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Abstract—In this paper, we deal with the problem of adaptive
radar detection of point-like targets in presence of noise with
unknown spectral properties. As customary, we assume that a
set of data sharing the same properties of the noise in the cell
under test is available. To cope with a limited number of training
data, a Bayesian framework is adopted at the design stage. In
order to come up with detectors with good rejection capabilities,
the possible presence of a fictitious signal under the null hypoth-
esis is modeled probabilistically, as opposite to the conventional
ABORT-like approach. Several detectors are devised for the
problem at hand, with different complexities. The performance
assessment, conducted by means of Monte Carlo simulations, re-
veals that a good trade-off between detection power and selectivity
can be achieved, even assuming a limited number of training data.

Index Terms—Adaptive detection, Bayesian estimation, orthog-
onal rejection.

I. INTRODUCTION

R ESEARCH activity in the area of adaptive radar detec-
tion of targets embedded in Gaussian or non-Gaussian

disturbance has received a great attention in the last decades.
Most of the published works follow the lead of the seminal
paper by Kelly [1], where the generalized likelihood ratio test
(GLRT) is used to conceive an adaptive decision scheme ca-
pable of detecting coherent pulse trains in presence of Gaussian
disturbance with unknown spectral properties. Other classical
examples of detection algorithms include the adaptive matched
filter (AMF) [2] and the adaptive normalized matched filter [3],
also known as adaptive coherence estimator [4].More generally,
such problem has been extensively studied and a large number
of solutions are available in the open literature, see [5] for a list
of references.
Since most of the previously quoted solutions suppose exact

knowledge of the signal array response vector, they may experi-
ence a performance degradation when the actual steering vector
is not aligned with the nominal one. Therefore, it is of interest
to take into account possible steering vector mismatches at the
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design stage of the detector. To this end, coherent returns can be
roughly classified into mainlobe and sidelobe signals [6], [7]
• a sidelobe signal (sidelobe interferer) is a coherent signal
from a “direction significantly different” to that in which
the radar system is steered: it can be due, for example,
to a strong target located in a sidelobe direction or to the
retransmission of a modulated signal (for the purpose of
degrading the reception of the signal of interest);

• a mainlobe target is instead a coherent signal backscattered
from the nominal direction or a direction slightly different
from the nominal one as a consequence of an imperfect
modeling of the nominal steering vector, where the mis-
match may be due to multipath propagation, array calibra-
tion uncertainties, beampointing errors, etc.

Thus, the effectiveness of the detector depends on its ability to
detect the presence of what is classified as mainlobe target, lim-
iting the number of “false alarms” due to sidelobe interferers.
An effective approach to deal with this problem has been in-

troduced in [6], where the adaptive beamformer orthogonal re-
jection test (ABORT) is proposed; such a detector takes into ac-
count rejection capabilities at the design stage. The idea of the
ABORT is to modify the null hypothesis, which usually states
that data under test contains noise only, so that it possibly con-
tains a fictitious signal which, in some way, is orthogonal to the
assumed target’s signature. Doing so, if a mismatched signal
is present, the detector will be less inclined to declare a detec-
tion, as the null hypothesis will be more plausible than in the
case where, under the null hypothesis, the test vector contains
noise only. The extension of this idea to the case of signals be-
longing to known subspaces of the observables has been dealt
with in [7], as a possible means to maintain an acceptable de-
tection loss for slightly mismatched mainlobe targets. It is im-
portant to observe that in the detector proposed in [6] the ficti-
tious signal is assumed to be orthogonal to the nominal steering
vector in the “quasi-whitened” space, i.e., after whitening of the
data through the sample covariance matrix computed over the
secondary data set. The same approach is also proposed in [7],
where the quasi-whitening transformation is presented as a way
to face with the absence of knowledge about the interference
subspace. Following the above mentioned approach, in [8] it is
assumed that the useful and the fictitious signals are orthogonal
in the “truly” whitened observation space, i.e., after whitening
with the true noise covariance matrix. The resulting detector,
called the whitened-ABORT (W-ABORT), exhibits good selec-
tivity properties at the price of a performance loss for matched
signals.
Mainlobe and/or sidelobe targets have also been represented

using the tools of subspace detection in [9]–[13] or constraining
the corresponding steering vector to belong to a cone [14]–[16].

.



Another class of receivers designed to deal with the problem
of steering vector mismatches is that of the so-called two-stage
detectors, i.e., detection architectures composed by cascading
two detectors with different behaviors: the overall one declares
the presence of a target if the cell under test survive both de-
tection thresholdings, see [17]–[23]. Furthermore, the detector
proposed in [24] is a special case of the more general class of
tunable (possibly space-time) detectors which have been shown
to be an effective means to attack detection of mainlobe targets
or rejection of sidelobe ones [24], [25].
Most of the above papers rely on the assumption that a set

of secondary data, namely radar returns free of signals com-
ponents, but sharing certain properties of the noise in the data
under test, is available. Such secondary data are usually used
to come up with fully-adaptive detection schemes. However, it
has been evidenced that the homogeneous assumption for the
secondary data is an idealized situation [26], [27], and that non-
homogeneous environments are more commonly encountered.
This fact calls, in turn, for the necessity to design adaptive al-
gorithms capable of working with a number of secondary data
as small as possible. To this aim, the tools of Bayesian estima-
tion can be adopted, which allow to obtain general and flexible
models, without very restrictive assumptions [28]–[35]; how-
ever, the quoted papers mainly deal with the problem of mod-
eling the noise characteristics rather than the signal ones. [36] is
a first attempt to introduce randomness in the fictitious signal.
In this paper, we use Bayesian statistics to address the

problem of adaptive radar detection of point-like targets under
steering vector mismatches. More in detail, we extend the
ABORT framework of [6], [8] to the case where also the
useful and the fictitious signals (in addition to the disturbance
covariance matrix) are modeled as random quantities with
some preassigned a priori distribution. We treat both the case
where the useful and the interfering signals are orthogonal in
the original space and the case where they are orthogonal in
the whitened observation space. We propose ad hoc detection
strategies based upon the likelihood ratio principle in which
the unknown quantities are estimated according to several
criteria. The performance assessment, carried out by Monte
Carlo simulation, shows that some of the proposed solutions
can provide good selectivity properties while retaining an
optimal performance for matched signals. Remarkably, they
are especially attractive when the number of secondary data is
very small and the conventional detectors cannot be used.
The remainder of the paper is organized as follows.

Section II is devoted to the problem formulation while
Section III addresses the design of the proposed detectors.
Section IV presents the performance assessment and, finally,
Section V contains the conclusions of the work.

II. PROBLEM FORMULATION

We assume the radar is equipped with a linear array formed
by antennas that collect samples from the range cell
under test (CUT). The signal received from the CUT could be
noise only or a noisy version of the signal backscattered by the
target that wemodel as a coherent target echo. As customary, we
suppose that a set of secondary data, free of signal components,

but sharing the same statistical properties of the remaining dis-
turbance in the CUT, is available. Secondary data are usually
chosen as range cells surrounding the CUT in order to preserve
the homogeneity assumption.
We denote by , , the vector con-

taining the returns from the CUT and by ,
, the secondary data. The problem of detecting the pos-

sible presence of a coherent return from a given cell (in range,
doppler, and azimuth) is formulated in terms of the following
hypothesis testing problem

(1)

where
• stands for the signal of interest (known
steering vector of the target) and denotes its amplitude,
modeled as a complex normal random variable, i.e.,

, with possibly very large.
• and are conditionally independent and iden-
tically distributed random vectors drawn from a complex
Gaussian distribution with zero mean and unknown, pos-
itive definite covariance matrix . More pre-
cisely, . As to , it is assumed to
follow a (complex) inverse Wishart distribution with (

) degrees of freedom and mean , i.e.,

(2)

where and denote the determinant and the ex-
ponential of the trace of the matrix between braces, respec-
tively, and is given by

with denoting the Euler’s Gamma function.
Note that an inverse Wishart distribution for is a con-
jugate distribution with respect to the Gaussian model for

, which will make derivation of posterior distributions
relatively easy. Such a choice is also a convenient way to
introduce colored loading in a Bayesian framework. In the
following we assume however that , i.e., a non-
informative prior, which corresponds to diagonal loading
(DL). This has the advantage of not requiring knowledge
of the mean of , and at the same time DL is known to be
very effective in low sample support [37]. For brevity we
will use the notation .

• As anticipated in Section I, is introduced to enhance the
selectivity of the detector. In fact, it makes the detector
less inclined to declare the presence of the nominal signal
( hypothesis) in case of mismatches. is modeled as an
unknown random vector taking on values either orthogonal
to ( ) or conditionally orthogonal to in the



whitened space (i.e., ), where denotes
conjugate transpose.

III. DETECTOR DESIGNS

In this section, we propose several detectors that imple-
ment a ratio of conditional likelihoods where the conditioning
(random) quantities are replaced by proper Bayesian estimates.
We consider both orthogonal to and orthogonal to

; for the former case several alternatives are devised.

A. Case of Orthogonal to

Let us first consider the problem under and denote by
an matrix whose columns form an orthonormal
basis for the subspace orthogonal to , i.e.,
and , with the identity matrix of order . Since

, it follows that for some . The
joint likelihood function of , is thus given by

(3)

where .
We assume that follows a Bernoulli-Gaussian distribution

i.e., its probability density function (pdf) is given by

(4)
where is the Euclidean norm, is the Dirac delta,
stands for the probability that , and is possibly very
large. We denote this distribution as .
An equivalent and possibly more convenient way to represent
is to write where is a binary variable,

and . From (4), follows a Bernoulli distri-
bution with parameter , i.e., : we denote
this distribution as . With some slight abuse, we
will write , keeping in mind that is bi-
nary. Moreover, is independent of : the latter is Gaussian
distributed, with mean zero and covariance matrix ,
i.e., . We will indifferently use the
parametrization in terms of or in terms of , depending on
which one is more convenient.
We will investigate three approaches. In the first one, joint

estimation of (or and ) and will be conducted, while in a
second approach, we will marginalize with respect to , leaving
estimation of only. The third method entails an approach à la
AMF where detection is carried out on only, assuming is
known: an estimate of based on only is then substituted
for in the detection statistic.

1) Joint Estimation of and : First observe that under
the joint posterior distribution of , , and is given by

(5)

where denotes proportional to.
Let us now derive the conditional posterior distributions of ,
, and . Since

(6)

with
(7a)

(7b)

It ensues that the posterior distribution of is
Gaussian

(8)
Similarly

(9)

which implies that
(10)

with given in (11), shown at the bottom
of the page. Finally, we have

(12)

with

(13)
This conditional posterior distribution is a complex inverse
Wishart distribution with degrees of freedom and
parameter matrix .

(11)



Therefore, the conditional distributions ,
, and all belong to known

families and are easy to simulate. This suggests the use of
a Gibbs sampler which enables one to obtain the minimum
mean-square error (MMSE) estimates of , , and . The
Gibbs sampler is summarized in Table I, where it is shown
how to sample , , and , thus obtaining the sequences ,

, and , respectively, using the previously introduced
posterior distributions. The MMSE estimates can be obtained
by averaging the samples of and
after the so-called burning period of duration , i.e.,

and

Under , the likelihood function is given by

(14)

The posterior distribution of and is then

(15)

Since

(16)

it follows that

TABLE I
GIBBS SAMPLER FOR ESTIMATION OF , , AND

(17)
Accordingly, it is straightforward to show that

(18)

where
(19)

The above posterior distributions allow one to obtain theMMSE
estimates of , under by resorting again to a Gibbs sam-
pler; accordingly, the corresponding estimates are denoted by

and .
Based on the above computed estimates, the test is given by

(20)

where is a threshold to be set according to the desired prob-
ability of false alarm ( ). This detector will be referred to in
the following as one-step detector with rejection in the orthog-
onal initial space (1S-OIS).

2) Marginalizing With Respect to : An alternative approach
consists in marginalizing with respect to the covariance matrix,
so as to leave estimation of only under and only under

. To be more specific, let us marginalize the likelihood func-
tion in (3) with respect to ultimately obtaining (21), shown at
the bottom of the page, where is given by (19). A straightfor-
ward calculation shows that

(22)

(21)



with . Therefore,

(23)

with

(24)

The posterior distribution of , is thus

(25)

It ensues that the conditional posterior distribution of
is still Bernoulli

(26)

with

(27a)

(27b)

(27c)

As for the conditional posterior distribution of , we have from
(25)

(28)

As expected, when , follows its prior Gaussian
distribution. However, when , one has a product of
Gaussian and Student distributions. In order to obtain the
MMSE estimates of and , one could again investigate a
Gibbs sampler. For the sampling of , we suggest a
Metropolis-Hastings [38] approach with a proposal distribution
that would be a Student distribution, which amounts, in fact, to
ignoring the exponential term in (28).
Let us now turn to the hypothesis. From (14), we can infer

that

(29)

with given by (19),

(30a)

(30b)

and .
The posterior distribution of is thus

(31)

If one assumes a flat prior for , i.e., , then
follows a Student distribution and the MMSE estimate of is
simply . On the other hand, with a Gaussian prior for , the
posterior is a product of Gaussian and Student distributions. The
MMSE estimator cannot be obtained in closed-form butMarkov
chain Monte Carlo (MCMC) methods have to be looked for,
with a Metropolis-Hastings strategy to draw samples from (31).
For the sake of simplicity, we assume that is very large and
we simply approximate the MMSE estimate of by .
Finally, the above estimates can be used in the following test

statistic

(32)

where indicates equivalence of the statistics for the hypoth-
esis testing problem, and the last line follows from (21) and (29).
This detector will be referred to in the following as marginalized
one-step detector with rejection in the orthogonal initial space
(M-1S-OIS).

3) A Two-Step Approach: A third possibility which is worth
investigating is a 2-step approach, where is estimated from
the secondary data only. This estimate is then substituted
for in a test statistic build on only. More precisely, since

, it
follows that the MMSE estimate of from is simply

(33)

which corresponds to a diagonally loaded version of the sample
covariance matrix. Let us consider the posterior distribution of

. From

using (4) and (6), it follows that

(34)



where

(35a)

(35b)

Therefore, follows a Bernoulli-Gaussian distribution,
i.e.,

(36)

With given by (37), shown at the bottom of the page. As a
consequence, the MMSE estimate of , conditioned on , is

(38)

The MMSE estimate of (conditioned on ) is, see (17)

(39)

These estimates can now be used to construct the following test
statistic

(40)

In contrast to the two previous methods, no MCMC simulation
method is required here and the resulting detection scheme re-
mains rather simple. This detector will be referred to in the fol-
lowing as two-step detector with rejection in the orthogonal ini-
tial space (2S-OIS).

B. Case of Orthogonal to
Let us now consider the alternative hypothesis that is or-

thogonal to in thewhitened space. Since the subspace spanned
by is the orthogonal complement of the one spanned
by , it follows that where . This
case is going to differ from the previous one since, as will be
shown shortly: the likelihood function under will include
terms of the form , i.e., a combination of
terms that appear in both Wishart and inverse Wishart distribu-
tions, thus precluding the implementation of a fully Bayesian
approach based on the whole data , .

Similarly to the previous section, we again assume that fol-
lows a Bernoulli-Gaussian distribution. Under , the likeli-
hood of is thus given by

with the prior distributions still given by (2) and (4). The poste-
rior distribution of , is hence

(41)

with given by (19). In this case, we have

(42)

with

(43a)

(43b)

The conditional posterior distribution of is thus

(44)

which is recognized as a Bernoulli-Gaussian distribution, i.e.,

(45)

with now

(46)

(37)



As for the conditional posterior distribution of , one has

(47)

In contrast to the case , the posterior distribution
does no longer belong to a known family (due to

the terms in and in the trace) and therefore it does not
seem feasible to draw samples from it. Accordingly, marginal-
ization with respect to is not feasible.
In order to circumvent this problem, we again turn to a 2-step

approach à la AMF, i.e., i) assume is known and devise a test
from only and ii) replace by its MMSE estimate from the
training samples. The latter is still given by (33).
Let us now turn to the first step which consists of deriving

a test based on only, assuming that is known. Under ,
is given by (44). It follows that the MMSE estimate

of , which we denote as , is simply

(48)

Under , recalling that , the posterior distri-
bution of is still given by (17) and consequently the MMSE
of is simply

(49)

For the sake of simplicity, we will set in the pre-
vious equation, which amounts to a flat prior for . The decision
statistic takes the following form

(50)

We would like to emphasize that this last approach is quite
simple, as the MMSE estimate of (based on only) and the
MMSE estimates of or (conditioned on ) are given in
closed-form. This detector will be referred to in the following
as two-step detector with rejection in the orthogonal whitened
space (2S-OWS).

IV. PERFORMANCE ANALYSIS

The performance analysis is conducted by Monte Carlo sim-
ulation. We resort to independent trials to evaluate the
thresholds necessary to ensure a preassigned value of and
to independent trials to compute the probabilities to decide
for when a useful signal is present .
We consider a scenario with and . We

generate , as independent random vectors ruled by a com-
plex Gaussian distribution with zero mean and (deterministic)
covariance matrix , where the clutter covariance
matrix is Gaussian-shaped, namely it is Toeplitz with first row

TABLE II
MAIN PARAMETERS USED IN THE IMPLEMENTATION OF THE DETECTORS

and ; the power of

the thermal noise is , so that the clutter-to-noise ratio
(CNR) is 10 dB.
The steering vector of the target assumes a normalized

Doppler frequency , a velocity such that the target
competes with noise. The amplitude of the target is generated
as a complex normal random variable; the signal to noise ratio
is defined as

and simulation results are reported as a function of the SNR.
The thresholds of the detectors are set to guarantee a chosen
by considering a noise-only hypothesis ( ), since we

are interested in assessing the performance of the receivers in
terms of detection power (for matched steering vector) as well
as their selectivity (for mismatched steering vector). The values
of the main parameters used to implement the detectors are re-
ported in the Table II.
For comparison purposes we consider some natural competi-

tors for the problem at hand. Obvious references are the Kelly’s
detector [1] and the W-ABORT [8]. Furthermore, we consider
also a generalization of the W-ABORT, hereafter referred to as
TW-ABORT, which exhibits improved detection power vs se-
lectivity trade-off, provided its tuning parameter is chosen in
the appropriate range (see [36]).
The case is shown in Fig. 1 for two represen-

tative values of the parameter in its lower and higher region
(so as to assess the performance in the whole range omitting
redundant intermediate values). As mentioned, for the sake of
comparison we report also the Kelly’s detector, the W-ABORT,
and the TW-ABORT (with ).
From Fig. 1 it is apparent that the Bayesian detectors are gen-

erally very powerful with superior performance especially at
low to intermediate SNR; the 2S-OWS is always better than all
other competitors, including the Kelly’s detector even at high
SNR; the M-1S-OIS conversely shows a performance degrada-
tion, more severe for higher . The comparison confirms the
smaller loss of TW-ABORT with respect to the Kelly’s detector
compared to the W-ABORT.
Lower values of are critical since for the matrix
becomes singular hence all detectors involving such a matrix

cannot be computed; in fact, as approaches the perfor-
mances of the competitors severely degrade. Fig. 2 reports the

at the onset of the critical region, i.e., for and



Fig. 1. Probability of detection for . (a) ; (b) .

: it is apparent that, although the classical detec-
tors are still computable,1 their performance are not acceptable
when the number of secondary data is small. It is therefore quite
interesting that the performances of the proposed detectors are
conversely satisfactory also when a limited number of training
data is available, and show a certain robustness to variations of
.
To assess the selectivity of the proposed detectors, we simu-

lated a target with a mismatched steering vector having normal-
ized Doppler frequency , where (so the
matched case analyzed above is trivially obtained for ).
Fig. 3 reports the case : it is apparent that Bayesian
detectors, besides being very powerful, can also be more se-
lective than the Kelly’s detector; a clear ranking can be iden-
tified, with M-1S-OIS the most selective (among the proposed
detectors) and 2S-OWS the least selective, comparable to the
Kelly’s detector. In general, however, none of the detectors is as
selective as the W-ABORT. The TW-ABORT confirms an im-
proved power vs selectivity trade-off compared to W-ABORT
and Kelly’s detector. The relative performances for other values
of the parameters are similar, hence figures are omitted. For

and these considerations are confirmed,

1Just the Kelly’s detector and W-ABORT are reported in order not to burden
too much the figure.

Fig. 2. Probability of detection at the onset of the critical region, for
and ; .

Fig. 3. Probability of detection under mismatched conditions for
. (a) ; (b) .

except that the performance of the M-1S-OIS slightly worsens,
as shown in Fig. 4 (the curves for are very similar
hence omitted).
It is worth noticing that the superior detection power of the

2S-OWS is traded-off with less selectivity compared to the
Kelly’s detector, while the other proposed detectors are just



Fig. 4. Probability of detection under mismatched conditions for
and .

slightly worse in (compared to the 2S-OWS) but much
better in selectivity. As a whole, the analysis suggests that
a palette of different trade-offs is possible, with the class of
detectors based on the Bayesian approach exhibiting superior
performance compared to the classical approaches; this is
especially remarkable in case of a limited number of secondary
data, when non-Bayesian approaches fail.
We investigated also the sensitivity of the detectors to errors

in the parameters assumed for setting the threshold. In partic-
ular, we analyzed how the changes when assuming under

a covariance matrix different from the real one. In fact,
the superior performance of the proposed detectors could result,
in principle, from a trade-off with the constant false alarm rate
(CFAR) property, while the Kelly’s detector and theW-ABORT
are CFAR. To investigate this point, we set the threshold by
using , where denotes a chosen one-lag
correlation coefficient. Results for and are
shown in Fig. 5, where the value of the true one-lag correla-
tion of the clutter is reported in abscissa. It is apparent that the
proposed detectors are quasi-CFAR (with respect to the one-lag
correlation coefficient) for , with fairly limited
departure of the curves from the straight line in for
both sides of the mismatch, i.e., an assumed correlation higher
or lower than the true one, respectively. As reduces, this prop-
erty becomes weaker for all proposed detectors but for 1S-OIS,
which is somewhat more robust to these variations; the case

is reported in Fig. 6.
Finally, for the sake of completeness, some results in terms

of , selectivity, and sensitivity are reported in Fig. 7 for
the case , i.e., when the number of training data
is very limited. The simulations basically confirm the previous
considerations, except for some degradation in the “CFAR prop-
erty”, which as already said is traded-off for whenever con-
ventional approaches are not applicable.

V. CONCLUSIONS

In this paper, we have considered the problem of adaptive
radar detection of point-like targets in presence of noise with
unknown spectral properties. To cope with a limited number of

Fig. 5. under mismatched conditions for and . (a)
; (b) .

Fig. 6. under mismatched conditions for , and .

training data, a Bayesian framework has been adopted at the de-
sign stage, modeling the noise covariance matrix according to a
complex inverse Wishart distribution. In order to come up with
detectors with good rejection capabilities, the possible presence
of a fictitious signal under the null hypothesis has been modeled
probabilistically, as opposite to the conventional ABORT-like
approach. We have devised several detectors based on the ratio
of conditional distributions under the two hypothesis, where the



Fig. 7. Probability of detection and sensitivity analysis for and . (a) ; (b) ; (c) .

unknown random parameters are replaced by MMSE estimates
based on one-step or two-step procedures. Both the case or-
thogonal to and orthogonal to have been ad-
dressed, obtaining four new detectors with different complexity
and different behavior in terms of detection power vs selectivity
trade-off. Simulation results have shown that satisfactory per-
formance can be obtained even assuming a limited number of
training data. Thus, the proposed detectors seem good candi-
dates to conceive augmented schemes that also select training
data by discarding possible contaminated returns. The selec-
tion processing might be based on the results contained in [39]
or specifically designed within the Bayesian framework by fol-
lowing the lead of [40].
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