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Abstract—Hyperspectral target detection is a task of primary
importance in remote sensing since it allows for location and dis-
crimination of target features. To this end, the reflectance maps,
which contain the spectral signatures and related abundances of
the materials in the observed scene, are often used. However,
due to the low spatial resolution of most hyperspectral sensors,
targets occupy a fraction of the pixel and, hence, the spectra of
different sub-pixel targets (including the background spectrum)
are mixed together within the same pixel. To solve this issue, in
this paper, we adopt a generalized replacement model accounting
for multiple sub-pixel target spectra and formulate the detection
problem at hand as a binary hypothesis test where under the
alternative hypothesis the target is modeled in terms of a linear
combination of endmembers whose coefficients also account for
the presence of the background. Then, we devise detection
architectures based upon the generalized likelihood ratio test
where the unknown parameters are suitably estimated through
procedures inspired by the maximum likelihood approach. The
performances of the proposed decision schemes are evaluated
by means of both synthetic as well as real data and compared
with an analogous counterpart by showing the effectiveness of
the proposed procedure.

Index Terms—Detection, generalized likelihood ratio test, hy-
perspectral imaging, maximum likelihood estimation, sub-pixel
target.

NOTATION AND ACRONYMS

In what follows, vectors and matrices are denoted by bold-
face lower-case and upper-case letters, respectively. Symbols
det(·) and Tr(·) denote the determinant and the trace of a
square matrix, respectively. Symbols I and 0 represent the
identity matrix and the null vector or matrix of suitable
dimensions, respectively. 1 is the vector of ones. As to the
numerical sets, R is the set of real numbers, RN×M is the
Euclidean space of (N × M)-dimensional real matrices (or
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vectors if M = 1). We use (·)T to denote the transpose while
‖·‖ is the Euclidean norm of a vector. We write x ∼ NN (µ,M)
if x is a N -dimensional Gaussian vector with mean µ ∈ RN×1
and positive definite covariance matrix M ∈ RN×N .

Finally, we provide below a list of the used acronyms:

ACE Adaptive Coherence Estimator
ACUTE Adaptive Cell Under Test Estimator
AMF Adaptive Matched Filter
ASD Adaptive Subspace Detector
GLRT Generalized Likelihood Ratio Test
MC Monte Carlo
MLE Maximum Likelihood Estimate
MSD Matched Subspace Detector
OSP Orthogonal Sub-space Projection
PDF Probability Density Function
PUT Pixel Under Test
RIT Rochester Institute of Technology
RMS Root Mean Square
RMSE Root Mean Square Error
SMF Spectral Matched Filter

I. INTRODUCTION

Hyperspectral imaging spectrometers enable the detection
and discrimination of different target features in a scene due
to hundreds or thousands of spectral channels covering the
visible, near and shortwave infrared and ultraviolet spectral
bands. Their field of application is very wide and ranges from
agricultural remote sensing, object classification, atmospheric
monitoring, to military investigation [1]–[4].

On the other hand, the consequent low spatial resolution
entails a challenging situation due to the fact that different
materials can jointly occupy a single Pixel Under Test (PUT).
As a matter of fact, the spectra of different sub-pixel targets
(including the background spectrum) are mixed together as
well as the corresponding fraction (or abundance) of con-
stituent endmembers. In general, the number of endmem-
bers and their abundances at each pixel are unknowns and
the corresponding estimation process, i.e., the hyperspectral
unmixing, gets complicated due to the model inaccuracies,
the observation noise, the environmental conditions, and the
endmember variability [5].

Unmixing algorithms currently rely on mixing models that
can be either linear or nonlinear. The first case corresponds
to a macroscopic mixing scale, whereas the second one is
more representative of the physical interactions between the
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scattering from multiple materials. As for the unmixing meth-
ods, signal-subspace, geometrical, statistical, sparsity-based,
and spatial-contextual procedures have been proposed over the
years [6].

Recent advances, in the field of hyperspectral imaging, are
directed towards the development of target detection algo-
rithms fed by hyperspectral images and exploiting spectral
signatures of the materials to identify the targets of interest
[7]. In this case, the separation of the background signature
from the desired targets represents the major challenge and the
actual classification procedures are not directly applicable to
target detection since the targets’ number is typically too small
for using clustering-based algorithms. Moreover, the targets of
interest may appear as sub-pixel targets where the background
interference directly distorts the shape of the real observed
target spectrum.

With reference to this latter issue, different solutions have
been proposed for target detection in hyperspectral imaging
[8]. The main difference between the various algorithms relies
on the availability of prior knowledge about the spectral
characteristics of the desired targets. When the target spectral
information is not a-priori known, or is affected by uncer-
tainty, anomaly detectors can be used, where hyperspectral
image anomalies are related to a general kind of spectral
irregularity due to the presence of atypical objects. In this
case, pattern recognition or statistical schemes are used for the
detection of the objects that stand out from the background [9].
On the contrary, if the spectral characteristics of the desired
targets are a-priori known, both the noise and the background
can be statistically modeled as Gaussian-distributed and sev-
eral classical target detection algorithms can be used, such
as the linear Spectral Matched Filter (SMF), the Matched
Subspace Detector (MSD), the Adaptive Subspace Detector
(ASD), and the Orthogonal Sub-space Projection (OSP) [10].
However, these detectors do not consider any constraint on
the abundance of sub-pixel targets and background. Otherwise
stated, they do account for the fact that when a sub-pixel
target is present, the amount of background should be reduced
by the same proportion, which leads to the definition of the
so called replacement model, by which a sub-pixel target is
supposed to “replace” or fill part of the background within a
given pixel [11]. It is important to notice that this problem
is not a classical detection one, as the background power is
different under the two hypotheses (background-only versus
target-plus-background). Recent efforts for the development of
detectors based on the replacement model can be found in [12],
[13]. In [12], the analogous of Kelly’s Generalized Likelihood
Ratio Test (GLRT) [14] for the replacement model, namely
the Adaptive Cell Under Test Estimator (ACUTE), is derived,
allowing for the detection of small targets with adaptivity with
respect to the background abundance estimated in the PUT. A
modified version of the replacement model is developed in
[13], where the GLRT is derived in the presence of a residual
additive noise.

However, since in the hyperspectral sensors the spectra of
different sub-pixel targets are mixed together with the back-
ground spectrum, a generalized replacement model is proposed
in this paper, where the sum of the total amount of both

multiple sub-pixel targets and background spectra is equal to
one, as explained ahead. In this way, the problem of detecting
the presence of multiple sub-pixel targets is formulated as a
binary hypothesis test where under the alternative hypothesis
the target is modelled in terms of a linear combination of
endmembers whose coefficients also account for the presence
of the background. This model allows us to detect and identify
one or more targets from a wide spectral library of plausible
targets, such as different car types in a parking area, or a single
target characterized by multiple spectral signatures, such as the
pickup truck not considered in [12]. The detection problem at
hand is solved by deriving decision rules where the unknown
parameters, the background statistics, and the abundance vec-
tor are replaced by suitable estimates based upon available
secondary data collected around the PUT. Particularly, an iter-
ative approach is proposed for the estimation of the unknown
abundance vector and two different solutions (heuristic and
constrained solutions) are considered at this end. Finally, it
is worth noticing that, as a byproduct, the devised detection
architectures allow identifying the specific sub-pixel targets in
the PUT, from the spectral library of possible endmembers,
by exploiting their corresponding estimated abundances.

The remainder of the paper is organized as follows. Section
II is devoted to the replacement model and the formal state-
ment of the detection problem. Two detection architectures are
derived in Section III, which differ for the estimation of the
target abundances. In Section IV, the behavior of the proposed
architectures is investigated by means of both simulated as
well as real data. Finally, concluding remarks end this article
in Section V. Some derivations are confined to the appendices.

II. PROBLEM STATEMENT

This section defines a generalization of the so called replace-
ment model [12] that will be used to perform the detection in
our case. To this end, let us consider a hyperspectral sensor
able to collect the reflected light (i.e., radiance) from the
observed scene through a large number, say N , of spectral
bands. The radiance is generally converted into a reflectance
spectrum to remove the effects of the non-uniform sun power-
spectral density and the atmospheric contribution [15], [16].
The observed reflectance data samples from a given pixel can
be grouped to form an N -dimensional vector, namely,

y = [y1, y2, . . . , yN ]
T ∈ RN×1.

In this work, a generalization of the replacement model [16]
is adopted, in which the presence of multiple sub-pixel targets
(or otherwise stated endmembers) is supposed. The spectrum
of each pixel can be expressed as a linear combination of
r endmembers plus the background component (that is, non-
target)

y = Tα+
(
1−αT1

)
b, (1)

where:

• T = [t1, . . . , tr] ∈ RN×r denotes the endmember matrix
(the columns are their spectral signatures);
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• α = [α1, . . . , αr]
T ∈ Rr×1 is the vector of the unknown

fill factors subject to the constraints

αi ≥ 0, ∀i ∈ {1, . . . , r} and
r∑
i=1

αi < 1; (2)

• b ∈ RN×1 is the background spectral signature.
This model is reasonable because it is likely for a pixel to

comprise one or more target materials, due to the low spatial
resolution of the majority of hyperspectral sensors. The spectra
of the different sub-pixel targets are mixed together (weighted
by their respective abundances or fill factors) and with the
spectrum of the background. As the abundances represent the
proportion of the corresponding endmembers, the amount of
both the sub-pixel targets and the background spectra is subject
to the constraint that their sum is one. A special case of (1) is
when αi = 0, ∀i ∈ {1, . . . , r}, which implies the absence
of targets, i.e., the presence of background only. On the
contrary, due to the strict inequality in (2), the model does not
admit the complete absence of the background’s component.
Moreover, we assume that a set of data, i.e., z1, . . . , zK ,
K > N , collected in the proximity of y and sharing the same
background properties of y, is available. These data, used for
estimation purposes, are assumed independent and identically
distributed.

The detection problem aims at choosing between the null
hypothesis H0 (αi = 0,∀i ∈ {1, . . . , r}) and the alternative
hypothesis H1 (αi 6= 0, for at least one i ∈ {1, . . . , r}).
Using this system model, we can express our problem as the
following binary hypothesis test

H0 :

{
y = b,
zk = bk, k = 1, . . . ,K,

H1 :

{
y = Tα+

(
1−αT1

)
b,

zk = bk, k = 1, . . . ,K,

(5)

with b and bk ∼ NN (µ,M), k = 1, . . . ,K. It is also supposed
that b and bk are statistically independent. Notice that the
detection problem presupposes that the background power
varies between the two competing hypotheses.

Before concluding this section, we provide the expressions
of the joint PDF of y and Z = [z1, . . . , zK ] under H0 and H1

that are given in (3) and (4) (see page 4), respectively.

III. GLRT-BASED DETECTOR DESIGNS

In this section, we design decision rules for problem (5)
that are based upon the GLRT. Specifically, we modify this
design procedure by exploiting suitable estimates for α that
are different from the Maximum Likelihood Estimate (MLE).
This choice is dictated by the difficult mathematics arising
from the application of the maximum likelihood approach
to the estimation of α as required by the GLRT criterion.
Therefore, we start from the general equation of the GLRT,
that is

max
µ,M,α

f1(y,Z;µ,M,α)

max
µ,M

f0(y,Z;µ,M)

H1
>
<
H0

η, (6)

where η is the detection threshold1 set according to a given
probability of false alarm (or probability of type I error), and
proceed by separately solving the two optimization problems.

Under H0, the problem at hand is well-known and, hence,
for brevity, we show below the final results only. The MLEs
of µ and M are given by

µ̂0 =
1

K + 1
(y + z̃) (7)

with z̃ =
∑K
k=1 zk and

M̂0 =

[
(y− µ̂0)(y− µ̂0)T +

∑K
k=1(zk − µ̂0)(zk − µ̂0)T

]
K + 1

,

(8)
respectively, and the final compressed log-likelihood under H0

is2

L0(µ̂0, M̂0) = −C1 − C2 log det(M̂0)−NC2, (9)

where C1 = [(K + 1)N/2] log (2π) and C2 = (K + 1)/2.
Now, we focus on the H1 hypothesis and write the corre-

sponding log-likelihood (see (4))

L1(µ,M,α) = −C1 −N logA− C2 log (det M)

− ‖M
−1/2 (x−Aµ) ‖2

2A2
−

K∑
k=1

‖M−1/2 (zk − µ) ‖2

2
, (10)

where A =
(
1−αT1

)
and x = y − Tα. We first maximize

L1(µ,M,α) with respect to µ, by setting to zero the corre-
sponding derivative and obtain

− 1

A
M−1x + M−1µ+

K∑
k=1

(
−M−1zk + M−1µ

)
= 0 (11)

⇒ (K + 1) M−1µ =
1

A
M−1x + M−1z̃ (12)

⇒ µ̂ =
1

K + 1

(
1

A
x + z̃

)
. (13)

Using the above results in (10), after some algebraic manipu-
lations, the partially-compressed log-likelihood can be recast
as

L1(µ̂,M,α) = −C1 −N logA− C2 log (det M)

− Tr

{
M−1

2

[(
1

A
x− µ̂

)(
1

A
x− µ̂

)T
+

K∑
k=1

(zk − µ̂) (zk − µ̂)
T

]}
.

(14)

The MLE of M under H1 can be computed by resorting to
the following inequality [17] log det(A) ≤ Tr [A]−N , where
A is any N -dimensional matrix with nonnegative eigenvalues,
and, hence, we come up with

M̂ =

[(
1
Ax− µ̂

)(
1
Ax− µ̂

)T
+

K∑
k=1

(zk − µ̂) (zk − µ̂)
T

]
K + 1

.

(15)

1Hereafter, we use symbol η to denote the generic threshold.
2For simplicity, in what follows, we omit the dependence of the log-

likelihood function on data y and Z.
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f0(y,Z;µ,M) =

(
1

(2π)N/2 det(M)1/2

)K+1

exp

{
−1

2
Tr

[
M−1

(
(y− µ)(y− µ)T +

K∑
k=1

(zk − µ)(zk − µ)T

)]}
. (3)

f1(y,Z;µ,M,α) =

(
1

(2π)N/2 (1−αT1)
N/(K+1)

det(M)1/2

)K+1

× exp

{
−1

2
Tr

[
M−1

((
y−Tα−

(
1−αT1

)
µ
) (

y−Tα−
(
1−αT1

)
µ
)T

(1−αT1)
2 +

K∑
k=1

(zk − µ) (zk − µ)
T

)]}
. (4)

Hence, we update (14) with M̂ and find

L1(µ̂, M̂,α) = −C3 −N logA− C2 log det

[(
1

A
x− µ̂

)
×
(

1

A
x− µ̂

)T
+

K∑
k=1

(zk − µ̂) (zk − µ̂)
T

]
, (16)

where C3 = C1 + 1
2 (K + 1)N − C2N log (K + 1). In

Appendix A, we show that the argument of the determinant
in (16) can be suitably manipulated leading to the following
expression for the partially-compressed log-likelihood function

L1(µ̂, M̂,α) = −C3 −N logA− C2 log (det S1)− C2

× log

(
1 +

K

K + 1

(
1

A
x− 1

K
z̃
)T

S−11

(
1

A
x− 1

K
z̃
))

= −C3 −N log
(
1−αT1

)
− C2 log (det S1)

− C2 log

(
1 + C4

∥∥∥∥S−1/21

(
y− Tα
1−αT1

− ˜̃z
)∥∥∥∥2

)
, (17)

where S1 = S− 1
K(K+1) z̃z̃T with S = ZZT − 1

K+1 z̃z̃T , C4 =
K
K+1 , and ˜̃z = 1

K z̃. Since we are interested in the maximization
of the partially-compressed log-likelihood with respect to α,
we focus on the terms that depend on α only and define the
following function

g(α) = N log
(
1−αT1

)
+ C2 log

1 +

∥∥∥∥∥
(

y0 − T0α

1−αT1
− ˜̃z0

)T∥∥∥∥∥
2
 (18)

where y0 = C
1/2
4 S−1/21 y, T0 = C

1/2
4 S−1/21 T and ˜̃z0 =

C
1/2
4 S−1/21

˜̃z. The maximization of (17) with respect to α is
equivalent to the problem

min
α

g(α)

subject to
r∑
i=1

αi < 1,

αi ≥ 0, ∀i ∈ {1, . . . , r}.

(19)

In the next subsection, we describe two different procedures
to solve problem (19). Denoting by α̂ the generic solution
returned by these procedures, we use it in (17) and the final

expression of the detection architecture is

L1(µ̂, M̂, α̂)− L0(µ̂0, M̂0)
H1
>
<
H0

η. (20)

A. Solution to Equation (19)

The approach devised here relies on an iterative solution of
(19). In particular, we firstly highlight the dependence of the
objective function from a single entry of α, say αj , and then,
at each iteration, we minimize g(α) with respect to αj as the
index j varies. To this end, let us notice that

1−αT1 = 1−
r∑
i=1

αi = 1−
∑
i 6=j

αi − αj = aj − αj (21)

where aj = 1 −
∑
i 6=j

αi with 0 < aj < 1. Moreover, we have

that

y0 − T0α = y0 − [t01, . . . , t0N ]α

= y0 −
∑
i 6=j

t0i αi − t0j αj = yj − t0j αj (22)

with yj = y0−
∑
i 6=j t0i αi. The estimation procedure iterates

according to the following rationale. Denoting by t the iter-
ation index and given the estimates α(t+1)

i (at the (t + 1)th
iteration), i = 1, . . . , j − 1, and α

(t)
i (at the tth iteration),

i = j + 1, . . . , r, we exploit g(α) to build up the following
function of αj

g(αj) = N log
(
â
(t,t+1)
j − αj

)
+ C2

× log

1 +

∥∥∥∥∥
(

ŷ(t,t+1)
j − t0jαj
â
(t,t+1)
j − αj

− ˜̃z0

)∥∥∥∥∥
2
 , (23)

where â
(t,t+1)
j = 1 −

∑j−1
i=1 α

(t+1)
i −

∑r
i=j+1 α

(t)
i and

y(t,t+1)
j = y0 −

∑j−1
i=1 t0i α

(t+1)
i −

∑r
i=j+1 t0i α

(t)
i . This

function is then used to come up with the update of the
estimate of αj at the (t + 1)h iteration. Specifically, in the
next subsections, we devise two different approaches: the first
is heuristic whereas the second incorporates the constrained
solutions of (19) at the design stage. An initial estimate of
αi, i = 1, . . . , r is necessary to initialize the algorithms as
well as a reasonable stopping criterion as, for instance, setting
a maximum number of iterations, say Niter.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3265890

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5

1) Heuristic solution: Let us recast (23) as

g(αj) = N log
(
â
(t,t+1)
j − αj

)
+ C2 (24)

×
[
log (D0 +D1αj +D2α

2
j )− 2 log

(
â
(t,t+1)
j − αj

)]
,

where D0 = (ŷ(t,t+1)
j )T ŷ(t,t+1)

j − 2â
(t,t+1)
j (ŷ(t,t+1)

j )T ˜̃z0 +

(â
(t,t+1)
j )2˜̃zT0 ˜̃z0+(â

(t,t+1)
j )2; D1 = 2[â

(t,t+1)
j (tT0j˜̃z0− ˜̃zT0 ˜̃z0)+

(ŷ(t,t+1)
j )T ˜̃z0 − (ŷ(t,t+1)

j )T t0j ] − 2â
(t,t+1)
j ; and D2 = 1 +

tT0jt0j − 2tT0j˜̃z0 + ˜̃zT0 ˜̃z0.
Setting to zero the first derivative of (24) with respect to αj

leads to the following quadratic equation

−ND2α
2
j + [2C2D2â

(t,t+1)
j + (C2 −N)D1]αj

+[C2D1â
(t,t+1)
j + 2D0C2 −ND0] = 0. (25)

Now, we can evaluate α̃(t+1)
j by choosing the positive real-

valued solution of (25) returning the minimum value of
(24). However, since the constraint (2) must be satisfied, we
regularize α̃(t+1)

i , i = 1, . . . , r, as follows

α̂
(t+1)
i = α̃

(t+1)
i

(1− αb)
r∑
i=1

α̃
(t+1)
i

, (26)

where 0 ≤ αb < 1 represents the unknown background
abundance; in practice, it can be set using a linear grid of
values (sized according to the available a priori information)
and selecting the value that minimizes the objective function.
This heuristic algorithm is summarized in Algorithm (1).

Algorithm 1 Estimation Procedure for αj (heuristic solution)

Input: T0, y0, ˜̃z0 α
(0)
i , i = 1, . . . , r, Niter

Output: α̂
1: Set t = 1
2: Set j = 1

3: Compute â(t−1,t)j = 1−
j−1∑
i=1

α
(t)
i −

r∑
i=j+1

α
(t−1)
i

4: Select the jth column of T0, i.e., t0j

5: Compute y(t−1,t)j = y0 −
j−1∑
i=1

t0i α
(t)
i −

r∑
i=j+1

t0i α
(t−1)
i

6: Compute α̃(t)
j by solving (25) and selecting the positive

real-valued solution that minimizes (24)
7: If j < r, set j = j+ 1 and go to step 3 else go to step 8

8: Normalize α̃(t) = [α̃
(t)
1 , . . . , α̃

(t)
r ]T as in (26) to obtain

α̂(t) = [α̂
(t)
1 , . . . , α̂

(t)
r ]T

9: If t < Niter, set t = t+ 1 and go to step 2 else go to step
10

10: Return α̂ = [α̂
(t)
1 , . . . , α̂

(t)
r ]T

2) Constrained solutions: Let us introduce an auxiliary
variable, say βj , such that

βj +

j−1∑
i=1

α
(t+1)
i +

r∑
i=j+1

α
(t)
i + αj = 1 (27)

⇒ βj + αj = â
(t,t+1)
j . (28)

Then, we exploit βj to modify (23) by incorporating the model
constraint on the abundances, namely

g(αj , βj) = N log βj + C2 (29)

× log

1 +

∥∥∥∥∥
(

ŷ(t,t+1)
j − t0jαj

βj
− ˜̃z0

)∥∥∥∥∥
2
 ,

and consider the following minimization problem min
αj ,βj

g(αj , βj)

subject to αj + βj = â
(t,t+1)
j

. (30)

Now, we apply the method of Lagrange multipliers and define
the Lagrangian

L(αj , βj) = g(αj , βj)− λ
(
αj + βj − â(t,t+1)

j

)
, (31)

where λ is a Lagrange multiplier. Setting to zero the gradient
of the Langrangian and considering the constraint equation,
we form the following system of equations

λA1α
2
j + (λA2 − 2C2A1)αj + λA3 − C2A2 = 0

− λB1β
3
j + (NB1 − λB2)β2

j + (NB2 − C2B2 − λB3)βj

+NB3 − 2C2B3 = 0

αj + βj = â
(t,t+1)
j

(32)
where A1 = tT0jt0j ; A2 = 2[βjtT0j˜̃z0 − (ŷ(t,t+1)

j )T t0j ];
A3 = β2

j (1 + ˜̃zT0 ˜̃z0) − 2βj(ŷ(t,t+1)
j )T ˜̃z0 + (ŷ(t,t+1)

j )T ŷ(t,t+1)
j ;

B1 = (1 + ˜̃zT0 ˜̃z0); B2 = 2[αjtT0j˜̃z0 − (ŷ(t,t+1)
j )T ˜̃z0]; B3 =

(ŷ(t,t+1)
j )T ŷ(t,t+1)

j − 2αj(ŷ(t,t+1)
j )T t0j + α2

j tT0jt0j .
Finally, the estimate of α̂j , say α̂

(t+1)
j , is obtained by

selecting the real-valued positive solution that is strictly lower
than 1 and minimizes the objective function as summarized in
Algorithm (2). A block diagram of the signal processing chain
towards the formation of the detectors is shown in Figure 1.

Before investigating the performance of both solutions, it
is important to notice that the convergence to the global
minimum is not guaranteed. Nevertheless, it can be shown
that g(α) is limited from below (provided that K > N )
and the constrained solution gives rise to a nonincreasing
sequence of values for g(α) satisfying the constraint (19).
It follows that the constrained algorithm converges at least
to a local constrained stationary point. On the other hand,
the heuristic approach, which is less time demanding than the
constrained algorithm, due to the normalization (26), is not
guaranteed to return a nonincreasing sequence of the objective
function as highlighted later by the numerical examples of the
next section, where it is shown that the convergence curves
experience a plateau as the number of iterations grows.

IV. PERFORMANCE ANALYSIS

In this section, we assess the detection performance of
the proposed detectors through numerical examples based
on simulated as well as real data. To this end, we resort
to a hyperspectral dataset, namely the Rochester Institute
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or

heuristic

Algorithm (1)

Equation (9)Equation (8)

Equation (17)Equation (15)Equation (13)

Equation (20)

Spectral matrix

Pixel Under Test

Surrounding data

Log-GLRT

constrained

Algorithm (2)

Equation (7)

Fig. 1: Signal processing chain leading to the proposed detec-
tors.

Algorithm 2 Estimation Procedure for αj (constrained solu-
tion)

Input: T0, y0, ˜̃z0 α
(0)
i , i = 1, . . . , r, Niter

Output: α̂
1: Set t = 1
2: Set j = 1

3: Compute â(t−1,t)j = 1−
j−1∑
i=1

α
(t)
i −

r∑
i=j+1

α
(t−1)
i

4: Select the jth column of T0, i.e., t0j

5: Compute y(t−1,t)j = y0 −
j−1∑
i=1

t0i α
(t)
i −

r∑
i=j+1

t0i α
(t−1)
i

6: Compute α̂(t)
j by solving (32) and selecting the real-valued

positive solution that is strictly lower than 1 and minimizes
(29)

7: If j < r, set j = j+ 1 and go to step 3 else go to step 8
8: If t < Niter set t = t+ 1 and go to step 2 else go to step

9
9: Return α̂ = [α̂

(t)
1 , . . . , α̂

(t)
r ]T

of Technology (RIT) experiment3 [18]. The RIT open data
experiment has been specially designed for target detection and
has been widely used in the open literature [12], [19]. Indeed,
a corrected and geo-registered reflectance map is available so
that the detection performance will be independent from any
particular experimental setup.

Data were collected in July 2006 with a coverage area of
approximately 2.0 km2 and around the small town of Cooke
City, Montana, USA. To this end, the airborne HyMap sensor
operated by HyVista was used [20]. The images were acquired
flying at 1.4 km above the ground and were successively geo-
registered using ground control points. Both calibrated spectral
radiance as well as spectral reflectance after atmospheric
compensation are available in the dataset.

The Cooke City scene is shown in Figure 2, which is
composed of 280× 800 pixels. Each pixel is observed at 126
spectral bands covering the electromagnetic spectrum from
0.45 µm to 2.48 µm with a ground resolution of about 3.0×3.0
m. It is important to note that the spatial resolution of the map

3Data can be downloaded from http://dirsapps.cis.rit.edu

is of the same order of magnitude as the target sizes, so that
they will usually behave as sub-pixel targets [21], [22].

In this dataset, civilian vehicles and small fabric panels were
used as targets. Specifically, three kinds of cars (indicated as
V1, V2 and V3) and four different fabric panels (F1, F2, F3 and
F4) are present in the scene. It is important to highlight that V2

is a pick-up characterized by two different spectral signatures,
namely, one corresponding to the cabin (V2c) and the other to
the back (V2b), so it can be considered as an example of multi-
target. For each target, a reference spectrum signature obtained
from a laboratory spectrophotometer is provided together with
the RIT dataset, as shown in Figure 3.

Finally, the RIT dataset provides a standard self-test where
the targets’ map positions are known, and also a blind test
with unknown target positions to prevent ad hoc algorithms.
Moreover, the water absorption and low signal-to-noise bands
were identified and removed from the Cooke City dataset for
further processing. Precisely, bands no. 1, 2, 3, 63, 64, 65,
66, 95, 96, and 97 were discarded as in [23]. After removing
these bands, 116 spectral bands were retained.

A. Results on simulated data

In this subsection, a reflectance pixel containing the target
vehicle V2 is simulated according to the replacement model
defined in (1). Particularly, the considered endmembers’ matrix
is composed of three spectral signatures

T = [t2c, t2b, t3] ∈ R116×3,

where t2c, t2b, and t3 denote the spectral signatures of V2c,
V2b, and V3, respectively, that are given together with the RIT
dataset.

We consider different configurations for the fill factor vector
of the abundances, as specified in Table II. It is important
to note that for the V2c endmember we assign a bigger
value of abundance as its reflectance signature is lower if
compared with V2b, see Figure 3(a). We add a background
noise modelled in terms of a zero-mean Gaussian random
vector with variance 0.5 and independent entries. The number
of secondary data K is set to 625.

Remember that the heuristic approach, as specified in (26),
requires a selection of a linear grid of values for the back-
ground abundance to minimize the objective function. Thus,
we set a linear grid of values from 0.1 to 0.9, with a step of
0.01. This condition is applied for performances evaluated on
both simulated and real data.

As a preliminary step, we analyze the behavior of the
proposed procedures in terms of the number of iterations
required for convergence. To this end, we define the Log-
likelihood variation ∆L

(h)
1 as a function of the iteration index,

say h, as

∆L
(h)
1 =

∣∣∣∣∣L(h)
1 (µ̂, M̂, α̂)− L(h−1)

1 (µ̂, M̂, α̂)

L
(h)
1 (µ̂, M̂, α̂)

∣∣∣∣∣ . (33)

In this analysis, two different cases are considered with
abundances’ sums of 0.7 and 0.9 (as in Table II), respectively.
In Figure 4, we plot the average values of (33) evaluated
over 100 Monte Carlo (MC) independent trials for both the
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Fig. 2: Cooke City scene of the RIT dataset in RGB representation combining bands 15, 8, and 3 respectively. W1, W2 and
W3 represent the three test windows used to perform the multiple sub-pixel target analysis described in the following sections.
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Fig. 3: Targets spectral signatures of RIT dataset.

heuristic and the constrained approaches. From Figure 4, it
is clear that for the heuristic algorithm the Log-likelihood
variation settles at an approximately constant value. In fact,
after approximately 4 iterations, ∆L

(h)
1 varies around 10−3.

TABLE I: Execution times for the heuristic and constrained
approaches.

Heuristic Solution Constrained Solution
4 iterations 0.017 s 3.965 s
15 iterations 0.065 s 16.102 s

Contrarily, the constrained method requires more than 20
iterations to reaches a constant value below 10−15 for ∆L

(h)
1 .

Interestingly, both algorithms share the same behavior in
terms of convergence at the initial iteration values. For further
details about the convergence of these algorithms, the reader
is referred to the end of Section IV, where merits and
drawbacks of the proposed solutions are discussed. In the
following, we will set the maximum number of iterations as
Niter = 15 which is sufficient to obtain ∆L

(h)
1 < 10−2 for4

both heuristic and constrained approaches. Finally, in Table I,
we show the execution times for a number of iterations leading
to approximately the same log-likelihood variation (around
10−3), namely 4 iterations, and for Niter = 15. These values
have been obtained by using an Intel(R) Core(TM) i7-7500U
coupled with Windows 10 (64 bits) and MATLAB R2019b.
As expected, the heuristic approach is less time-demanding
than the constrained solution but its approaching to a local
stationary point is slower than the constrained algorithm.

In Figure 5(a) we plot the true abundance’s configurations
specified in Table II while in Figure 5(b) and Figure 5(c) we
plot the Root Mean Square (RMS) value of the estimated
abundances, averaged over 1000 MC trials, for both the
heuristic and the constrained approaches, respectively. It is
immediately evident that the estimate trends of the heuristic
and the constrained methods are very similar. Both methods,
in fact, for low concentrations of targets’ abundances, i.e.,

4Notice that 10−3 is approximately the plateau level for the heuristic
algorithm mentioned before.
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TABLE II: Abundances for different simulated pixel test
cases. α2c, α2b, and α3 are the abundances referred to the
endmembers V2c, V2b, and V3, respectively.

(α2c, α2b, α3) abundances’ background’s
sum abundance

(0.00, 0.00, 0) 0.00 1.00
(0.31, 0.01, 0) 0.32 0.68
(0.32, 0.02, 0) 0.34 0.66
(0.33, 0.03, 0) 0.36 0.64
(0.34, 0.04, 0) 0.38 0.62
(0.35, 0.05, 0) 0.40 0.60
(0.40, 0.10, 0) 0.50 0.50
(0.45, 0.15, 0) 0.60 0.40
(0.50, 0.20, 0) 0.70 0.30
(0.55, 0.25, 0) 0.80 0.20
(0.60, 0.30, 0) 0.90 0.10
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Fig. 4: Log-likelihood mean variation versus the iteration
number over 100 MC independent trials.

high background concentration, provide estimate values that
differ considerably from the true ones. This behavior can be
explained if we look at the Table II, where when abundance
sum is less than 0.50, the single endmembers’ abundances, i.e.,
α2c, α2b, and α3, are less than the background concentration
and represent a very challenge situation. On the contrary,
we notice that for abundances’ sum greater than 0.50, we
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Fig. 5: RMS value of estimated abundances for the heuristic
and constrained approaches over 1000 MC trials and for
different background intervals.

come up with reasonable estimates of each target’s abundance.
Specifically, when abundance’s sum is greater than or equal
to 0.80, the estimated values are very close to the true values.
In these configurations, the background’s concentration is less
than each abundances’ value.

A more accurate analysis of the abundances’ estimates
obtained for both constrained and heuristic algorithms is
performed in terms of RMS Error (RMSE), which is shown
in Figure 6. As reasonable to expect, the RMSE trend is the
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Fig. 6: RMSE value for heuristic and constrained approach
computer for 1000 MC trials.

same for both algorithms. Specifically, from 0.32 to 0.50 of the
sum abundances, the RMSE is almost constant and it presents
the higher values. In this interval we note that the RMSE of
heuristic approach is slightly less than that of the constrained
one. For abundance’ sum of 0.5, the RMSE begins to decrease
linearly, confirming that estimated values are closer to the true
ones. In this case the constrained approach provides better
estimation performance than the heuristic method.

Figure 7 shows the detection probability Pd evaluated using
a false alarm probability Pfa = 10−3 and 1000 MC trials.
From this figure, it turns out that the Pd values of the heuristic
approach are higher than those of the constrained approach
in the interval of abundances less than or equal to 0.5. This
trend, in accordance with what has already been said for the
RMSE, can be due to better estimated values. For abundances’
sum greater than 0.5, the detection probabilities are greater
than 0.9 for both approaches. Particularly, we obtain the
maximum value for the detection probability at 0.6 and 0.7
of abundance’s sum for the constrained and the heuristic
approaches, respectively.
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Fig. 7: Detection probability computed for Pfa = 10−3 and
for 1000 MC independent trials.

B. Results on real data

In this section, the performance of the proposed architec-
tures is assessed through the real RIT dataset. This analysis
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Fig. 8: Spectral reflectance of target V3 located at pixel P3 ≡
(282, 186). Blue dots indicate the considered spectral samples
to avoid water absorption and low SNR bands.

allows us to quantify the robustness of the proposed detectors
in the presence of model mismatches due to the fact that real
data do not exactly match the design assumptions.

At first, we assess the performance in the case of a single
sub-pixel target. To this aim, we consider a single signature
and use Kelly’s GLRT [14], the Adaptive Matched Filter
(AMF) [24], the Adaptive Coherence Estimator (ACE) [25],
[26], and the ACUTE detector, recently proposed in [12], as
competitors. Next, the detection performance for multiple sub-
pixel targets is analyzed.

It is important to highlight that no specific pre-processing
has been applied to the real RIT dataset. Finally, for numerical
reasons, we scale the reflectance spectral signature (shown in
Figure 3) by a factor of 100.

1) Single sub-pixel target detection
The objective of this subsection is to compare the per-

formance of the heuristic and constrained detectors with the
ACUTE detector [12]. To this end, we use the entire RIT
dataset and as target of interest we consider V3 only. The
choice of the target V3 is dictated by the fact that it is the most
challenging in terms of false alarms, as shown in [12]. The V3

target, as indicated by the information related to the dataset,
has pixel coordinates: P3 ≡ (282, 186). Figure 8 shows the
spectral reflectance for this target pixel.

In order to make a comparable performance analysis with
the ACUTE detector, the spectral matrix is composed of only
the spectral signature of target V3: T ≡ t3 ∈ R116×1.

In Table III, we report the abundance’s estimate relative

TABLE III: Abundances estimation of target V3 at pixel P3 ≡
(282, 186), for different background window size.

K AMF ACUTE Heuristic Constrained
15× 15 0.141 0.003 0.100 0.051
25× 25 0.270 0.039 0.100 0.051
55× 55 0.243 0.142 0.140 0.136
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TABLE IV: Performance comparison between ACUTE,
Kelly’s GLRT, AMF, ACE, and the proposed detectors for
K = 55× 55 in terms of false alarm rate and for target V3 of
RIT dataset.

Detector False Alarm Percentage
Kelly’s GLRT 15.977%

AMF 16.272%
ACE 10.514%

ACUTE 6.728%
Heuristic 4.453%

Constrained 4.483%

to the target V3 for all the considered algorithms.5 These
results are obtained by applying three background window
sizes, namely, 15 × 15, 25 × 25, and 55 × 55 pixels around
the PUT; moreover, given the PUT, data for the background
estimation are selected excluding the pixels belonging to a
3× 3 window centered on the PUT that might contain target
signatures. We note that a small background window size,
such as 15×15 or 25×25, results in low abundance estimates
of the target, whereas the 55 × 55 window returns a higher
abundance’s estimation as well as comparable abundances
between these detectors. For this reason, in what follows, we
select a background window of 55× 55 pixels.

The detection performance is assessed in terms of false
alarm rate.6 Table IV shows the false alarm rate achieved for
the three detectors. From this analysis, we note that the false
alarm rate of the heuristic and the constrained detectors are
almost the same and both lower than that of the considered
competitors.

2) Multiple sub-pixel targets detection
In this subsection, we consider the target V2, a multiple

target case as it is represented by the two spectral signatures:
the cabin target V2c (with signature t2c) and the back target
V2b (with signature t2b). Since for this scenario the ACUTE
detector cannot be used, we will focus only on the results
obtained through the heuristic and the constrained detectors
and we use the ground truth from the dataset. As indicated by
data description, the V2 target is located at pixel coordinates
P2 ≡ (353, 156).

At first, we focus on the abundances’ estimation for this
pixel P2. In this analysis, we consider two different config-
urations for the spectral matrix. Specifically, we take into
account the spectral matrix already defined in the simulated
scenario, i.e., T = [t2c, t2b, t3] ∈ R116×3, and the spectral
matrix made by the two spectral signatures of the V2 target
only, i.e., T̄ = [t2c, t2b] ∈ R116×2. Around the PUT, the
background windows of size 55×55 pixels and the 3×3 pixels
guard window are applied. Using both spectral matrices T̄ and
T, and inspecting the target abundance estimates for t2c and

5Notice that the estimates provided by Kelly’s GLRT, AMF, and ACE share
the same value.

6Specifically, we repeat the same analysis conducted in [12], where the
false alarm rate is evaluated as the number of no target pixels having their
detector’s statistic strictly higher than the one calculated using P3.

t2b, i.e., α̂2c and α̂2b, respectively, we obtain low values for
both algorithms. In particular, with focus on the V2c target,
the heuristic approach returns α̂2c ≈ 0.094, while the value
obtained by means of the constrained approach is α̂2c ≈ 0.024.
As for target V2b, the estimated abundance is α̂2b ≈ 0.006 for
the heuristic approach and zero for the constrained one. Even
though the true abundance’s values are not given in the dataset,
the estimated abundances related to P2 are low in spite of the
claimed presence of V2 in that pixel. This situation is probably
due to possible mismatches between the real target signature
and the presumed one.

In order to evaluate the detection performance in a multi-
ple sub-pixel scenario, we consider the three test windows
shown in Figure 2, denoted by W1, W2, and W3, and of
size 21 × 21. Such windows are representative of different
scenarios. Specifically, window W1 is exactly centered where
is located V2 target, i.e, PW1

≡ P2 ≡ (353, 156), and is
characterized by a mixed presence of vegetation and anthropic
elements, such as roads, houses, and buildings. The second
window, namely W2, is centered on pixel PW2 ≡ (275, 180)
and it mainly encloses an urban area. Finally, the W3 window,
centered on pixel PW3

≡ (200, 170), contains low vegetation.
Given the most uniform coverage of W3, we assume that the
pixels of this window represent background only. Therefore,
we set the detection threshold over W3 with Pfa = 10−2.
Specifically, the threshold value is estimated for each spectral
matrix configuration, i.e., T̄ and T, and both approaches. Table
V summarizes the false alarm rates computed over the other
two windows, namely, W1 and W2. It is immediately evident
that the false alarm rates for the heuristic and constrained
approaches are of the same order for each test window.
Specifically, regardless of the spectral matrix applied, the false
alarm rate is about 1% for W1 window and is about 6%
for the W2 window. Notice that for the selected thresholds,
target V2, which is present in W1, would not be detected. On
the contrary, target V3, located at pixel P3 ≡ (282, 186), is
within the W2 window and a detection is obtained in its 3 ×
3 pixels guard window, specifically at pixel with coordinates
(282, 185). Finally, it is worth noticing that the high number
of false alarms in W2 might be due to the presence of several
anthropic elements.

To further investigate the behavior of the proposed detectors,
we fictitiously introduce the V2 target within a real pixel
of the RIT dataset. Specifically, we identify a background
pixel that corresponds to P ′2 ≡ (240, 155), and according
to the replacement model, we insert multi-target V2 into the
real pixel. Specifically, we denote by yF (αn) the spectral

TABLE V: False alarm rate for both Heuristic and Constrained
approaches over W1 and W2 windows applying two configu-
rations of the spectral matrix.

Window T̄ T

W1
Heuristic: 0.907% Heuristic: 1.133%

Constrained: 1.133% Constrained: 1.133%

W2
Heuristic: 5.895% Heuristic: 6.122%

Constrained: 6.122% Constrained: 6.122%
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Fig. 9: Spectral reflectance normalized to the maximum value
of the considered 116 spectral samples of filled pixel P ′2 ≡
(240, 155). The filling strategy is applied according (34) and
the background-target concentrations listed in Table VI.

reflectance values of the filled pixel, with n indicating a
generic filling configuration corresponding to background val-
ues ranging from 0.6 to 0.1, and we define it as

yF (αn) = [t2c, t2b]αn + (1−αTn1)yRIT , (34)

where yRIT is the pixel reflectance of the RIT dataset, and
αn = [α2c, α2b]

T with α2c and α2b the abundances’ values
for V2c and V2b, respectively.

Particularly, we consider multiple configurations of
background-target concentrations as shown by the values of
αn in Table VI: the concentrations of interest are set for back-
ground values from 0.6 to 0.1 and correspond to a cumulative
target abundance in between 0.4 and 0.9, respectively. Figure
9 shows the spectral reflectance of the filled pixel P ′2 for the
different configurations of background-target concentrations.

Therefore, we process the filled pixel P ′2 in all the con-
sidered configurations for both the heuristic and constrained
detectors using the spectral libraries T̄ and T. In all these
analyses, we verified that the output of detector is above
its reference threshold, which means that the multiple sub-
pixel target V2 is correctly detected. Furthermore, Table VI
shows the estimates of the concentrations of each component
of the target V2, i.e., α̂2c and α̂2b. From the table, we observe
estimates for both the heuristic and constrained approaches
very close to the true abundance values, especially for low
background values. It is also important to remember that when
using the three signatures’ spectral matrix, also the abundance
estimate of the third endmember, i.e., t3, is provided. In this
case, the values of α̂3 are zero or negligible, as expected.
Furthermore, the greater spectral library seems to not influence
the estimation performance, at least for the analysed cases,
obtaining results comparable to those of the two signatures’
spectral matrix.

Finally, we conclude the assessment by summarizing the
merits and drawbacks of the proposed methods. Starting
from the computational requirements, the constrained method
is more time-demanding since it requires to solve equation
system (32) whereas the heuristic approach leads to a quadratic

equation that admits easy closed-form solutions. This aspect
is corroborated by the computation times measured in Sub-
section IV-A. However, the convergence curves highlight that,
although both algorithms share the same behavior at the initial
iteration values, the heuristic method is not guaranteed to
approach the local stationary point as fast as the constrained
solution due to the presence of a floor related to the likelihood
variation. Nevertheless, both algorithms do not guarantee the
convergence to the global stationary point. As for the detection
performance, both methods share almost the same number
of false alarms, whereas the heuristic detector returns Pd
values higher than those related to the constrained detector
for sum abundances values lower than about 0.5. Notice also
that the transition from low to high Pd values is sharper for
the constrained method. From the estimation standpoint, the
former returns more reliable values for the abundances than
the latter and, more importantly, it is less inclined to estimate
false abundances unlike the heuristic method that provides
nonzero abundances for nonexistent signatures.

V. CONCLUSIONS

In this paper, we have addressed the detection of sub-
pixel targets in hyperspectral images. As first step, we have
introduced a generalization of the so-called replacement model
that includes multiple spectral signatures with a constraint on
the sum of their abundances. It is important to underline that
such a model is different from the approximate additive model
that is used by most of conventional algorithms. Then, under
this generalized model, we have formulated the endmember
detection problem as a binary hypothesis test and applied
GLRT-like design criteria. Specifically, due to the intractable
mathematics, we have suitably modified the maximum likeli-
hood approach to come up with cyclic estimation procedures.
The first procedure heuristically incorporates the constraint
on the abundances whereas the second approach exploits the
Lagrange multiplier method. Finally, we have assessed their
detection and estimation performance over synthetic and real-
recorded data. As term of comparison, we have considered the
so-called ACUTE detector proposed in [12], Kelly’s GLRT,
AMF, and ACE that, however, assume the presence of only
one spectral signature in the pixel under test. The numerical
examples have highlighted the effectiveness of both the pro-
posed approaches with the detector based on the Lagrange
multipliers overcoming the other counterparts.

Future research directions might encompass the design of
detectors that assume the vector of the fill factors α is no
longer deterministic but obeys a preassigned distribution based
upon a priori information. In addition, model (1) can be further
extended by considering adjacent pixels that could share some
endmember signatures and, hence, can be jointly processed to
detect such signatures.
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TABLE VI: Abundances estimation over filled pixel P ′2 for different configurations of background-target concentrations defined
according to (34). The T̄ and T spectral matrices are applied.

αn = [α2c, α2b]
T (α̂2c, α̂2b) (α̂2c, α̂2b, α̂3)

α1 = [0.35, 0.05]T
Heuristic (0.237, 0.123) (0.289, 0.038, 0.022)

Constrained (0.238, 0.114) (0.292, 0.065, 0.000)

α2 = [0.40, 0.10]T
Heuristic (0.328, 0.132) (0.263, 0.148, 0.039)

Constrained (0.279, 0.181) (0.334, 0.130, 0.000)

α3 = [0.45, 0.15]T
Heuristic (0.367, 0.203) (0.269, 0.196, 0.055)

Constrained (0.298, 0.270) (0.379, 0.192, 0.000)

α4 = [0.50, 0.20]T
Heuristic (0.368, 0.312) (0.398, 0.285, 0.000)

Constrained (0.359, 0.317) (0.474, 0.204, 0.000)

α5 = [0.55, 0.25]T
Heuristic (0.465, 0.315) (0.495, 0.267, 0.018)

Constrained (0.447, 0.336) (0.561, 0.215, 0.007)

α6 = [0.60, 0.30]T
Heuristic (0.536, 0.354) (0.580, 0.272, 0.038)

Constrained (0.536, 0.355) (0.640, 0.223, 0.025)

APPENDIX A
PROOF OF (17)

Let us consider the matrix argument of the determinant in
(16) and observe that it can be written as(

1

A
x− µ̂

)(
1

A
x− µ̂

)T
+

K∑
k=1

(zk − µ̂) (zk − µ̂)
T (35)

=
1

A2
xxT + (K + 1) µ̂µ̂T −

(
1

A
x + z̃

)
µ̂T

− µ̂
(

1

A
x + z̃

)T
+ ZZT (36)

=
1

A2
xxT − (K + 1) µ̂µ̂T + ZZT (37)

=
1

A2
xxT − 1

(K + 1)

(
1

A
x + z̃

)(
1

A
x + z̃

)T
+ ZZT

(38)

=
1
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K + 1
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A
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+
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K
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, (41)

where

S1 =

(
ZZT − 1

K + 1
z̃ z̃T

)
− 1

K(K + 1)
z̃ z̃T . (42)

Exploiting the fact that det(I + AB) = det(I + BA), A ∈
CN×M and B ∈ CM×N , we can write

det

[
S1 +

K

K + 1

(
1

A
x− 1

K
z̃
)(

1

A
x− 1

K
z̃
)T]

= det (S1)

× det
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K
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S−1/21
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]
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1 +

K
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(
1
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x− 1
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S−11

(
1

A
x− 1

K
z̃
)]
(43)

and the proof is complete.
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