
Citation: Guermazi, W.; El-khateeb,

M.; Abu-Dalo, M.; Sallemi, I.;

Al-Rahahleh, B.; Rekik, A.; Belmonte,

G.; Ayadi, H.; Annabi-Trabelsi, N.

Assessment of the Zooplankton

Community and Water Quality in an

Artificial Freshwater Lake from a

Semi-Arid Area (Irbid, Jordan). Water

2023, 15, 2796. https://doi.org/

10.3390/w15152796

Academic Editor: Achim A. Beylich

Received: 6 July 2023

Revised: 28 July 2023

Accepted: 30 July 2023

Published: 2 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Assessment of the Zooplankton Community and Water
Quality in an Artificial Freshwater Lake from a Semi-Arid Area
(Irbid, Jordan)
Wassim Guermazi 1 , Mohammad El-khateeb 2,* , Muna Abu-Dalo 2 , Ikbel Sallemi 1, Bashar Al-Rahahleh 3,
Amira Rekik 1, Genuario Belmonte 4,5,* , Habib Ayadi 1 and Neila Annabi-Trabelsi 1

1 Laboratory of Marine Biodiversity and Environment, Department of Life Sciences, Faculty of Sciences,
University of Sfax Tunisia, LR18ES/30, Street of Soukra Km 3.5, B.P. 1171, Sfax 3000, Tunisia;
wassim016@yahoo.fr (W.G.); sellamifss@yahoo.fr (I.S.); amirarekik1@yahoo.fr (A.R.);
habibayadi62@yahoo.fr (H.A.); neila.trabelsi@isbs.usf.tn (N.A.-T.)

2 Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan;
maabudalo@just.edu.jo

3 Livestock Department, National Agricultural Research Center, Baqa 19381, Jordan; bsharrhahlh@yahoo.com
4 Laboratory of Zoogeography and Fauna, Department of Biological and Environmental Sciences and

Technologies, University of Salento, 73100 Lecce, Italy
5 National Biodiversity Future Center NBFC—CNR, 90146 Palermo, Italy
* Correspondence: kateeb@just.edu.jo (M.E.-k.); genuario.belmonte@unisalento.it (G.B.)

Abstract: Zooplankton play a crucial role in aquatic food chains and contain many species, which
could be bioindicators of water quality and ecosystem health. The ecological impacts of eutrophication
on zooplankton composition in freshwater lakes have recently gained wide interest. Geographic
location and water-body size influence zooplankton diversity in freshwaters; meanwhile, less is
known about the composition and dynamic of the zooplankton community and their relationship
with the trophic status in artificial water in semi-arid areas. The present study aimed to assess the
physical–chemical parameters and to document the seasonal distribution of zooplankton species and
their relationship with environmental factors and trophic state in the artificial freshwater lake JUST,
in a semi-arid area. The high concentrations of nutrients and the trophic level index (TLI) classified
the lake as eutrophic–hypertrophic. The zooplankton in the JUST lake were composed of twenty-six
species, with eleven Rotifera, ten Copepoda, and five Cladocera. Copepoda was numerically the
most abundant taxon, accounting for 64% of the total zooplankton abundance, in both seasons.
However, the second most abundant taxon in summer was Rotifera (28.26%) while in winter it
was Cladocera (25.88%). The community structure seemed to be influenced, most likely, by trophic
state, phytoplankton abundance, water temperature, dissolved oxygen, and nutrient loading. The
zooplankton were largely dominated by bioindicator species of high trophic levels. Zooplankton
could be used as a tool to monitor the trophic state of the lake. For sustainable development, the
introduction of phytoplanktivorous, aquaculture species, such as carp and koi, will strengthen the
top-down control of the phytoplankton concentration, leading to a reduced trophic state.

Keywords: zooplankton; physical–chemical parameters; artificial lake; trophic state monitoring

1. Introduction

Zooplankton include diverse microscopic taxa, such as Rotifera, Copepoda, and
Cladocera [1]. These organisms are useful as bioindicators; thus, they are helpful for
driving recovery or amelioration actions in polluted water [2]. Hence, quantitative and
qualitative studies of zooplankton are of great importance [3,4]. Zooplankton represent
an important component of fish food in aquatic ecosystems; as such, the investigation of
their production and abundance is essential for the successful management of fisheries.
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The diversity of zooplankton, apart from contributing towards the relative stability of the
ecosystem, acts as an indicator of water quality [5].

Because eutrophication is one of the main effects of anthropogenic activities on lakes,
a clear understanding of how zooplankton changes along with the eutrophication grade is
important for environmental management. Eutrophication is the most important source of
contamination in freshwater ecosystems [6]. It derives from increased concentrations of
nitrogen and phosphorus in aquatic environments [7]. Eutrophication in lakes is of special
interest and is marked by the severe pollution of the water with nutrients that accumulate
over time due to the complicated nature of the ecosystems, which, in essence, favour limited
self-removal mechanisms. The effect of these factors is assessed by the trophic state, which
is an essential attribute of aquatic ecosystems [8].

Zooplankton are very sensitive to environmental changes and, hence, are considered
good indicators of ecosystems [9]. Many previous studies have focused on zooplankton
structure in relation to environmental factors [10–14] and the basin age [15]. A change in
the physical–chemical and biotic parameters in aquatic systems resulted in a change in
the relative composition and abundance of organisms thriving in the water. Therefore,
they can be used as a tool in monitoring aquatic ecosystems. Freshwater zooplankton are
mainly composed of Rotifera and small Crustacea (Cladocera and Copepoda). An increase
in the lake trophic status shifts the dominance from Copepoda Cyclopoida and Rotifera to
Copepoda Calanoida and Cladocera [16–18]. Specific cladocerans are associated with the
different trophic states of the water body; Bosmina is associated with eutrophic ecosystems
while Daphnia is associated with oligotrophic ecosystems [19,20].

The studies of the relationship between zooplankton and trophic status are scarce and
not well understood under semi-arid climates. The present work was carried out to assess
the species diversity and population density of the zooplankton of the JUST lake; this was
coupled with physical–chemical parameters, phytoplankton abundance, and chlorophyll a
in order to evaluate its trophic state for suitability for fish culture in a water shortage area.

2. Materials and Methods
2.1. Study Site and Sampling

The JUST lake is located within the campus of the Jordan University of Science and
Technology at latitude 32◦28′36.77′′ N and longitude 35◦58′24.05′′ E, east of Irbid (Figure 1).
The site is an artificial basin realized in 1983 and is characterized by its hot summer and
cold winter. The average annual rainfall of the site is 465 mm. The morphometric and
other basic characteristics of the JUST lake are described elsewhere [21]. Samples were
collected in winter (February 2019) and summer (July 2019) from ten stations equidistant of
an average of 50 m (Figure 1). The distance of stations from the water’s edge was about
20 m. The depth of stations varied between 0.80 ± 0.28 m (S1) and 3.75 ± 3.89 m (S4)
(Table 1). In the summer, the water body is characterized by the growth of submerged
macrophyte plants.

2.2. Physical–Chemical and Chlorophyll a (Chl a) Analysis

Water samples for the physical–chemical analyses were collected on the surface (at
30–50 cm depth) using a Van Dorn bottle (1 L) at all stations. Water temperature and salinity
were measured using an UltraPen PT1 126 (Myron L, Carlsbad, CA, USA). Dissolved oxygen
(DO) and pH were measured using a DO portable meter (HACH HQd, Loveland, CO,
USA) and a pH meter (Thermo Scientific Orion Star A111, Banten, Indonesia), respectively.
Nutrients (nitrites, nitrates, ammonium, orthophosphates, total nitrogen (TN), and total
phosphorus (TP)) were analyzed using a spectrophotometer (Lov-ibond SpectroDirect,
Berlin, Germany) at 330–900 nm.
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S8 35°59′3.82″ E 32°29′19.33″ N 2.75 ± 1.77 
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S10 35°59′5.43″ E 32°29′17.51″ N 2.00 ± 1.41 
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Figure 1. Location of the study area (Jordan University of Science and Technology: JUST) and of the
ten sampling stations in the lake.

Table 1. Coordinates of sampled stations and their corresponding mean depths.

Stations Longitude Latitude Depth (m)

S1 35◦58′59.34′′ E 32◦29′22.00′′ N 0.80 ± 0.28

S2 35◦59′0.59′′ E 32◦29′23.38′′ N 2.75 ± 1.06

S3 35◦59′2.02′′ E 32◦29′25.11′′ N 1.75 ± 0.35

S4 35◦59′1.56′′ E 32◦29′22.14′′ N 3.75 ± 3.89

S5 35◦59′1.61′′ E 32◦29′20.18′′ N 1.50 ± 0.71

S6 35◦59′3.73′′ E 32◦29′21.78′′ N 1.50 ± 0.71

S7 35◦59′2.93′′ E 32◦29′18.34′′ N 2.00 ± 1.41

S8 35◦59′3.82′′ E 32◦29′19.33′′ N 2.75 ± 1.77

S9 35◦59′4.62′′ E 32◦29′16.83′′ N 1.50 ± 0.71

S10 35◦59′5.43′′ E 32◦29′17.51′′ N 2.00 ± 1.41

Sub-samples (0.5 L) for the quantification of chlorophyll a concentration (Chl a) were
filtered by vacuum filtration onto a 0.45 µm pore size and 25 mm-diameter glass Whatman
GF/F. Chl a was estimated via spectrophotometry, after pigment extraction in acetone
(90%) [22], and expressed as µg L−1.

2.3. Trophic State

In order to assess the trophic state of the water of the JUST lake, the Trophic Level
Index (TLI) was calculated [23] using the following equations:

TL (Chl a) = 2.22 + 2.54 Log (Chl a)

TL(TP) = 0.218 + 2.92 Log (TP)

TL(SD) = 5.10 + 2.27 log (
1

SD
− 1

40
)

TL(TN) = −3.61 + 3.01 log (TN)

TLI =
TL(Chla) + TL(TP) + TL(SD) + TL(TN)

4
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Based on the values of the TLI, Burns et al. [24] classified lakes as:
Oligotrophic (low productive): TLI < 3;
Mesotrophic (moderately productive): 3 < TLI < 5;
Eutrophic (highly productive): 5 < TLI < 6;
Hypertrophic (very highly productive): 6 < TLI < 8.

2.4. Zooplankton Analysis

Samples for zooplankton determination were collected using a Juday plankton net
with a mesh size of 55 µm at the ten stations during summer and winter. The net was towed
vertically from a depth near to the bottom up to the surface at each station. After collection,
zooplankton samples were rapidly preserved in a 4% buffered formalin solution. They
were stained with rose bengal to identify the internal tissues of the different zooplankton
species and, also, to facilitate the dissection of the Copepoda. Samples were stored in
the dark and analyzed within two weeks after sampling. The zooplankton components
were identified and counted in a Dolffus chamber under a vertically mounted deep-focus
dissecting microscope (Olympus TL 2). The taxonomic identification was carried out
according to the literature [25–28]. Zooplankton abundances were expressed as individuals
per cubic meter (ind. m−3). The abundance and the species richness of the zooplankton at
each station were assessed in triplicate.

The community structure of the zooplankton was assessed by using the Shannon-
Weaver Index (H) for species diversity [29]. The evenness (J) was calculated as proposed by
Pielou [30] to prevent the weighting of the H index by rare species.

Phytoplankton samples were taken using a 1-litre Van Dorn bottle. Phytoplankton
enumeration was performed with an inverted microscope using the Utermöhl method after
fixation with a Lugol’s solution [31]. Cell numbers were expressed as cells L−1.

2.5. Statistical Analysis

For each season, the physical–chemical and biological parameter distributions were
presented using the box plots graphical method. Moreover, the Student’s t-test was applied
to understand the significant effect of seasons on biotic and abiotic parameters (p < 0.05).
The mean and standard deviation of the mean (SD) were reported when appropriate.
Spearman’s correlation analysis was performed to evaluate potential relationships between
the abundance of total zooplankton and their different groups and abiotic and biotic
variables. This test was chosen because of the non-normal distribution of the data.

Data recorded in this study were examined using a normalized principal compo-
nent analysis (PCA). Physical–chemical variables, such as temperature, salinity, dissolved
oxygen, pH, nutrients concentrations, 12 biological parameters (total zooplankton, total
Copepoda, total Calanoida, total Cyclopoida, total Rotifera, other zooplankton, Copepoda
nauplii, Copepoda species, Rotifera species, Cladocera species, Chl a, total phytoplankton),
trophic state (TLI), and diversity indices (H’, E), were assessed by examining the projection
of the plots of the extracted factors on a factorial plan consisting of the statistically signifi-
cant axis of the PCA. A simple log (x + 1) transformation was applied to the data in order
to correctly stabilize the variance [32]. All analyses were performed using XlStat software
version 19.0.

3. Results
3.1. Physical–Chemical Parameters and Trophic State

The mean values of the physical and chemical parameters measured at the lake are
shown in Figure 2. The physical parameters varied significantly between winter and
summer (Student’s t-test, p < 0.01). The water temperature varied from 11.7 ◦C (winter, S2)
to 32.3 ◦C (summer, S10). Salinity was significantly higher in summer (0.95 ± 0.11 g L−1)
than in winter (0.63 ± 0.03 g L−1). Salinity ranged from 0.53 g L−1 at S3 in winter to
1.07 g L−1 at S10 in summer (Figure 2). The average pH varied with the seasons. The
highest values were recorded in summer (average ± SD = 10.29 ± 0.32); however, in winter,
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the pH did not exceed 7.87. Dissolved oxygen (DO) concentrations were found to be within
the range of 5.97–7.38 mg L−1 during winter. The concentration increased significantly
(|t| = 5.48, d.f = 9, p < 0.001) in summer, reaching 11.54 ± 2.87 mg L−1.
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Figure 2. Box-and-whisker plot of physical–chemical parameters recorded in the JUST artificial lake
during winter and summer. Red asterisks are the means of the values. Horizontal lines within the
boxes are the medians of the parameters. Blue dots explain the minimum and maximum values
of each variable. Difference between variables assessed by the Student’s t-test at the 0.05% level.
** p < 0.01; *** p < 0.01.
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Nutrients showed significant differences among the seasons, except for ammonium
and total phosphorus (Figure 2). Nitrates, which accounted for up to 75% of the total
dissolved inorganic nitrogen (DIN = ammonium + nitrates + nitrites), constituted the most
important fraction of the total nitrogen. Nitrates exhibited the highest values in winter,
ranging from 8.50 to 9.40 mg L−1 and averaging at 8.94 ± 0.25 mg L−1; whereas, their
concentration in summer were significantly different (|t| = 11.22; d.f = 9; p < 0.0001) and
did not exceed 3.63 ± 1.17 mg L−1. Nitrites that were detected only in summer exhibited
low values and varied from 0.16 mg L−1 (S8) to 0.40 mg L−1 (S10), with an average of
0.26 ± 0.07 mg L−1. Ammonium concentrations varied slightly between 1.1 mg L−1 in
winter and 2.1 mg L−1 in summer. Orthophosphate concentrations varied from 9 mg L−1

(S5, summer) to 26.40 mg L−1 (S4, winter). The N/P (DIN/orthophosphates) ratio, as an
indicator of nutrient limitation, was strongly low (0.48 ± 0.03 (winter) and 0.52 ± 0.1 (sum-
mer)), being below the value optimal for phytoplankton growth (the Redfield ratio = 16)
and suggesting a potential N limitation. The amounts of most nutrients varied slightly
between the stations (Figure 2).

Figure 3 shows the pattern of the trophic level of the water at each station in the
JUST lake during summer and winter. The TLI varied between 5.16 ± 0.20 in winter and
6.11 ± 0.39 in summer, with a high significant difference (|t| = 7.41, d.f = 9, p < 0.0001).
The temporal and spatial ranges of the TLI categorize the JUST artificial lake as being in a
eutrophic–hypertrophic condition (Figure 3).
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5 and 6 and hypertrophy is recognized for TLI values above 6.

3.2. Phytoplankton and Chl a

As shown in Figure 2, the total phytoplankton abundance varied from 17,300 to
87,500 cells L−1 (Mean ± SD = 38.30 ± 22.17 × 103 cells L−1) in winter; meanwhile it fluc-
tuated between 46,000 and 128,500 cells L−1 (Mean ± SD = 85.85 ± 30.38 × 103 cells L−1)
in summer. The Chl a concentration was higher in summer (0.17 ± 0.13 µg L−1) than in
winter (0.02 ± 0.01 µg L−1). The Student’s t-test showed that both total phytoplankton
abundance and Chl a varied significantly between the seasons (Phytoplankton: |t| = 5.179;
d.f = 9; p = 0.001; Chl a: |t| = 3.924; d.f = 9; p = 0.003).
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3.3. Spatial and Temporal Distribution of Zooplankton

A total of thirty-two taxa of zooplankton (eleven species of Rotifera, ten of Cope-
poda, five of Cladocera, plus six heterogenous categories) were recorded during the survey
period (Table 2). The Copepoda were numerically the most abundant, accounting for
64% of the total zooplankton abundance, in both seasons. This was followed by Ro-
tifera in summer and Cladocera in winter, represented by 28.3% and 25.9%, respectively
(Figure 4). The total zooplankton abundance ranged from 1.770 to 116.350 ind. m−3

(Average ± S.D = 21.74 ± 34.42 × 103 ind. m−3) during winter. In summer, the average
abundance of zooplankton increased, but not significantly (|t| = 1.43; d.f = 9; p > 0.05),
reaching 203.96 ± 373.84 × 103 ind. m−3.

Table 2. Taxonomic composition and quantitative aspects of the zooplankton community found in
the JUST artificial lake. (-) not detected; (R) rare 0–100 ind. m−3; (C) common 100–1000 ind. m−3; (A)
abundant 1000–10,000 ind. m−3; (V) very abundant > 10,000 ind. m−3.

Zooplankton Taxa
Winter Summer

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Copepoda
Calanoida
Arktodiaptomus wierzejskii Aw C C C A C A A A A A C A - V A A V - - -
Neolovenula alluaudi N a C A C V A A A A A V C A - V A A A - - -
Metadiaptomus chevreuxi M c - - - - - R - - - - - - - - - - - - - -
Eudiaptomus gracilis E g C C - A C C C C C C - R - C - - - - - -
Cyclopoida
Mesocyclops leuckarti M l - - A - R - - - - - R C - - - - R R - -
Eucyclops macrurus Em - - R - - - - - - - C C R - - - - A - -
Diacyclops bicuspidatus D b R - - - - - C C R R V V A V V V V V A V
Cyclops scutifer C s - - - R - - - - - R V V A V - - V A - A
Cyclops gigas C g R R C C - - R - R R - - - - - - - R - -
Ancanthocyclops vernalis A v R - R - - - - - - - - R - - R - R - - -
Cladocera
Daphnia longispina D l C A C V C A A A A A - A - - - - A C - -
Daphnia pulex D p - C C V - C - - C A - - - - - - - - - -
Ceriodaphnia dubia C d - C C - - - - - - - - - - - - - - - - -
Diaphanosoma sp. Dbr - C C A R R - - - A - A - A - - - - - -
Eurycercus lamellatus E l - - - - - - - - - - - - R - - - - - - -
Rotifera
Brachionus calyciflorus
willeyi B c R - - - - - - - - - A V C V A A V V A V

Brachionus calyciflorus
spinosus

B c
s - - - - - - - - - - - A - V - - - A C -

Brachionus rubens B r - - - - - - - - - - - - - A - - - - C A
Brachionus bidentata B b - - - - - - - - - - - A A - - - - A R V
Ascomorpha saltans A s C C R - - - - - - - - - - - - - - - - -
Asplanchna brightwellii A b - - - R - - R - - - C - - - - - - - C -
Filinia longiseta F l - - - - - - - - - R - - - - - - R - - -
Euchlanis dilatata E d - - - - - - - - - - C A - A A C - C - A
Platyas quadricornis P q - - - - - - - - - - - - - V - - V V C A
Lecane luna L l - - - - - - - - - - - - - A - - - C - A
Keratella quadrata K q - - - - - - - - - - - - - - - - R - - -
Other Zooplankton
Eggs Egg - C C C R - R C R R - - - - - - C - - -
Chironomidae larvae I la - R C - - - R R - R R R R - - - C - R R
Ostracoda Ost - C - C - - - - - - R C R - - - C R C C
Gastropod veliger Gvi R - R - R R R R - R - - - - - - - - - -
Bivalvia veliger Biv - C - A - - C C R R - - - - - - - - - -

Zooplankton abundance was positively correlated with water temperature (ρ = 0.61,
d.f = 19, p = 0.005), salinity (ρ = 0.55, d.f = 19, p < 0.05), pH (ρ = 0.45, d.f = 19, p < 0.05,), and
dissolved oxygen (ρ = 0.47, d.f = 19, p < 0.05). Zooplankton abundance was also positively
correlated with nitrites (ρ = 0.67, d.f = 19, p = 0.001) and negatively correlated with nitrates
(ρ = −0.51, d.f = 19, p = 0.023).

During winter, Calanoida (62.8% of total zooplankton) were represented by Arktodiap-
tomus wierzejskii, Neolovenula alluaudi, and Eudiaptomus gracilis (Table 2). Their contributions
were 43.7% (S8), 60.0% (S10), and 8.5% (S1), respectively, of the total zooplankton (Figure 5).
Species of the Daphnia genus were the most abundant Cladocera (Table 2). Indeed, the
contributions of D. longispina and D. pulex varied from 5.7 (S3) to 37.2% (S5) and from 0
(S1) to 11.3% (S10) of the total zooplankton, respectively (Figure 5A). At S3, the community
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was largely dominated by Mesocyclops leuckarti, accounting for 22.7% of the total zooplank-
ton (Figure 5A). Rotifera were well represented, in terms of abundance, by only three
species in a few sampled stations (Table 2). Aschomorpha saltans was the most abundant,
accounting for 10% of the total zooplankton at stations S1 and S2 (Figure 5A). Brachionus
calyciflorus, Asplanchna brightwellii, and Filinia longiseta were sporadically encountered with
a low abundance, not exceeding 100 ind. m−3 (Table 2, Figure 5A).
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During summer, the community was dominated by Copepoda Cyclopoida, with
90.44 × 103 ind. m−3 corresponding to 44.4% of total zooplankton abundance (Table 2).
Diacyclops bicuspidatus and Cyclops scutifer were the most abundant species in all sampling
stations, with an abundance exceeding 104 ind. m−3 (Table 2). C. scutifer dominated at
S1 and contributed 41.1% of the total zooplankton abundance (Figure 5B). D. bicuspidatus
was the dominant species at S2 (62.9% of the total zooplankton), S3 (57.7%), S4 (69.7%), S5
(85.1%), and S7 (50.4%) (Figure 5B).
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Rotifera were represented by 10 species, recorded in almost all stations (Table 2). B.
calyciflorus willeyi and Platyas quadricornis were the most abundant species, contributing
19.7% of the total zooplankton abundance (from 1.8 (S3) to 39.7% (S9)) and 2.9% (0% (S1) to
22.3% (S6)) of the total zooplankton abundance (Figure 5B). The contributions of the other
Rotifera species were low and ranged between 0 and 2.8% (Figure 5B).
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The zooplankton not identified at the species level, such as eggs, Chironomidae
larvae, and Ostracoda, were more diversified in winter and contributed to 2.7% of total
zooplankton abundance (Table 2). The maximum contributions of this fraction were 14.9%
(S2) and 8.4% (S8) in the winter and summer, respectively (Figure 4).

The values of diversity indices of zooplankton were higher in winter than in summer
(Figure 6). The values of the Shannon–Weaver index (H’) recorded in summer ranged
between 0.89 (S6) and 2.44 (S7) (average ± S.D = 1.82 ± 0.57); meanwhile, it increased in
winter, with values ranging from 1.74 (S4) to 2.69 (S3) and the average being 2.10 ± 0.35
(Figure 6). The average value of the Pielou evenness index (J) was higher in winter (0.71)
than that in summer (0.58) (Figure 6). The Student’s t-test revealed that the seasons did not
significantly affect diversity indices (p > 0.05).

Water 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

the dominant species at S2 (62.9% of the total zooplankton), S3 (57.7%), S4 (69.7%), S5 
(85.1%), and S7 (50.4%) (Figure 5B). 

Rotifera were represented by 10 species, recorded in almost all stations (Table 2). B. 
calyciflorus willeyi and Platyas quadricornis were the most abundant species, contributing 
19.7% of the total zooplankton abundance (from 1.8 (S3) to 39.7% (S9)) and 2.9% (0% (S1) 
to 22.3% (S6)) of the total zooplankton abundance (Figure 5B). The contributions of the 
other Rotifera species were low and ranged between 0 and 2.8% (Figure 5B). 

The zooplankton not identified at the species level, such as eggs, Chironomidae lar-
vae, and Ostracoda, were more diversified in winter and contributed to 2.7% of total zoo-
plankton abundance (Table 2). The maximum contributions of this fraction were 14.9% 
(S2) and 8.4% (S8) in the winter and summer, respectively (Figure 4). 

The values of diversity indices of zooplankton were higher in winter than in summer 
(Figure 6). The values of the Shannon–Weaver index (H’) recorded in summer ranged be-
tween 0.89 (S6) and 2.44 (S7) (average ± S.D = 1.82 ± 0.57); meanwhile, it increased in win-
ter, with values ranging from 1.74 (S4) to 2.69 (S3) and the average being 2.10 ± 0.35 (Figure 
6). The average value of the Pielou evenness index (J) was higher in winter (0.71) than that 
in summer (0.58) (Figure 6). The Student’s t-test revealed that the seasons did not signifi-
cantly affect diversity indices (p > 0.05). 

. 

Figure 6. Diversity indices (Shannon-weaver: H’ and Pielou evenness: J) of zooplankton communi-
ties recorded in winter and summer in JUST artificial lake. 

3.4. Multivariate Analysis 
The first two axes of PCA I and II explain 45.53% of the total variance (Figure 7). Axis 

I positively selected Cyclopoida, Rotifera Copepoda, total zooplankton, single species of 
Rotifera and Cyclopoida, temperature, salinity, pH, DO, ammonium, Chl a, TLI, and total 
phytoplankton (G1). However, Axis I negatively selected the diversity indices, other zoo-
plankton, Cladocera D. pulex, D. longispina and Ceriodaphnia dubia, Cyclopoida Cyclops gi-
gas, Calanoida Mixodiaptomus chevreuxi, Eudiaptomus gracilis, and Rotifera Aschomorpha sal-
tans, and were coupled with orthophosphates and nitrates (G2). Axis II, explaining 15.85% 
of the total variance, positively grouped (G3) Copepoda nauplii, Calanoida A. wierzejskii, 
N. alluaudi, Cyclopoida M. leuckarti, A. vernalis, Rotifera Filinia longiseta, and Keratella quad-
rata and opposed total phosphorus (Figure 7). The plot of field observations showed a 
clear segregation between the observations made in summer and in winter at the JUST 
Lake. The winter observations were grouped in the negative part of Axis I, together with 
the highest values of diversity indices (H’ and E), Cladocera and Calanoida species, “other 
zooplankton”, nitrates, and orthophosphates; this was in contrast to the observations 

Figure 6. Diversity indices (Shannon-weaver: H’ and Pielou evenness: J) of zooplankton communities
recorded in winter and summer in JUST artificial lake.

3.4. Multivariate Analysis

The first two axes of PCA I and II explain 45.53% of the total variance (Figure 7).
Axis I positively selected Cyclopoida, Rotifera Copepoda, total zooplankton, single species
of Rotifera and Cyclopoida, temperature, salinity, pH, DO, ammonium, Chl a, TLI, and
total phytoplankton (G1). However, Axis I negatively selected the diversity indices, other
zooplankton, Cladocera D. pulex, D. longispina and Ceriodaphnia dubia, Cyclopoida Cyclops
gigas, Calanoida Mixodiaptomus chevreuxi, Eudiaptomus gracilis, and Rotifera Aschomorpha
saltans, and were coupled with orthophosphates and nitrates (G2). Axis II, explaining
15.85% of the total variance, positively grouped (G3) Copepoda nauplii, Calanoida A.
wierzejskii, N. alluaudi, Cyclopoida M. leuckarti, A. vernalis, Rotifera Filinia longiseta, and
Keratella quadrata and opposed total phosphorus (Figure 7). The plot of field observations
showed a clear segregation between the observations made in summer and in winter at the
JUST Lake. The winter observations were grouped in the negative part of Axis I, together
with the highest values of diversity indices (H’ and E), Cladocera and Calanoida species,
“other zooplankton”, nitrates, and orthophosphates; this was in contrast to the observations
made in summer, which tended to group in the positive part of Axis I, together with
Cyclopoida, Rotifera, temperature, salinity, pH, DO, TN, total phytoplankton, and Chl a
(Figure 7).
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4. Discussion

The quality of natural water is generally indicated via various physical–chemical and
biological parameters. In the JUST lake, the temperature showed a marked seasonal varia-
tion in accordance with the values of arid to semi-arid zones [33]. According to EPA [34],
water temperatures ranging from 15.1 to 32.6 ◦C in lake water are considered suitable for
aquaculture purposes. During the hot season (summer), a higher pH level was recorded.
This could be correlated, at least partially, to the increase in CO2 subtraction from the
environment because of the rise in photosynthetic activity, which leads to high pH val-
ues [35]. In fact, phytoplankton abundances (Mean ± SD = 85.85 ± 30.38 × 103 cells L−1)
during summer were higher than they were in winter. The lower pH values during the
winter recorded in this study remain within the range of normality for freshwater lakes
throughout the world [36,37].

The higher values of oxygen concentrations during summer represent a situation
already reported elsewhere (e.g., lake Manzalah [36]). In the present study, a significant
correlation (positive) was found between temperature and dissolved oxygen in summer
(ρ = 0.74; d.f = 9; p < 0.05). Taking into account that our measures are relative to the
surface layer, the higher oxygen concentration during the summer compared to that in
winter could probably be due to the higher photosynthetic activities justified by the high
phytoplankton abundance during the summer, when there is more solar energy available
to the lake. The PCA-plot illustrates a close relationship between the DO concentration
and both pH (ρ = 0.82; d.f = 9; p < 0.001) and Chl a (ρ = 0.81; d.f = 9; p < 0.001) (Figure 7).
The high DO concentration recorded in summer was most likely linked to phytoplankton,
which proliferate during this season (Figure 7, Table 1).

The levels of nutrients in the JUST lake were high. The nutrient content of water is an
indication of the degree of the ecosystem’s trophic state. At very high concentrations of
nutrients, eutrophication in water bodies is an associated factor. Carvalho et al. [38] reported
that phosphorus levels of >20 µg L−1 in freshwater ecosystems resulted in eutrophication
and increased levels of Cyanobacteria thus, leading to a deterioration in water quality. In
the JUST lake, the high concentrations of orthophosphates recorded in the present study
positioned all of the stations at a level of eutrophication. In lakes, N and P concentrations
of surface water are closely controlled by external loading from the catchment area, climate
forcing, and internal nutrient cycling [39,40]. Human beings influence lake ecosystems by
increasing the concentration of nutrients, primarily phosphorus [7,41]. Sudeep et al. [42]
have found that TLI is an important aspect of lake classification and water quality. The TLI
indicators definitively classified the trophic status of the artificial JUST lake as eutrophic–
hypertrophic, in agreement with the magnitude of the nutrient concentration in the lake.
The eutrophication of the artificial JUST lake probably emanates from the pressure caused
by the anthropogenic presence, erosion and siltation, and heavy agricultural fertilizer use
in the catchment area. The TLI was significantly higher in summer (6.11 ± 0.39) than
in winter (5.16 ± 0.12). Increasing temperatures can also alter nutrient concentrations;
phytoplankton growth rates and corresponding dissolved nutrient uptake rates generally
increase with temperature [43]. Warmer temperatures can also directly accelerate water
column mineralization, thereby increasing nutrient concentrations [44]. Internal nutrient
cycling has been demonstrated to be a crucial factor influencing the seasonal patterns of
nutrient concentrations and limitations in eutrophic lakes, globally [45,46].

Zooplankton is a key component of the aquatic environment and it is essential to
maintaining natural processes in freshwater ecosystems [47]. In the JUST lake, the zoo-
plankton were diversified and were mainly composed of Copepoda (copepodids and
nauplii), Rotifera, and Cladocera, accounting, respectively, for 70.9%, 25.6%, and 3.2% of
the total zooplankton throughout the studied period. The zooplankton diversity index
in the JUST lake was higher in winter (H’ = 2.10 bits. ind−1, J = 0.71) than in summer
(H’ = 1.82 bits. ind−1, J = 0.58). Arab et al. [48] stated that the increased values of these
diversity indices could mainly be considered a signal of community stability and improved
trophic status. The increase in the TLI leads to taxonomic shifts, which has a negative
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effect on the diversity of all groups of zooplankton [49]. Increasing the trophic status
in natural lakes shifts the dominance from Copepoda Cyclopoida and Rotifera to Cope-
poda Calanoida and Cladocera [16–18]. However, in the artificial lake (JUST), the summer
increase of TLI enhanced the proliferation of Rotifera and Cyclopoida (ρ = 0.84, d.f = 9;
p < 0.0001) but affected the growth of Cladocera and Calanoida (Figure 7).

The total number of species (twenty-six) was relatively high for an artificial basin
(see comparable data in [15]) and, interestingly, a high number of co-existing Calanoida
(four species) was there to underline a high level of biodiversity. The deterioration of the
environment, consequent to eutrophication, is probably only related to the summer season,
with the winter period able to re-propose a well-structured and diversified community.
Understanding the relationships between diversity indices and trophic state aspects remains
a challenge in hydrologic research; at the same time, is essential for establishing a water
management database on a larger spatial and temporal scale.

The average abundance of total zooplankton was 104.44 ± 250.60 × 103 ind. m−3. It is
noteworthy that a general consistency exists between zooplankton abundance recorded
in the JUST lake and those recorded in the arid-area and semi-arid-area lakes in the
world [50–52]; although, variations could be affected by the sampling season, regional
spatio-temporal physical patterns, and sampling methods. The zooplankton abundance
data of the present study are in the upper range of the literature’s data for the world’s lakes;
but, the results have probably been affected by the use of a narrow mesh-sized net (55 µm)
that enhanced the capture of very abundant nauplii and small sized organisms.

Generally, Copepoda, Rotifera, and Cladocera are useful indicators of lake trophic
status [49,53,54]. Numerous investigations have shown that some species of Cyclopoida
have invaded the pelagic zone of lakes during eutrophication [53]. Zooplankton are
dominated by Rotifera [54] in high trophic state conditions [55] and are characteristic of
shallow lakes [56]. At the JUST lake, certain zooplankton species characteristic of eutrophic
communities were recorded. They included Mesocyclops leuckarti, Daphnia longispina, D.
pulex, Ceriodaphnia dubia, D. sp., Brachionus calyciflorus willeyi, B. c. spinosus, B. rubens, B.
bidentata, Asplanchna brightwellii, Filinia longiseta, and Keratella quadrata. Most species of
Cyclopoida and Rotifera were associated with TLI indices in the summer (Figure 7). B.
calyciflorus is considered pollution-tolerant, a good indicator of eutrophication and the
accumulation of organic matter [51,57]. In winter, D. longispina, D. pulex, and C. dubia were
associated with trophic condition variables, such as orthophosphates and nitrates (Figure 7).
These species have been found to be useful bioindicators of high eutrophic freshwater
areas [58,59].

In freshwater ecosystems, abiotic and biotic conditions play a vital role in determin-
ing local taxonomic diversity [60]. Many researchers have noted that water temperature,
nutrients, pH, the bottom-up effect of phytoplankton, and species interaction, on the one
hand, andthe top-down control of predators, are essential factors in shaping zooplank-
ton community composition [61,62]. Similarly, our study showed that the zooplankton
composition was diversified and influenced by environmental factors that vary with the
seasons, such as water temperature, salinity, pH, and dissolved oxygen. Water temper-
ature is a factor that can positively or negatively affect the growth of some zooplankton
species [63]. Furthermore, the development of zooplankton in summer was associated
with the increase in the dissolved oxygen, salinity, and pH. The highest values of dissolved
oxygen recorded in summer could explain the proliferation of the zooplankton. Further-
more, our analysis has shown that nutrients are a main factor correlated with zooplankton
dynamics. Nutrients can indirectly impact zooplankton growth through their influence on
phytoplankton productivity.

The lowest Chl a concentrations and phytoplankton abundances were observed during
winter in the JUST lake; this may be due to the high-pressure grazing of Cladocera on
phytoplankton. Cladocera are typically considered predominant phytoplankton grazers in
lakes, mainly due to their high ingestion rates [64]. In zooplankton grazing estimations,
Cladocera and Copepoda are mostly taken into account while the impact of Rotifera is
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neglected [65]. The introduction of aquaculture species, such as carp and koi, which are
phytoplanktivorous, will strengthen the top-down control over phytoplankton, resulting in
a decrease in their biomass [21] and a successive reduction of the lake’s trophic status. In
fact, fish can control the trophic state of a lake [66]; a preceding study showed that fish koi
and common carp were successfully reared in outdoor tanks filled with water from the JUST
lake [21]. To avoid any accidental interaction (ingestion) between fish and zooplankton,
however, a plant could be realized using water from the JUST lake, where fish could
decrease the phytoplankton content of the water; it could be contemporaneously reared for
aquaculture while avoiding participation in the trophic charge of the lake. The water subject
to such phytoplankton deprivation, opportunely depurated, should be re-introduced into
the JUST basin with an increase in its quality and conservation of its biodiversity.

5. Conclusions

The zooplankton in the JUST lake showed spatial and temporal variations in abun-
dance in relation to environmental parameters. Calanoida and Cladocera dominated in
winter; meanwhile, in summer, Cyclopoida dominated. Most of the species of zooplankton
were correlated with TLI indices, particularly Daphnia species, which were associated with
the highest amounts of orthophosphates and nitrates. The spatial and temporal ranges of
the TLI classified the JUST artificial lake as being in a eutrophic–hypertrophic condition
and reflected the high magnitude of nutrient concentrations in this lake, overall, during
summer. The eutrophic state of the lake should be a clarion call for initiating restoration
programs that can conserve its ecological status. The proposal of a parallel basin for fish
aquaculture could be interpreted as a way to organize the system of biological conservation,
other than through aquaculture revenues. The deprivation of water from phytoplankton,
due to ingestion by fish, could produce a continuous cycle of a trophic water supply for
fish and depurated water supply for the JUST lake, where an interesting concentration
of biodiversity appears to have been established. In addition, the use of zooplankton as
bioindicators of trophic states and the TLI could be valuable during future assessments
for evaluating the effectiveness of these programs in remedying the ecological status of
the lake.
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