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Abstract: The use of the advancements in memristor technology to construct chaotic maps has
garnered significant research attention in recent years. The combination of memristors and nonlinear
terms provides an effective approach to proposing novel maps. In this study, we have leveraged
memristors and sine terms to develop three-dimensional maps, capable of processing special fixed
points. Additionally, we have conducted an in depth study of a specific example (TDMM1 map)
to demonstrate its dynamics, feasibility, and application for lightweight encryption. Notably, our
general approach could be extended to develop higher-dimensional maps, including four- and five-
dimensional ones, thereby opening up the possibility to create numerous higher-dimensional maps.
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1. Introduction

A discrete map, also known as a discrete dynamical system, is a useful tool for the
analysis of the behavior of chemical reactions and the spread of diseases [1]. Discrete
maps can exhibit a variety of behaviors, including stability, periodicity, and chaos [2–5].
Fractional-order models and neural networks play a vital role in artificial intelligence and
signal processing [6,7]. Discrete chaotic maps are particularly interesting because they
exhibit complex and unpredictable behavior, even though they are deterministic and follow
precise rules. Chaotic maps have important applications in fields such as cryptography,
data encryption, and random number generation [8,9]. In this context, understanding
and implementing the dynamics of discrete chaotic maps has become a crucial research
topic [10,11].

The memristor is a fundamental electronic device that was proposed in 1971. How-
ever, it was not until 2008 that the first practical memristor was developed by a team of
researchers at HP Labs. The development of the memristor has provided a new type of non-
volatile memory that is faster, smaller, and requires less energy than existing technologies.
Furthermore, memristors could be used in artificial intelligence, neuromorphic computing,
and analog signal processing [12–14]. This has led to significant interest in the memristor
from both the academic and industrial communities, with many researchers working to
explore its full potential [15,16]

Memristors have been shown to be capable of generating chaotic behavior, and this
property can be exploited to create new discrete chaotic maps [17–21]. Generally, authors
explore 2D memristive maps due to their simplicity. However, recent research is also
shifting towards investigating topics related to high-dimensional memristive maps, as
they offer distinct advantages [22–24]. For instance, high-dimensional chaotic maps can
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store and process significantly more information compared to low-dimensional maps.
Wang et al. conducted a study on a 3D memristive Lozi map [22], while another research
group reported on a bi-memristor map in [23]. Additionally, a comprehensive list of 3D
maps with memristors was introduced [24]. Researchers remain highly intrigued by the
quest for an effective approach to designing high-dimensional maps.

This work considers another way to build high-dimensional maps with memristors
and sine terms. The following are the primary advancements of this study. This work
introduces a highly efficient method for the creation of high-dimensional memristive maps.
These maps exhibit two distinct types of special fixed points, a plane of fixed points and the
absence of any fixed points, categorizing them as unique maps with hidden dynamics [25].
By applying an extension of the suggested approach, the generation of even more intricate
higher-dimensional maps, including 4D and 5D maps, becomes conveniently achievable.
In Section 2, the general model and four example maps are introduced. Section 3 focuses
on the specific map (called TDMM1). Further examples of high-dimensional maps are
discussed in Section 4. Section 5 presents the conclusions.

2. Model of 3D Maps

Chaotic discrete maps have intrigued scientists for decades due to their unpredictable
and complex behaviors. These systems find application in various fields, from cryptography
and secure communications to chaotic circuit design. With the discovery of memristors, a
new dimension was introduced to the understanding and exploration of chaos in discrete
maps. Memristors, the fourth fundamental circuit element, possess unique properties that
offer novel possibilities in chaotic dynamics research. Recently, different 2D memristive
maps have been proposed [20,26,27]. However, a few higher memristive maps have also
been reported [22–24]. In this work, we develop a model of 3D maps, as shown in Figure 1.
The main parts of the model are a sine function sin(.), a memristor, amplifiers (a1, a2, a4, a5),
and a controller term a3. The sine function is a popular function that was first applied to
develop special discrete maps. Exploring further, additional functions could be employed
in constructing high-dimensional maps. The effect of the sine term is indicated by a1 and
a4. The memristor has an effect on the model through a factor a2, while a5 represents the
feedback from x(n) to z(n + 1). The term a3 can be used to change the number of the
model’s fixed points.

Figure 1. Diagram of 3D map using a sine function sin(.) and a memristor.
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From Figure 1, the mathematical model is derived as
x(n + 1) = a1 sin(z(n)) + a2M(y(n))x(n) + a3
y(n + 1) = y(n) + x(n)
z(n + 1) = a4 sin(z(n)) + a5x(n)

(1)

with discrete memristance M(y(n)) and parameters ai, i = 1, · · · , 5. Here, x, y, and z are
state variables. It is noted that x and z can be considered as the outputs of the model, while
y is the internal state of the memristor.

The fixed point of (1) P(x∗, y∗, z∗) is found by solving Equation (2)
x∗ = a1 sin(z∗) + a2M(y∗)x∗ + a3
y∗ = y∗ + x∗

z∗ = a4 sin(z∗) + a5x∗
(2)

We obtain 
x∗ = 0
sin(z∗) = − a3

a1
z∗ = − a3a4

a1

(3)

when a1 6= 0.
As shown in Equation (3), there is a plane of fixed points P(0, y∗, 0) when a3 = 0.

When a3 6= 0, the fixed points depend on a1, a3, and a4. In particular, the fixed points
disappear for

sin
(

a3a4

a1

)
6= a3

a1
(4)

By selecting M(y(n)) = (y(n))2 − 1, we obtain a three-dimensional memristive map
(TDMM1 map): 

x(n + 1) = a1 sin(z(n)) + a2

(
(y(n))2 − 1

)
x(n) + a3

y(n + 1) = y(n) + x(n)
z(n + 1) = a4 sin(z(n)) + a5x(n)

(5)

The TDMM1 map is chaotic for 
a1 = a3 = a4 = 0.1
a2 = 1.65
a5 = 1

(6)

and (x(0), y(0), z(0)) = (0.01, 0.01, 0.01) (see Figure 2a). The maximum Lyapunov expo-
nent (MLE) equals 0.2697.

Selecting different memristors, it is possible to obtain new 3D maps based on the
general model (1). In Table 1, we report new maps, while their chaotic dynamics are
illustrated in Figure 2. While we exclusively present a singular set of parameter values for
each map, it is important to note that there exist various parameter values leading to the
chaotic behavior of these maps.
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(a) (b)

(c) (d)
Figure 2. Iterative plots: (a) TDMM1 map, (b) TDMM2 map, (c) TDMM3 map, (d) TDMM4 map.

Table 1. List of new maps (x(0), y(0), z(0)) = (0.01, 0.01, 0.01).

Name Equations Parameters MLE

TDMM2 x(n + 1) = a1 sin(z(n)) + a2(|y(n)| − 1)x(n) + a3 a1 = a4 = 0.1 0.2046
y(n + 1) = y(n) + x(n) a2 = 2.3, a3 = 0.01

z(n + 1) = a4 sin(z(n)) + a5x(n) a5 = 1

TDMM3 x(n + 1) = a1 sin(z(n)) + a2 sin(πy(n))x(n) + a3 a1 = a4 = 0.1 0.2415
y(n + 1) = y(n) + x(n) a2 = 1.8, a3 = 0.01

z(n + 1) = a4 sin(z(n)) + a5x(n) a5 = 1

TDMM4 x(n + 1) = a1 sin(z(n)) + a2

(
e− cos(πy(n)) − 1

)
x(n) + a3 a1 = a4 = 0.1 0.214

y(n + 1) = y(n) + x(n) a2 = 2.5, a3 = 0.01
z(n + 1) = a4 sin(z(n)) + a5x(n) a5 = 1

3. Study of TDMM1 Map

The TDMM1 map (5) has no fixed point when a1 = a3 = a4 = 0.1 and a5 = 1. We
consider the effect of the memristor on the dynamics by changing a2 from 1.3 to 1.7 (see
Figure 3). Both chaotic and non-chaotic behaviors are observed in this range of a2. Figure 3a
shows a route from periodic dynamics to chaos.
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(a)

(b)

Figure 3. (a) Bifurcation diagram, (b) maximum Lyapunov exponents of the TDMM1 map for
a2 ∈ [1.3, 1.7].

The map is realized with a microcontroller via an Arduino Uno board. Signal x is
displayed in Figure 4. The chaos of signal x verifies the map’s feasibility with hardware.

The Internet of Things (IoT) has emerged as a groundbreaking technology that
promises to connect and automate various physical objects and devices, transforming
industries and enhancing our daily lives. However, along with its numerous benefits,
the IoT shows security challenges. The rapid proliferation of IoT devices, which are often
embedded with sensors, actuators, and other smart technologies, has created a complex and
interconnected network of devices that can be vulnerable to security threats. Lightweight
cryptography plays a crucial role in securing IoT environments, where resource-constrained
devices require efficient and effective cryptographic solutions [28,29]. Its ability to provide
strong security with minimal resource requirements makes it suitable for a wide range of
IoT applications, including secure communication, device authentication, data protection,
access control, and secure firmware updates. As the IoT ecosystem continues to grow, the
importance of lightweight cryptography in protecting IoT devices cannot be overstated. We
test a simple lightweight encryption proposed by Moysis et al. [8] using the TDMM1 map.
In this simple encryption, we generate random numbers from the TDMM1 map, which
are utilized to encrypt a small-sized image via XOR operation. The encryption algorithm
comprises the following steps.
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Step 1: Formation of a secret key through the utilization of initial values and map
parameters.

Step 2: Generation of a random bit sequence (K), with each bit (ki) being generated by
the map’s state variable, x

ki =

 1, if mod
(

105|x(i)|, 1
)
≥ 0.5

0, if mod
(

105|x(i)|, 1
)
< 0.5

(7)

Step 3: Conversion of the original image into a binary sequence (P).
Step 4: Application of the XOR operation to yield the encrypted data (C): C = P⊕ K.
Step 5: Utilization of the XOR operation to derive the decrypted data (P′): P′ = C⊕ K,

allowing for the reconstruction of the original image.
The original, encrypted, and decrypted images are displayed in Figure 5. A uniform

histogram of the encrypted image protects it against statistical attacks (see Figure 6). The
information entropy calculations of the encrypted and original images are 7.9974 and
7.4509, respectively. The information entropy closer to 8 protects encrypted data against
entropy attacks. The obtained results illustrate the possibility of the TDMM1 map for use
in lightweight encryption.

Figure 4. Experimental signal x captured by the Serial Plotter tool of Arduino.

Figure 5. Obtained results: original image (left), encrypted image (middle), and decrypted image
(right).
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(a)

(b)

Figure 6. Histogram results of (a) original image and (b) encrypted image.

4. Discussion

High-dimensional chaotic maps, also known as multi-dimensional chaotic maps,
are mathematical models that describe the dynamics of systems with many degrees of
freedom. High-dimensional chaotic maps exhibit more complex and diverse behaviors
than low-dimensional maps. By enlarging the model (1), higher-order dimensional maps
are constructed easily.

Including an additional state w(n) and sin(w(n)), a 4D map is derived


x(n + 1) = a1 sin(z(n)) + a2 sin(w(n)) + a3

(
(y(n))2 − 1

)
x(n) + a4

y(n + 1) = y(n) + x(n)
z(n + 1) = a5 sin(z(n)) + a6x(n)
w(n + 1) = a7 sin(w(n)) + a8z(n)

(8)

with parameters ai, i = 1, · · · , 8. The chaos in the 4D map is shown in Figure 7 for
a1 = a2 = a4 = a5 = a7 = 0.1
a3 = 1.7
a6 = 1
a8 = 0.2

(9)
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The value of MLE is 0.3003, confirming the presence of chaos.
Similarly, when introducing two states w(n), v(n) and terms sin(w(n)), sin(v(n)), a

5D map is proposed as

x(n + 1) = a1 sin(z(n)) + a2 sin(w(n)) + a3 sin(v(n)) + a4

(
(y(n))2 − 1

)
x(n) + a5

y(n + 1) = y(n) + x(n)
z(n + 1) = a6 sin(z(n)) + a7x(n)
w(n + 1) = a8 sin(w(n)) + a9z(n)
v(n + 1) = a10 sin(v(n)) + a11w(n)

(10)
with parameters ai, i = 1, · · · , 11. Figure 8 displays the chaos in the 5D map for

a1 = a2 = a3 = a5 = a6 = a8 = a10 = 0.1
a4 = 1.7
a7 = a9 = 1
a11 = 0.2

(11)

The value of MLE is 0.2849.

Figure 7. Iterative plots of the 4D map with (x(0), y(0), z(0), w(0)) = (0.01, 0.01, 0.01, 0.01).

Figure 8. Iterative plots of the 5D map with (x(0), y(0), z(0), w(0), v(0)) = (0.01, 0.01, 0.01, 0.01, 0.01).
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5. Conclusions

We have conducted a study focusing on high-dimensional memristive maps, motivated
by their potential application in various fields. In this research, we present a general
approach to constructing these maps using memristors and sine terms. The resulting
3D model exhibits intriguing fixed points, making it particularly appealing. To illustrate
the dynamics and practical applications of these maps, we specifically developed the
TDMM1 map, employing simulations and a microcontroller board. The TDMM1 map
generates chaotic signals, rendering it suitable for lightweight ciphers. Nevertheless,
further investigations into the map’s potential applications are planned for future work.
In particular, the proposed approach is scalable and can be extended to create higher-
dimensional maps, such as 4D and 5D maps.
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