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Machine learning (ML) is a well-known subfield of artificial intelligence (AI) that aims
at developing algorithms and statistical models able to empower computer systems to
automatically adapt to a specific task through experience or learning from data [1]. ML
techniques have been demonstrating remarkable breakthroughs in the field of biomedical
research, especially in predictive analytics and classification tasks [2,3].

However, the success of ML in this domain has been accompanied by a challenge,
i.e., the inherent opaqueness of ML algorithms [4]. Indeed, despite their efficacy, ML
algorithms lack transparency in their decision-making processes and are often seen as black
boxes. This lack of transparency raises concerns, especially in critical domains, where
understanding the rationale behind machine decisions is important for fostering trust in
decision-making [5].

In this regard, the emergence of explainable artificial intelligence (xAI) techniques has
become a pivotal focus within this field. In particular, xAI methods strive to unveil the
internal mechanisms of the AI algorithms, aiming to shed light on the outcomes, predictions,
decisions, and recommendations generated by such models [6,7]. The primary objective is
to enhance the interpretability and transparency of machine decisions. This is of paramount
importance in medical applications, where such enhanced comprehension could have a
significant impact on clinicians’ final decision-making [8]. In this context, several xAI-based
approaches have been emerging in clinical applications, for example, rehabilitation systems
based on brain–computer interfaces [9], detection of neurological disorders [10], breast
cancers [11,12], and medical imaging analysis [13].

Furthermore, the escalating availability of medical and clinical data, collected from an
expanding network of interconnected biosensors within the Internet of Things (IoT) frame-
work, provides a rich source for training and refining ML models [14,15]. In addition, recent
advances in augmented techniques, i.e., generative adversarial networks (GANs), have
enhanced the decision-making capabilities of ML algorithms. Indeed, generative models
are able to produce synthetic samples, augmenting the training data, potentially addressing
issues related to data scarcity, and improving the generalization of models [16,17].

In this context, this topical collection includes ten papers focused on the latest advance-
ments in the field of explainable and augmented ML applied to biosignals and biomedical
images. Each of the ten original contributions accepted for publication has undergone a
rigorous review process by a minimum of two expert reviewers across at least two rounds
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of revision. These studies published in the current topical collection are briefly summarized
as follows:

In contribution 1, the authors developed a brain-inspired neural network to explore
the effect of mindfulness training on the electroencephalographic (EEG) function. In
particular, a spiking neural network (SNN) was employed to assess the neural patterns
generated over both spatial and temporal features derived from EEG data, which cap-
tured the neural dynamics linked to event-related potentials (ERPs). Furthermore, the
interpretability of the SNN model was also further investigated. Outcomes indicated that
SNN models provide valuable insights in distinguishing between different brain states in
response to specific tasks and stimuli, as well as tracking changes in brain states through
psychological interventions.

In contribution 2, a novel explainable analysis of potential biomarkers denoting tu-
morigenesis in non-small cell lung cancer is proposed based on detailed mathematical
formulation for mRNA, ncRNA, and mRNA–ncRNA regulators. Specifically, the authors
developed a system involving coupled-reaction partial differential equations to model
temporal gene expression profiles within a two-dimensional spatial domain, capturing
the transition states before converging to the stationary state. Experimental results
demonstrate that the mathematical gene-expression profile provides the most accurate fit
for the population abundance of these oncogenes.

In contribution 3, Vargas-Lopez et al. introduced an explainable machine learning
approach that employed statistical indexes and support vector machines (SVMs) to detect
stress in automobile drivers based on electromyographic (EMG) signals. The authors
investigated the efficacy of seventeen statistical time features and, based on the analysis
of the results, concluded that combining variance and standard deviation with a support
vector machine classifier utilizing a cubic kernel is an effective approach for detecting stress
events, achieving an AUC of 0.9.

In contribution 4, the authors conducted an extensive analysis of the most effective
methods for classifying the emotion of fear, encompassing a range of machine learning
methods such as decision trees, k-Nearest Neighbors, support vector machines, and ar-
tificial networks. In addition, xAI was also explored by means of Local Interpretable
Model-Agnostic Explanations in order to interpret and justify predictions in a human-
understandable manner. Experimental results showed classification performance, achieving
accuracy from 91.7% using to 93.5% using dimensionality reduction and SVM.

In contribution 5, Doborjeh et al. introduced an innovative methodology aimed at
enhancing the interpretability of a brain-inspired SNN for deep learning and knowledge
extraction. Their methodology focused on the learning process from real-time spatiotempo-
ral brain data in an incremental and online operational mode. The experimental results
show that by selecting a specific group of EEG features, the accuracy of EEG classification
could be enhanced to 92%, outperforming all-feature-based classification.

In contribution 6, a novel approach for assessing the degree of gait impairment in
Parkinson’s disease using a computer vision-based approach was proposed. In addition,
the interpretability of the feature values could be used by clinicians to support their
decision-making and provide insight into the model’s objective UPDRS rating estimation.

In contribution 7, the authors explored several xAI techniques such as GradCAM,
LIME, RISE, Squaregrid, and direct gradient approaches with the ultimate aim of further
explaining COVID-19 CT-Scan classifiers. Experimental results reported that VGG16
was the most affected by biases related to misleading artifacts, whereas DenseNet was
more robust against them. In addition, it was observed that even slight differences in
validation accuracies could lead to significant alterations in the explanation heatmaps for
DenseNet architectures.

In contribution 8, Usama et al. developed AI-based classifiers for classifying single-trial
error-related potentials (ErrPs) produced by twenty-five subjects with stroke. Specifically,
EEG recordings were partitioned into epochs (ErrPs and NonErrPs) and classified by means
of multi-layer perceptron based on temporal features or the entire epoch. Moreover, feature
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classification was also conducted using shrinkage LDA. The authors concluded that by
employing physiological brain potentials (ErrP and NonErrP) as input to the classifiers, it
may be possible to interpret the classifier outputs in the context of established physiological
research within this domain.

In contribution 9, Seven et al. proposed a novel pipeline for xAI imaging based on ra-
diomic features and Shapley values for explaining predictions achieved by complex models.
In particular, the authors conducted a retrospective analysis of data from glioma patients
and presented an explainable prediction model for identifying isocitrate dehydrogenase
mutations using radiomics data. Such a model could serve as a valuable tool in clinical
decision-making.

In contribution 10, the authors developed an interpretable diabetes detection system
using an xAI. To this end, the Pima Indian diabetes dataset was employed, and six ML
algorithms were implemented along with an ensemble classifier to diagnose the diabetes
disease. Global and local explanations were performed by means of the Shapley additive
explanations (SHAP). The results reported accuracy of 90% and an F1 score of 89% using a
five-fold cross-validation.

In summary, this topical collection has tackled numerous significant challenges in xAI
and has presented innovative computational methods with potential deployment in clinical
contexts. We would like to express our deepest gratitude to Sensors journal’s Managing
Team for their continuous support throughout the preparation of this collection. We greatly
thank all the contributing authors and the anonymous expert reviewers whose invaluable
efforts helped to select the submissions with the utmost quality.
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