations). Starting from these
relations, together with the details of a specific framework
(namely, the computational capacity of each node), it is
always possible to find an upper bound of the time execution
of Algorithm 2. All the other lines require the execution
of simple elaborations. The above discussion clarifies that
Algorithm 1 andAlgorithm 2 are feasible, and an upper bound
of the time execution is computable, so the algorithm is well
fit for real-time applications. Indeed, the whole procedure
requires a finite amount of time equal to the eccentricity
of the leader node, and this makes it possible to run this
algorithm as a preliminary routine and to set the weights
corresponding to a prescribed spectrum before a mission
execution.

VII. A CONSTRUCTIVE EXAMPLE
In this Section, we describe the distributed algorithm in
practice through an illustrative example.

Consider a multi-agent system as depicted in Fig. 2, the
goal for the leader it to let the agents assign their edge weights
to get the Laplacian spectrum equal to:

3 = {0, 2, 4, 6, 8, 10, 12, 14, 16},

3(1)
= {1, 3, 5, 7, 9, 11, 13, 15};

the leader node is the dark node with label 1. Node 1 triggers
the algorithm, it computes:

a(s) = s
8∏
i=1

(s− 2i), b(s) =

7∏
i=0

(s− 2i− 1),

31 = {3, 11}, 32 = {1, 9, 13}, 33 = {5, 7, 15},

126416 VOLUME 11, 2023

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

FIGURE 2. Simulation results: Subdivision of the graph according to the
notation of Section II.

so that:

q1(s) = (s− 3)(s− 11), q2(s) = (s− 1)(s− 9)(s− 13),

q3(s) = (s− 5)(s− 7)(s− 15),

q̄1(s) = q2(s)q3(s), q̄2(s) = q1(s)q3(s), q̄3(s) = q1(s)q2(s).

Then, node 1 runs Algorithm 1 with the following output:

α12 1.613
pT2 s2 − 7.5s
α14 1.44
pT4 s3 − 23.55s2 + 133s
α17 4.95
pT7 s3 − 14.6s2 + 28.8s

and finally it transmits pT2 (s), q2(s) to its neighbor 2, and
analogously pT4 (s), q4(s) to node 4 and pT7 (s), q7(s) to node 7.
Then, the procedure prosecutes with the results of Section

III and, more in details, node 4 and node 2 are the leaves
of path-shaped subtrees, so they first apply Eq. (22), and
then Theorem 6, while node 7 is the center of a star-shaped
subgraph, and it applies Eq. (22) and then Theorem 4.

Fig. 3 shows the exchanged data and the edge weights
computed by each node, and finally Fig. 4 shows the edge
values corresponding to the prescribed spectrum 3, 3(1).
The resulting Laplacian matrix (28), as shown at the

bottom of the page.

FIGURE 3. Simulation results: exchanged data.

FIGURE 4. Simulation results: computed edge weights for the eigenvalue
allocation 3 = {0, 2, 4, 6, 8, 10, 12, 14, 16},
3(1) = {1, 3, 5, 7, 9, 11, 13, 15}.

Remark 8: A strict comparison of the above example
with other algorithms is not possible, because the inverse
eigenvalue problem for such systems was developed only
for networks made of n = 2, 3, 4, 5 nodes [33], being
the investigation regarding asymmetric nodes, as well as
optimal symmetric, focused on improving the convergence
rate. Considering such a goal, it was already discovered for
path graphs [34] that asymmetric weight design outperforms
even optimal symmetric, and the convergence rate can be

Lw =



8 −1.61 0 −1.44 0 0 −4.95 0 0
−6.48 7.06 −0.576 0 0 0 0 0 0

0 −7 7 0 0 0 0 0 0
−9.45 0 0 10.34 −0.9 0 0 0 0

0 0 0 −10.7 11.25 −0.55 0 0 0
0 0 0 0 −11.41 11.41 0 0 0

−2.4 0 0 0 0 0 6.2 −0.8 −3
0 0 0 0 0 0 −1.8 1.8 0
0 0 0 0 0 0 −9 0 9


(28)

VOLUME 11, 2023 126417

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

uniformly bounded away from zero. The results of this paper
confirm the beneficial effects of asymmetric weights for the
broader class of tree graphs.

VIII. CONCLUSION
In this paper, we derived an algorithm for the Laplacian
eigenvalue assignment for tree graphs by an appropriate
choice of the gains by each agent. This problem is motivated
by several recent applications of distributed algorithms for
multi-agent systems and robotic networks. The resulting
algorithm is inherently iterative and it requires a finite
time equal to the eccentricity of the leader position in the
communication graph, so that it is well fit in real-world
applications as a preliminary routine to be run before any
mission or task. Several results are promising, however
they are limited to the case of acyclic graphs, and agents
modeled as first-order dynamics. Several directions of
research stem from the results of this paper, as for example the
analogous investigations for the general complex eigenvalue
problem and/or investigating more general graphs with
cycles, or extending the results of this paper to more complex
kinematics including nonholonomic constraints, as those
explored in [59].

ACKNOWLEDGMENT
The author would like to thank Dr Rossella Attanasi for the
fruitful discussions on the topic of this paper.

REFERENCES
[1] A. Dorri, S. S. Kanhere, and R. Jurdak, ‘‘Multi-agent systems: A survey,’’

IEEE Access, vol. 6, pp. 28573–28593, 2018.
[2] Z. Li, Z. Duan, G. Chen, and L. Huang, ‘‘Consensus of multiagent systems

and synchronization of complex networks: A unified viewpoint,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 1, pp. 213–224, Jan. 2010.

[3] S. Ullah, L. Khan, I. Sami, and N. Ullah, ‘‘Consensus-based delay-
tolerant distributed secondary control strategy for droop controlled AC
microgrids,’’ IEEE Access, vol. 9, pp. 6033–6049, 2021.

[4] M. M. Rana and A. Shahirinia, ‘‘Distributed dynamic state estimation
considering packet losses in interconnected smart grid subsystems: Linear
matrix inequality approach,’’ IEEE Access, vol. 8, pp. 2687–2693, 2020.

[5] S. Sardellitti, M. Giona, and S. Barbarossa, ‘‘Fast distributed average
consensus algorithms based on advection-diffusion processes,’’ IEEE
Trans. Signal Process., vol. 58, no. 2, pp. 826–842, Feb. 2010.

[6] Y. Zheng, S. Zhao, Y. Liu, Y. Li, Q. Tan, and N. Xin, ‘‘Weighted algebraic
connectivity maximization for optical satellite networks,’’ IEEE Access,
vol. 5, pp. 6885–6893, 2017.

[7] K. Li, R. Gong, S. Wu, C. Hu, and Y. Wang, ‘‘Decentralized robust
connectivity control in flocking of multi-robot systems,’’ IEEE Access,
vol. 8, pp. 105250–105262, 2020.

[8] A. Amirkhani and A. H. Barshooi, ‘‘Consensus in multi-agent systems: A
review,’’ Artif. Intell. Rev., vol. 55, no. 5, pp. 3897–3935, Jun. 2022.

[9] J. A. Almendral and A. Díaz-Guilera, ‘‘Dynamical and spectral properties
of complex networks,’’ New J. Phys., vol. 9, no. 6, p. 187, Jun. 2007.

[10] F. Bullo, Lectures on Network Systems, 1st ed. Seattle, WA, USA:
Kindle Direct Publishing, 2022. [Online]. Available: http://motion.me.
ucsb.edu/book-lns

[11] M. C. V. Nascimento and A. C. P. L. F. de Carvalho, ‘‘Spectral methods
for graph clustering—A survey,’’ Eur. J. Oper. Res., vol. 211, no. 2,
pp. 221–231, Jun. 2011.

[12] S. Gao, I. W. Tsang, and L.-T. Chia, ‘‘Laplacian sparse coding, hypergraph
Laplacian sparse coding, and applications,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 1, pp. 92–104, Jan. 2013.

[13] L. Kempton, G. Herrmann, and M. D. Bernardo, ‘‘Self-organization of
weighted networks for optimal synchronizability,’’ IEEE Trans. Control
Netw. Syst., vol. 5, no. 4, pp. 1541–1550, Dec. 2018.

[14] P. Niyogi, S. Smale, and S. Weinberger, ‘‘A topological view of
unsupervised learning from noisy data,’’ SIAM J. Comput., vol. 40, no. 3,
pp. 646–663, Jan. 2011.

[15] P. Srivastava, E. Nozari, J. Z. Kim,H. Ju, D. Zhou, C. Becker, F. Pasqualetti,
G. J. Pappas, and D. S. Bassett, ‘‘Models of communication and control
for brain networks: Distinctions, convergence, and future outlook,’’ Netw.
Neurosci., vol. 4, no. 4, pp. 1122–1159, Jan. 2020.

[16] S. Mostafa, L. Tang, and F.-X. Wu, ‘‘Diagnosis of autism spectrum
disorder based on eigenvalues of brain networks,’’ IEEE Access, vol. 7,
pp. 128474–128486, 2019.

[17] F. Pasqualetti, F. Dörfler, and F. Bullo, ‘‘Cyber-physical attacks in
power networks: Models, fundamental limitations and monitor design,’’
in Proc. 50th IEEE Conf. Decis. Control Eur. Control Conf., Dec. 2011,
pp. 2195–2201.

[18] G. Parlangeli and M. E. Valcher, ‘‘Accelerating consensus in high-
order leader-follower networks,’’ IEEE Control Syst. Lett., vol. 2, no. 3,
pp. 381–386, Jul. 2018.

[19] S. Y. Shafi, M. Arcak, and L. E. Ghaoui, ‘‘Graph weight allocation to meet
Laplacian spectral constraints,’’ IEEE Trans. Autom. Control, vol. 57, no. 7,
pp. 1872–1877, Jul. 2012.

[20] J. J. Molitierno, ‘‘The spectral radius of submatrices of Laplacian matrices
for trees and its comparison to the Fiedler vector,’’ Linear Algebra Appl.,
vol. 406, pp. 253–271, Sep. 2005.

[21] W. Xia and M. Cao, ‘‘Analysis and applications of spectral properties of
grounded Laplacian matrices for directed networks,’’ Automatica, vol. 80,
pp. 10–16, Jun. 2017.

[22] W. Ren, R. W. Beard, and E. M. Atkins, ‘‘A survey of consensus problems
in multi-agent coordination,’’ in Proc. Amer. Control Conf. (ACC). IEEE,
Jun. 2005, pp. 1859–1864.

[23] G. Parlangeli, ‘‘A supervisory algorithm against intermittent and tem-
porary faults in consensus-based networks,’’ IEEE Access, vol. 8,
pp. 98775–98786, 2020.

[24] Y. Hao, Q. Wang, Z. Duan, and G. Chen, ‘‘Discernibility of topological
variations for networked LTI systems,’’ IEEE Trans. Autom. Control,
vol. 68, no. 1, pp. 377–384, Jan. 2023.

[25] M. E. Valcher and G. Parlangeli, ‘‘On the effects of communication failures
in a multi-agent consensus network,’’ in Proc. 23rd Int. Conf. Syst. Theory,
Control Comput. (ICSTCC), Oct. 2019, pp. 709–720.

[26] M. A. Eissa, A. Sali, F. A. Ahmad, and R. R. Darwish, ‘‘Observer-based
fault detection approach using fuzzy adaptive poles placement system with
real-time implementation,’’ IEEE Access, vol. 9, pp. 83272–83284, 2021.

[27] K. Kavinelavu and S. Kalaivani, ‘‘Pole placement-based sensor fault
detection and isolation of a single phase PWM rectifier for electric
railway traction,’’ in Proc. Int. Conf. Comput. Power, Energy, Inf. Commun.
(ICCPEIC), Apr. 2014, pp. 194–199.

[28] M. T. Chu and G. H. Golub, Inverse Eigenvalue Problems: Theory,
Algorithms, and Applications, vol. 13. London, U.K.: Oxford Univ. Press,
2005.

[29] R. Schmid, L. Ntogramatzidis, T. Nguyen, and A. Pandey, ‘‘A unified
method for optimal arbitrary pole placement,’’ Automatica, vol. 50, no. 8,
pp. 2150–2154, Aug. 2014.

[30] V. Katewa and F. Pasqualetti, ‘‘Minimum-gain pole placement with
sparse static feedback,’’ IEEE Trans. Autom. Control, vol. 66, no. 8,
pp. 3445–3459, Aug. 2021.

[31] S. Boyd, ‘‘Convex optimization of graph Laplacian eigenvalues,’’ in Proc.
Int. Congr. Mathematicians, vol. 3, nos. 1–3. Princeton, NJ, USA: Citeseer,
2006, pp. 1311–1319.

[32] S. Sardellitti, S. Barbarossa, and A. Swami, ‘‘Optimal topology control
and power allocation for minimum energy consumption in consensus
networks,’’ IEEE Trans. Signal Process., vol. 60, no. 1, pp. 383–399,
Jan. 2012.

[33] J. Hermann and U. Konigorski, ‘‘Eigenvalue assignment for the Laplacian
matrix of directed graphs,’’ in Proc. Amer. Control Conf. (ACC), Jul. 2019,
pp. 4036–4042.

[34] H. Hao and P. Barooah, ‘‘Improving convergence rate of distributed
consensus through asymmetric weights,’’ in Proc. Amer. Control Conf.
(ACC), Jun. 2012, pp. 787–792.

[35] A.-K. Schug, A. Eichler, and H. Werner, ‘‘A decentralized asymmetric
weighting approach for improved convergence of multi-agent systems
with undirected interaction,’’ IFAC Proc. Volumes, vol. 47, no. 3,
pp. 8317–8322, 2014.

126418 VOLUME 11, 2023

G. Parlangeli: Laplacian Eigenvalue Allocation Through Asymmetric Weights

[36] S. Dhuli and Y. N. Singh, ‘‘Analysis of average consensus algorithm for
asymmetric regular networks,’’ 2018, arXiv:1806.03932.

[37] G. Parlangeli, ‘‘A distributed algorithm for the assignment of the Laplacian
spectrum for path graphs,’’ Mathematics, vol. 11, no. 10, p. 2359,
May 2023.

[38] J. S. Maybee, ‘‘Combinatorially symmetric matrices,’’ Linear Algebra
Appl., vol. 8, no. 6, pp. 529–537, Dec. 1974.

[39] P. Barooah and J. P. Hespanha, ‘‘Graph effective resistance and distributed
control: Spectral properties and applications,’’ in Proc. 45th IEEE Conf.
Decis. Control, Dec. 2006, pp. 3479–3485.

[40] M. Pirani and S. Sundaram, ‘‘On the smallest eigenvalue of grounded
Laplacian matrices,’’ IEEE Trans. Autom. Control, vol. 61, no. 2,
pp. 509–514, Feb. 2016.

[41] Z. Liu and L. Guo, ‘‘Synchronization of multi-agent systems without
connectivity assumptions,’’ Automatica, vol. 45, no. 12, pp. 2744–2753,
Dec. 2009.

[42] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ, USA: Princeton Univ. Press, 2010.

[43] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic
Networks (Applied Mathematics Series). Princeton, NJ, USA:
Princeton Univ. Press, 2009.

[44] S. M. Fallat, H. T. Hall, R. H. Levene, S. A. Meyer, S. Nasserasr, P. Oblak,
and H. Šmigoc, ‘‘Spectral arbitrariness for trees fails spectacularly,’’ 2023,
arXiv:2301.11073.

[45] J. A. Torres and S. Roy, ‘‘Graph-theoretic analysis of network input–output
processes: Zero structure and its implications on remote feedback control,’’
Automatica, vol. 61, pp. 73–79, Nov. 2015.

[46] S. Roy, J. A. Torres, andM. Xue, ‘‘Sensor and actuator placement for zero-
shaping in dynamical networks,’’ in Proc. IEEE 55th Conf. Decis. Control
(CDC), Dec. 2016, pp. 1745–1750.

[47] M. Xue and S. Roy, ‘‘Input-output properties of linearly-coupled dynami-
cal systems: Interplay between local dynamics and network interactions,’’
in Proc. IEEE 56th Annu. Conf. Decis. Control (CDC), Dec. 2017,
pp. 487–492.

[48] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics, vol. 19. Hoboken, NJ, USA: Wiley, 2004.

[49] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, ‘‘A review
on consensus algorithm of blockchain,’’ in Proc. IEEE Int. Conf. Syst.,
Man, Cybern. (SMC), Oct. 2017, pp. 2567–2572.

[50] A. R. Swain and R. C. Hansdah, ‘‘A model for the classification and survey
of clock synchronization protocols in WSNs,’’ Ad Hoc Netw., vol. 27,
pp. 219–241, Apr. 2015.

[51] L. M. Oliveira and J. J. Rodrigues, ‘‘Wireless sensor networks: A survey
on environmental monitoring,’’ J. Commun., vol. 6, no. 2, pp. 143–151,
Apr. 2011.

[52] H. Farhangi, ‘‘The path of the smart grid,’’ IEEE Power Energy Mag.,
vol. 8, no. 1, pp. 18–28, Jan. 2010.

[53] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei, ‘‘A survey of distributed optimization and
control algorithms for electric power systems,’’ IEEE Trans. Smart Grid,
vol. 8, no. 6, pp. 2941–2962, Nov. 2017.

[54] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, ‘‘Controllability of
multi-agent systems from a graph-theoretic perspective,’’ SIAM J. Control
Optim., vol. 48, no. 1, pp. 162–186, Jan. 2009.

[55] G. Parlangeli, ‘‘Laplacian eigenvalue allocation by asymmetric weight
assignment for path graphs,’’ in Proc. 26th Int. Conf. Syst. Theory, Control
Comput. (ICSTCC), Oct. 2022, pp. 503–508.

[56] V. Kučera, ‘‘Diophantine equations in control—A survey,’’ Automatica,
vol. 29, no. 6, pp. 1361–1375, Nov. 1993.

[57] D. E. Knuth, The Art of Computer Programming, vol. 1. Reading, MA,
USA: Addison-Wesley, 1973.

[58] A. Kobel, F. Rouillier, and M. Sagraloff, ‘‘Computing real roots of real
polynomials. . . and now for real!’’ in Proc. ACM Int. Symp. Symbolic
Algebr. Comput., Jul. 2016, pp. 303–310.

[59] G. Parlangeli and G. Indiveri, ‘‘Single range observability for cooper-
ative underactuated underwater vehicles,’’ Annu. Rev. Control, vol. 40,
pp. 129–141, Jan. 2015.

GIANFRANCO PARLANGELI (Member, IEEE)
received the M.Sc. degree (Hons.) in electrical
engineering from theUniversity of Pisa, Pisa, Italy,
in 1999, and the Ph.D. degree in information engi-
neering from the University of Lecce, Lecce, Italy,
in 2005. He is currently an Associate Professor
with the Department of Innovation Engineering,
University of Salento, Lecce. He has published
over 60 papers in the field and has contributed to
several national and international projects in the

areas of robotics and industrial automation. His research interests include
analysis and design of multi-agent systems and robotic networks, fault
tolerant control, variable structure control systems, and robotics. He is
a member of the Scientific Committee of the Interuniversity Center of
Integrated Systems for the Marine Environment (ISME).

Open Access funding provided by ‘Università del Salento’ within the CRUI CARE Agreement

VOLUME 11, 2023 126419

