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Abstract: Random Phase Approximation (RPA) is the theory most commonly used to describe the
excitations of many-body systems. In this article, the secular equations of the theory are obtained by
using three different approaches: the equation of motion method, the Green function perturbation
theory and the time-dependent Hartree–Fock theory. Each approach emphasizes specific aspects of
the theory overlooked by the other methods. Extensions of the RPA secular equations to treat the
continuum part of the excitation spectrum and also the pairing between the particles composing the
system are presented. Theoretical approaches which overcome the intrinsic approximations of RPA
are outlined.
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1. Introduction

The aim of the Random Phase Approximation (RPA) theory is the description of
harmonic excitations of quantum many-body systems. This theory was formulated by
David Bohm and David Pines in the early 1950s at the end of a set of articles dedicated
to the description of collective oscillations of electron gas [1–3]. The approximation is
well defined in the first of these articles [1], where it is used to eliminate the random
movement of single electrons out of phase with respect to the oscillations of the external
probe exciting the system. The theory is presented only in the third of these articles [3]
and does not contain any random phase to be approximated. However, the authors used
the term Random Phase Approximation to identify the theory and it is by this name that it is
nowadays commonly known.

The applications of RPA in the 1950s and 1960s were focused on the description
of infinite, homogeneous and translationally invariant systems, such as electron gas. A
detailed historical overview of the works of these early years is given in Ref. [4]. Advances
in the computing technologies allowed the application of RPA also to finite systems such as
atoms and especially nuclei. During the 1970s and 1980s, RPA was the main theoretical
tool used to investigate nuclear excitations of various types (see, for example, Refs. [5,6]
for a review). More recently, RPA has been applied to atomic and molecular systems [7].
Nowadays, RPA calculations are rather standard and relatively simple to carry out, so that
they are, improperly, classified as mean-field calculations.

RPA belongs to the category of effective theories. These theories use particle–particle
interactions which do not have a strongly repulsive core at small inter-particle distances, a
feature characterizing instead the microscopic interactions which are tailored to describe
two-particle data. Hartree–Fock (HF) and Density Functional Theory (DFT) are also effec-
tive theories. They are conceived to describe the ground state of many-body systems, while
RPA starts from the assumption that the ground state is known and considers the problem
of describing the excitation modes.

The validity of RPA is restricted to situations where the excitation energies are rela-
tively small as compared to the global binding energies of the system. This means that RPA
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is not suitable for describing situations where the system undergoes deep modifications of
its structure, such as fission in nuclei or phase transitions in fluid.

In the energy regime adequate to be described by RPA, it is plausible to separate the
role of the external probe, which excites the system, from its response. Each probe, photon,
electron, neutrino, hadron, electric and magnetic field, sound wave, etc., is described by a
specific set of operators depending on the type of interaction with the system. The response
of the system depends only on the interactions between its fundamental components. For
this reason, the many-body response is universal, independent of the specific probe that
induces it. RPA evaluates this universal response.

Regarding the theoretical aspects of the theory, I like to quote what David Pines and
Philippe Nozières write in Chapter 5.2 of their book on quantum liquids [8]:

“The development, frequent independent rediscovery and gradual appreciation of the
Random Phase Approximation offers a useful lesson to theoretical physicist. First, it
illustrates the splendid variety of ways that can be developed for saying the same thing.
Second, it suggests the usefulness of learning different languages of theoretical physics
and of attempting the reconciliation of seemingly different, but obviously related results."

Despite this clear statement, RPA is commonly presented in the context of specific
theoretical frameworks in order to attack some well identified problem. In this article, I
want to focus attention on the theory in itself and I present three different ways of obtaining
the secular RPA equations. In my opinion, this allows a richer comprehension of the theory,
since each method emphasizes aspects overlooked by the other ones. The present article is
not a review of the recent advances in the use of RPA theory, but it aims to be a guide to
understand it by pointing out its underlying assumptions, its merits and its faults and by
indicating how to improve it.

The starting point of every many-body theory is the Independent Particle Model (IPM)
and in Section 2, I recall some aspects of this model which are important for the RPA theory.
RPA secular equations are derived in Sections 3–5 by using, respectively, the method of the
equations of motion, the perturbation calculation of the two-body Green function and the
harmonic approximation of the time-dependent evolution of the HF equations.

The following two sections are dedicated to specific aspects which can be considered
by RPA. In Section 6, I present how to describe the fact that one particle can be emitted
from the system, and in Section 7 how to treat pairing effects between the particles. Some
issues related to the pragmatic application of RPA in actual calculations are presented in
Section 8.

Approaches that extend the usual RPA formulations are outlined in Section 9, and the
formulation of an RPA-like theory able to handle microscopic interactions is presented in
Section 10.

Despite my good intentions, I used numerous acronyms and to facilitate the reading I
list them in Abbreviations.

2. Independent Particle Models

The starting point of all the many-body theories is the Independent Particle Model
(IPM). In this model, each particle moves independently of the presence of the other
particles. This allows the definition of single-particle (s.p.) energies and wave functions
identified by a set of quantum numbers. This is the basic language necessary to build any
theory where the particles interact among them.

2.1. Mean-Field Model

A very general expression of the hamiltonian describing the many-body system is

Ĥ =
A

∑
i=1

(
− h̄2

2mi
∇2

i + V̂0(i)

)
+

1
2

A

∑
i,j=1

V̂(i, j) + · · · , (1)
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where A is the number of particles, each of them with mass mi. In the expression (1), the
term containing the Laplace operator ∇2

i represents the kinetic energy, V̂0(i) is a generic
potential acting on each particle and V̂(i, j) is the interaction between two particles. The
dots indicate the, eventual, presence of more complex terms of the interaction, such as
three-body forces. Henceforth, we shall not consider these latter terms.

By adding to and subtracting from the expression (1) an average potential Û(i) acting
on one particle at a time, we obtain:

Ĥ =
A

∑
i

(
− h̄2

2mi
∇2

i + V̂0(i) + Û(i)

)
︸ ︷︷ ︸

Ĥ0

+
1
2

A

∑
i,j

V̂(i, j)−
A

∑
i

Û(i)︸ ︷︷ ︸
Ĥ1

. (2)

The part indicated by Ĥ0 is a sum of terms acting on one particle, the i-th particle, at a
time. We can define each term of this sum as s.p. hamiltonian ĥ(i),

Ĥ0 = ∑
i

ĥ(i) =
A

∑
i

(
− h̄2

2mi
∇2

i + V̂0(i) + Û(i)

)
. (3)

The basic approximation of the Mean-Field (MF) model consists in neglecting, in the
expression (2), the term Ĥ1 called residual interaction. In this way, the many-body problem
is transformed into a sum of many, independent, one-body problems, which can be solved
one at a time. The MF model is an IPM since the particles described by Ĥ0 do not interact
among them.

The fact that the hamiltonian Ĥ0 is a sum of independent terms implies that its
eigenstates can be built as a product of the eigenstates of ĥ(i)

ĥ(i)|φi〉 = εi|φi〉 , (4)

therefore

Ĥ0|Φ〉 =
(

∑
i

ĥ(i)

)
|Φ〉 = E|Φ〉 , (5)

where
|Φ〉 = |φ1〉|φ2〉 · · · |φA〉 . (6)

For fermions, the antisymmetry of the global wave function under the exchange
of two particles implies that the wave function |Φ〉 has to be described as the sum of
antisymmetrized products of one-particle wave functions. This solution is known in the
literature as Slater determinant [9]

|Φ〉 = 1√
A!

det{|φi〉} . (7)

Systems with global dimensions comparable to the average distances of two interacting
particles are conveniently described by exploiting the spherical symmetry. We are talking
about nuclei, atoms and small molecules. After choosing the center of the coordinate
system, it is convenient to use polar spherical coordinates.

The single-particle wave function can be expressed as a product of a radial part,
depending only on the distance r ≡ |r| from the coordinate center, with a term dependent
on the angular coordinates θ and φ and, eventually, the spin of the particle. The angular part
has a well known analytic expression. For example, in cases of an MF potential containing
a spin-orbit term the s.p. wave functions are conveniently expressed as:

φnljm(r) = Rnlj(r)∑
µσ

〈l µ
1
2

σ|j m〉Ylµ(θ, φ)χσ = Rnlj(r)Yl jm(θ, φ) , (8)
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where the spherical harmonics Ylµ and the Pauli spinors χσ are connected by the Clebsch–
Gordan coefficients and form the so-called spin spherical harmonics [10].

Systems with dimensions much larger than average distances between two interacting
particles are conveniently described by exploiting the translational invariance. In condensed
matter conglomerates, the translational symmetry dominates. A basic structure of the
system is periodically repeated in three cartesian directions and it is not possible to find a
central point.

The basic MF model for this type of system considers the potential Û to be constant.
This fermionic system is commonly called Fermi gas. It is a toy model, homogeneous, with
infinite volume, composed by an infinite number of fermions which do not interact with
each other. Since the energy scale is arbitrary, it is possible to select Û = 0 without loosing
generality. In this case, the one-body Schrödinger equation is

− h̄2

2mj
∇2

j φj(r) = εjφj(r) . (9)

By defining

εj =
h̄2k2

j

2mj
, (10)

the eigenfunction of Equation (9) can be written as

φj(r) =
1√
V

eikj ·rχσχτ , (11)

where V is the volume of the system and χ are the Pauli spinors related to the spin of
the fermion and, eventually, to its isospin. The third components of spin and isospin are
indicated as σ and τ, respectively. The physical quantities of interest are those independent
of V whose value, at the end of the calculations, is taken to be infinite.

The solution of the Fermi gas model provides a set of continuum single particle
energies. Each energy is characterized by k ≡ |k|, as indicated by Equation (10). In
the ground state of the system, all the s.p. states with k smaller than a value kF, called
Fermi momentum, are fully occupied and those with k > kF are empty. Each state has a
degeneracy of 2 in cases of electron gas and of 4 for nuclear matter where each nucleon is
characterized also by the isospin third component.

2.2. Hartree–Fock Theory

The theoretical foundation of the MF model is provided by the Hartree–Fock (HF)
theory, which is based on the application of the variational principle, one of the most used
methods to solve the Schrödinger equation in an approximated manner. The basic idea
is that the wave function which minimizes the energy, considered as functional of the
many-body wave function, is the correct eigenfunction of the hamiltonian. This statement
is correct when the search for the minimum is carried out by considering the full Hilbert
space. In reality, the problem is simplified by assuming a specific expression of the wave
function and the search for the minimum is carried out in the subspace spanned by all
the wave functions which have the chosen expression. The energy value obtained in this
manner is an upper bound of the correct energy eigenvalue of the hamiltonian. The formal
properties of the variational principle are discussed in quantum mechanics textbooks.

For a fermion system, the HF equations are obtained by considering trial many-body
wave functions which are expressed as a single Slater determinant. This implies the
existence of an orthonormal basis of s.p. wave functions. The requirement that the s.p.
wave functions are orthonormalized is a condition inserted in the variational equations in
terms of Lagrange multipliers.

We continue this discussion by using Occupation Number Representation (ONR)
formalism, which describes the operators acting on the Hilbert space in terms of creation â+ν



Universe 2023, 9, 141 5 of 61

and destruction âν operators. Concise presentations of this formalism are given in various
textbooks, for example, in Appendix 2A of [11], in Appendix C of [12], in Appendix C
of [13], in Chapter 4 of [14] and in Chapter 1 of [15].

In Appendix A we show that the hamiltonian of the many-body system, if only
two-body interactions are considered, can be written as

Ĥ = ∑
ν

εν â+ν âν −
1
2 ∑

ij
Vijij +

1
4 ∑

µµ′νν′
Vνµν′µ′N̂[â+ν â+µ âµ′ âν′ ] = Ĥ0 + V̂res , (12)

where Ĥ0 is the sum of the first two terms, while V̂res is the last term. We use the common
convention of indicating with the latin letters h, i, j, k, l s.p. states below the Fermi surface
(hole states) and with the m, n, p, q, r letters the s.p. states above the Fermi energies (particle
states). Greek letters indicate indexes which have to be defined; therefore, in the above
equation, their sums run on all the set of s.p. states. In Equation (12), εν is the energy of the
s.p. state characterized by the ν quantum numbers and V is the antisymmetrized matrix
element of the interaction defined as

Vνµν′µ′ ≡ 〈νµ|V̂|ν′µ′〉 − 〈νµ|V̂|µ′ν′〉 . (13)

With the symbol N̂, we indicate the normal order operator which, by definition,
arranges the set of creation and destruction operators in the brackets such that their expec-
tation value on the ground state is zero. By considering this property of N̂, the expectation
value of the hamiltonian between two Slater determinants assumes the expression

〈Φ0|Ĥ|Φ0〉 = 〈Φ0|Ĥ0|Φ0〉+ 〈Φ0|V̂res|Φ0〉

= ∑
ν

εν〈Φ0|â+ν âν|Φ0〉 −
1
2 ∑

ij
Vijij〈Φ0|Φ0〉

+
1
4 ∑

µµ′νν′
Vνµν′µ′〈Φ0|N̂[â+ν â+µ âµ′ âν′ ]|Φ0〉

= ∑
i

εi −
1
2 ∑

ij
Vijij ≡ E0[Φ0] , (14)

which clearly indicates that the contribution of the residual interaction is zero and the only
part of the interaction which is considered is the one-body term Ĥ0. This is a consequence
of considering a single Slater determinant to describe the system ground state.

In Equation (14), we expressed the energy E0 as a functional of the Slater determinant
Φ0. The search for the minimum of the energy functional is carried out in the Hilbert
subspace spanned by Slater determinants. The quantities to be varied are the s.p. wave
functions forming these determinants. These s.p. wave functions must be orthonormalized
and this is an additional condition which has to be imposed in doing the variations.
Therefore, the problem to be solved is the search for a constrained minimum and it is
tackled by using the Lagrange multipliers technique.

The calculation is well known in the literature (see, for example, chapter XVIII-9 of [16]
or Chapter 8.4 of [17]). The final result is a set of non-linear integro-differential equations
providing the s.p. wave functions φk and the values of the Lagrange multipliers εk. In
coordinate space, these equations can be expressed as

ĥφk(r) = −
h̄2∇2

2m
φk(r) + Û(r)φk(r)︸ ︷︷ ︸

Hartree

−
∫

d3r′Ŵ(r, r′)φk(r
′)︸ ︷︷ ︸

Fock−−Dirac

= εkφk(r) . (15)
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where the Hartree average potential is defined as

Û(r) ≡∑
j

∫
d3r′φ∗j (r

′)V̂(r, r′)φj(r′) , (16)

and the non-local Fock–Dirac term is

Ŵ(r, r′) ≡∑
j

φ∗j (r
′)V̂(r, r′)φj(r) . (17)

At this stage, the εk are the values of the Lagrange multipliers. A theorem, called
Koopmans [18], shows that these quantities are the differences between the energies of
systems with A + 1 and A particles; therefore, they are identified as s.p. energies.

By neglecting the Fock–Dirac term, we obtain a differential equation of MF type. The
Fock–Dirac term, also called the exchange term, changes the bare mean-field equation by
inserting the effect of the Pauli exclusion principle.

The differential Equation (15) is solved numerically by using an iterative procedure.
One starts with a set of trial wave functions φ

(1)
k built with MF methods. With these trial

wave functions, the Hartree (16) and Fock–Dirac (17) terms are calculated and included in
Equation (15) which is solved with standard numerical methods. In this way, a new set
of s.p. wave functions φ

(2)
k is obtained and it is used to calculate new Û and Ŵ potentials.

The process continues up to convergence.
As already pointed out in the introduction, the interactions used in the HF calculations

are not the microscopic interactions built to reproduce the experimental data of the two-
particle systems. These microscopic interactions contain a strongly repulsive core and,
if inserted in the integrals of Equations (15) and (16), they would produce terms much
larger than εk. This would attempt calculating a relatively small number by summing
and subtracting relatively large numbers. HF calculations require interactions which have
already tamed the strongly repulsive core (an early discussion of this problem can be found
in Chapter 13 of [12]).

2.3. Density Functional Theory

The HF theory is widely utilized in nuclear and atomic physics, but there are two
problems concerning its use. A first one is related to the formal development of the
theory and it shows up mainly in the nuclear physics framework where the commonly
used effective interactions have a phenomenological input containing also terms explicitly
dependent on the density of the system. Without these terms, the HF calculations do not
reproduce binding energies and densities of nuclei. The addition of these terms allows the
construction of interactions able to produce high quality results all through the nuclide
table. The physics simulated by these density dependent terms is still a matter of study.
Formally, the variational principle used to derive the HF equation is not valid when the
interaction depends explicitly on the density.

The second problem is of pragmatic type and it is related to the difficulty in evaluating
the Fock–Dirac term of Equation (15) for complicated systems which do not show a well
defined symmetry, for example, complex molecules.

The Density Functional Theory (DFT) solves both problems. This theory is based on a
theorem of Hohenberg and Kohn [19], formulated in the 1960s.

Let us express the hamiltonian of a system of A fermions of mass m as:

Ĥ = T̂ + Ûext + V̂ , (18)

with

T̂ =
A

∑
i=1
−h̄252

i
2m

, Ûext =
A

∑
i=1

ûext(i) , V̂ =
1
2

A

∑
i,j=1

v̂(i, j) , (19)
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The kinetic energy term, T̂ and the external potential Ûext, are one-body operators, while the
interaction term V̂ is a two-body potential. The kinetic energy term plus V̂ are characteristic
of the many-fermion system, while Ûext depends on external situations and therefore, in
principle, can be modified.

The Hohenberg–Kohn theorem states that there is a bijective correspondence between
the external potential Ûext, the ground state |Ψ0〉 and the number density

ρ0(r) = 〈Ψ0|
A

∑
i=1

δ(r− ri)|Ψ0〉, (20)

of the system.
The theorem has the following implications.

(a) Because of the bijective mapping

Ûext ⇐⇒ |Ψ0〉 ⇐⇒ ρ0 . (21)

we can consider the states |Ψ0〉 as functionals of the density ρ0.
(b) Because of (a), every observable is also a functional of ρ0. Specifically, this is true for

the energy of the system

E[ρ0] = 〈Ψ[ρ0]|Ĥ|Ψ[ρ0]〉 = F[ρ0] +
∫

d3r Ûext(r) ρ0(r), (22)

where the universal part, the part independent of the external potential, is defined as

F[ρ0] ≡ 〈Ψ[ρ0]|
(
T̂ + V̂

)
|Ψ[ρ0]〉. (23)

(c) The variational principle implies that for each ρ 6= ρ0 the following relation holds:

E0 ≡ E[ρ0] < E[ρ]. (24)

The focus of the theory has moved from the many-body wave function |Ψ0〉 to the
much simpler one-body density ρ0. The idea of Kohn and Sham [20] is to reproduce the
ground state density ρ0 of a system of interacting fermions by using a fictitious system of
non-interacting fermions. This is done by changing the external part of the hamiltonian. In
this view, the density (20) is expressed as a sum of orthonormalized s.p. wave functions

ρ0(r) = ∑
i<εF

|φKS
i (r)|2, (25)

where εF is the Fermi energy and KS indicates Kohn and Sham. The density (25) is generated
by a one-body hamiltonian whose eigenstate is a Slater determinant |ΦKS〉. The energy
functional built in the Kohn and Sham approach is usually expressed as:

E[ρ0] = TKS[ρ0] + EKS
H [ρ0] + EKS

ext[ρ0] + EKS
xc [ρ0], (26)

where there is a kinetic energy term,

TKS[ρ0] = 〈ΦKS|T̂|ΦKS〉 =
∫

d3r ∑
i

φ∗KS
i (r)

(
− h̄2∇2

2m

)
φKS

i (r), (27)

a Hartree term,
EKS

H [ρ0] =
∫

d3ri

∫
d3rjρ0(ri)v̂(ri, rj)ρ0(rj), (28)

and an external mean-field term

EKS
ext[ρ0] =

∫
d3rρ0(ri)ÛKS

ext(ri). (29)
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The additional term, EKS
xc , is said to be of exchange and correlation.

The variational principle is applied to the energy functional (26) and the final result is,
again, a set of non-linear integro-differential equations, which allows the evaluation of the
Kohn and Sham s.p. wave functions{

− h̄2∇2

2m
+
∫

d3rjv̂(r, rj)ρ0(rj) + ÛKS
ext(r) + ÛKS

xc (r)

}
φKS

i (r) = εiφ
KS
i (r) . (30)

This set of equations is solved numerically with iterative techniques analogous to those
used in the HF case. In Equation (30), only local terms appear, contrary to the HF equations
which contain the non-local Fock–Dirac term. This makes the numerical solution of the KS
equations much simpler than that of the HF equations and allows an application of the
theory to systems difficult to treat with HF.

While the only input of the HF theory is the effective interaction V̂, in the DFT one has,
in addition, to define the exchange and correlation term ÛKS

xc . The strategy for choosing
this term is an open problem of investigation in the field.

Formally speaking, the s.p. wave functions φKS and the Lagrange multipliers εk of
Equation (30) do not have a well defined physical interpretation. From the pragmatical
point of view, the values of these latter quantities are very close to the s.p. energies of the
HF theory defined by Koopmans’ theorem.

2.4. Excited States in the Independent Particle Model

The IPM is quite successful in describing the ground state properties of the fermion
systems. This is also due to the fact that effective interactions are tailored to make this
work. A good example of this is provided by the AMEDEE compilation of Hartree–Fock–
Bogolioubov results concerning the ground states of nuclear isotope chains from Z = 6
up to Z = 130 [21]. Experimental values of binding energies and charge density radii
are described with excellent accuracy by using a unique and universal effective nucleon–
nucleon interaction. The situation changes immediately as soon as one tries to apply the
same theoretical scheme to describe excited states.

The basic ansatz of the IPM is that a many fermion system can be described by a
single Slater determinant |Φ〉. The Slater determinant describing the ground state, |Φ0〉,
has all the s.p. states below the Fermi energy (hole states) fully occupied, while those
above it (particle states) are completely empty. In this picture, excited states are obtained
by promoting particles from states below the Fermi surface to states above it. By using the
ONR, this procedure can be formally described as

|ΦN〉 = â+p1
· · · â+pN

âh1 · · · âhN |Φ0〉 , (31)

where the p’s indicate particle states and the h’s the hole states. The number N of creation
or destruction operators is obviously smaller than A, the number of fermions. The state
|ΦN〉 is a Slater determinant where N hole states have been changed with N particle states
and it is the eigenstate of the IPM hamiltonian

Ĥ0 |ΦN〉 = EN |ΦN〉 . (32)

The excitation energy of this system is given by the difference between the s.p. energies
of the particle states and that of the hole states

ωIPM
N ≡ EN − E0 = εp1 + εp2 + · · ·+ εpN − (εh1 + εh2 + · · ·+ εhN ). (33)

A good example of the failure of this approach in describing the excitations of a
many-body systems is provided by the case of the 208Pb nucleus. We show in Figure 1
the scheme of the s.p. levels around the Fermi energy of this nucleus. The energies of
these levels have been obtained by exploiting Koopmans’ theorem, i.e., by subtracting the
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experimental binding energies of the nuclei with one nucleon more or less, with respect
to 208Pb. These nuclei are 207Tl, 209Bi and the two lead isotopes 207Pb and 209Pb. From the
experimental values of the angular momenta of these odd–even nuclei, we identified the
quantum numbers of the s.p. levels.

Figure 1. Sketch of the s.p. levels around the Fermi surface in 208Pb. The numbers indicate, in MeV
units, the s.p. energies obtained as differences between the experimental binding energies of the
nuclei with one nucleon more or less than 208Pb.

The first excited state in the IPM framework is that obtained by promoting the nucleon
lying on the s.p. state just below the Fermi surface to the state just above it. In the present
case, this one-particle one-hole (1p− 1h) excitation for the protons will be produced by the
transition from the 3s1/2 state to the 1h9/2 state. The excitation energy of this transition is
4.209 MeV, the parity is negative and the total angular momentum is 4 or 5. The analogous
transition for the neutrons also implies a negative parity value and excitation energies of
3.431 MeV and also in this case the angular momentum values of the excited state can be 4
or 5. Measurements indicate that the first excited state of the 208Pb has an excitation energy
of 2.614 MeV with angular momentum 3 and negative parity. Evidently, the IPM is unable
to predict the presence of this state. The part of the hamiltonian disregarded by the IPM,
the residual interaction, plays an important role. RPA considers the presence of the residual
interaction in the description of the excitations of a many-body system.

3. RPA with the Equation of Motion Method

The first approach I present in order to obtain the RPA secular equations is the Equation
of Motion (EOM) method inspired by the Heisenberg picture of quantum mechanics.

Let us define an operator, Q̂+
ν , whose action on the ground state of the system defines

its excited states
Q̂+

ν |Ψ0〉 = |Ψν〉 , (34)

which satisfy the eigenvalue equation

Ĥ |Ψν〉 = Eν |Ψν〉 . (35)

In the above equations, the index ν indicates all the quantum numbers characterizing the
excited state. For example, in a finite fermion system, they are the excitation energy, the
total angular momentum and the parity. The choice of Q̂+

ν defines completely the problem
to be solved, and also the ground state of the system through the equation

Q̂ν |Ψ0〉 = 0. (36)

It is worth remarking that the states |Ψν〉 are not eigenstates of the full hamiltonian Ĥ
but, depending on the choice of Q̂+

ν , they are eigenstates of only a part of the hamiltonian.
For example, if Q̂+

ν = â+p âh, ground and excited states are Slater determinants of the IPM
described in Section 2.4. As has been already pointed out by discussing Equation (14), this
choice does not consider the contribution of the residual interaction.
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Let us calculate the commutator of the Q̂+
ν operator with the hamiltonian[

Ĥ, Q̂+
ν

]
|Ψ0〉 =

(
ĤQ̂+

ν − Q̂+
ν Ĥ
)
|Ψ0〉 = Ĥ |Ψν〉 − Q̂+

ν E0 |Ψ0〉
= Eν |Ψν〉 − Q̂+

ν E0 |Ψ0〉 = (Eν − E0)Q̂+
ν |Ψ0〉 , (37)

and for the operator Q̂ν, we obtain[
Ĥ, Q̂ν

]
|Ψ0〉 =

(
ĤQ̂ν − Q̂ν Ĥ

)
|Ψ0〉 = ĤQ̂ν |Ψ0〉 − E0Q̂ν |Ψ0〉 = 0, (38)

because of Equation (36).
We multiply Equation (37) by a generic operator Ô and by 〈Ψ0| and we subtract the

complex conjugate. For Equations (37) and (38), we obtain

〈Ψ0|
[
Ô, [Ĥ, Q̂+

ν ]
]
|Ψ0〉 = (Eν − E0) 〈Ψ0|ÔQ̂+

ν |Ψ0〉 = (Eν − E0) 〈Ψ0|
[
Ô, Q̂+

ν

]
|Ψ0〉 . (39)

since 〈Ψ0| Q̂+
ν = 0.

This result is independent of the expression of the operator Ô. In the construction of
the various theories describing the system excited states, the Ô operator is substituted by
the δQ̂ν operator representing an infinitesimal variation of the excitation operator defined
by Equation (34).

3.1. Tamm–Dankoff Approximation

A first choice of the Q̂+
ν consists in considering the excited state as a linear combination

of particle–hole excitations. This means that the excited state is not any more a single Slater
determinant as in the IPM, but it is described by a sum of them. This choice of Q̂+

ν , leading
to the so-called Tamm–Dankoff approximation (TDA), is

Q̂+
ν ≡∑

m i
Xν

mi â
+
m âi, (40)

where Xν
mi is a real number and the usual convention of indicating the hole states with the

letters h, i, j, k, l and the particle states with m, n, p, q, r has been adopted.
The definition (40) of the Q̂+

ν operator implies that the ground state |Ψ0〉 satisfying
Equations (37) and (38) is the IPM ground state |Φ0〉. In effect

Q̂ν |Φ0〉 = ∑
m i

Xν
mi â

+
i âm |Φ0〉 = 0, (41)

since it is not possible to remove particles above the Fermi surface or to put particles
below it.

An infinitesimal variation of the Q̂ν operator can be expressed as

δQ̂ν = ∑
m i

â+i âmδX∗νmi, (42)

since only the amplitudes X∗νmi can change. By substituting Ô with δQ̂ν in Equation (39),
we obtain

〈Φ0|
[
∑
m i

â+i âmδX∗νmi,
[
Ĥ, ∑

n j
Xν

nj â
+
n âj
]]
|Φ0〉

= (Eν − E0) 〈Φ0|
[
∑
m i

â+i âmδX∗νmi, ∑
n j

Xν
nj â

+
n âj

]
|Φ0〉 . (43)

Every variation δX∗νph is independent of the other ones. For this reason, the above equation
is a sum of terms independent of each other. The equation is satisfied if all the terms related
to the same variation of Xν

ph satisfy the relation. We can formally express this concept by
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considering a single term of the sum and by dividing it by δX∗νph which is, by our choice,
different from zero

〈Φ0|
[

â+i âm, [Ĥ, ∑
n j

Xν
nj â

+
n âj]

]
|Φ0〉 = (Eν − E0)∑

n j
Xν

nj 〈Φ0|
[
a+i am, a+n aj

]
|Φ0〉 . (44)

Let us calculate the right hand side of Equation (44):

〈Φ0|
[
â+i âm, â+n âj

]
|Φ0〉 = 〈Φ0|â+i âm â+n âj|Φ0〉 − 〈Φ0|â+n âj, â+i âm|Φ0〉 . (45)

We apply Wick’s theorem (see, for example, Ref. [22]) to the first term

〈Φ0|â+i âm â+n âj|Φ0〉 = δmnδij, (46)

where the lines indicate the operators to be contracted.
The second term of Equation (45) is zero since âm |Φ0〉 = 0 . By using this result in

Equation (44), we obtain

〈Φ0|
[

â+i âm, [Ĥ, ∑
n j

Xν
nj â

+
n âj]

]
|Φ0〉 = (Eν − E0)Xν

mi. (47)

The evaluation of the double commutator of the left hand side of Equation (47) is
explicitly presented in Appendix B. We insert the results of Equations (A14) and (A19) into
Equation (47) and we consider the symmetry properties of the antisymmetrized matrix
element of the interaction Vα,β,α′ ,β′ , Equation (13). Finally, we obtain the TDA equations:

∑
nj

Xν
nj
[
(εn − εj)δmnδij + Vmjin

]
= (Eν − E0)Xν

mi. (48)

The expression (48) represents a homogenous system of linear equations whose un-
knowns are the Xν

mi. The number of unknowns, and therefore of solutions, is given by the
number of particle–hole pairs which truncates the sum.

The normalization condition of the excited state induces a relation between the Xν
mi

amplitudes:

1 = 〈Ψν|Ψν〉 = 〈Φ0|Q̂νQ̂+
ν |Φ0〉 = 〈Φ0|∑

p h
â+h âpX∗νph ∑

p′ h′
Xν

p′h′ â
+
p′ âh′ |Φ0〉

= ∑
p h

∑
p′ h′

X∗νphXν
p′h′ 〈Φ0|â+h âp â+p′ âh′ |Φ0〉 = ∑

p h
|Xν

ph|
2, (49)

which defines without ambiguity the values of the Xν
ph and suggests their probabilistic

interpretation.
The TDA theory describes not only the energy spectrum of the system, but also for

each excited state it provides the many-body wave function written in terms of single-
particle states. This allows the calculation of the transition probability from the ground
state to an excited state.

Let us assume that the action of the external field which excites the system is described
by a one-body operator

F̂ = ∑
µµ′
〈µ| f̂ |µ′〉 â+µ âµ′ ≡ ∑

µµ′
fµµ′ â

+
µ âµ′ . (50)
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The transition probability from the ground state to a TDA excited state is

〈Ψν|F̂|Ψ0〉 = 〈Φ0|Q̂ν F̂|Φ0〉
= 〈Φ0|∑

mi
X∗νmi â

+
i âm ∑

µµ′
fµµ′ â

+
µ âµ′ |Φ0〉

= ∑
mi

X∗νmi ∑
µµ′

fµµ′ 〈Φ0|â+i âm â+µ âµ′ |Φ0〉

= ∑
mi

X∗νmi ∑
µµ′

fµµ′δiµ′δmµ = ∑
mi

X∗νmi fmi. (51)

where we used Wick’s theorem as in Equation (46). The many-body transition probabilities
are described in terms of single-particle transition probabilities.

3.2. Random Phase Approximation
3.2.1. Limits of the TDA

The comparison between the TDA results and the experimental data is not satisfactory,
especially in nuclear physics. For this reason, since the second half of the 1960s, the
assumptions related to the TDA theory have been carefully analyzed. These assumptions
are related to the choice of the expression (42) of the Q̂ν operator. From these studies, it
appeared clear that this choice is inconsistent with the equations of motion (39).

This inconsistency can be seen in the following manner. The equation of motions (39)
were obtained without making any assumption on the operator Ô. For the operator
Ô = â+m âi, the equations of motion are:

〈Ψ0|
[
â+m âi, [Ĥ, Q̂+

ν ]
]
|Ψ0〉 = (Eν − E0) 〈Ψ0|â+m âiQ̂+

ν |Ψ0〉 = (Eν − E0) 〈Ψ0|
[
â+m âi, Q̂+

ν

]
|Ψ0〉 . (52)

By inserting the expression of the TDA operator (42) in the right hand side of the above
equation, we obtain

∑
nj

Xν
nj 〈Φ0|

[
â+m âi, â+n âj

]
|Φ0〉 = ∑

nj
Xν

nj
{
〈Φ0|â+m âi â+n âj|Φ0〉 − 〈Φ0|â+n âj â+m âi|Φ0〉

}
= 0. (53)

This result requires that also the left hand side of Equation (52) be zero. The one-body term
of the hamiltonian has a double commutator equal to zero

∑
αβ

hα,β 〈Φ0|
[
â+m âi, (â+α âjδnβ − â+n âβδjα)

]
|Φ0〉 = 0,

but the double commutator of the interaction term is not equal to zero.

∑
α,β,α′ ,β′

Vα,β,α′ ,β′ 〈Φ0|
[

â+m âi,
[
N̂[â+α â+β âβ′ âα′ ], â+n âj

]]
|Φ0〉 6= 0.

3.2.2. RPA Equations

The most straightforward way of extending the TDA is to consider the RPA excitation
operator (42) defined as

Q̂+
ν ≡∑

p h
Xν

ph â+p âh −∑
p h

Yν
ph â+h âp, (54)

where both Xν
ph and Yν

ph are numbers.

RPA ground state is defined by the equation Q̂ν |ν0〉 = 0. Evidently |ν0〉 is not an IPM
ground state, i.e., a single Slater determinant. In this last case, we would have

Q̂ν |Φ0〉 = ∑
p h

X∗νph â+h âp |Φ0〉 −∑
p h

Y∗νph â+p âh |Φ0〉 6= 0.

The first term is certainly zero, while the second one is not zero. RPA ground state |ν0〉 is
more complex than the IPM ground state and it contains effects beyond it. These effects,
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called generically correlations, are here described in terms of hole–particle excitations, as
we shall discuss in Section 3.2.6.

From the definition (54) of RPA amplitudes, we obtain δQ̂ν and by inserting it as
Ô = δQ̂ν in the equations of motion (39) we obtain

∑
mi

δXν
mi 〈ν0|

[
â+i âm,

[
Ĥ, Q̂+

ν

]]
|ν0〉 −∑

mi
δYν

mi 〈ν0|
[

â+m âi,
[
Ĥ, Q̂+

ν

]]
|ν0〉

= (Eν − E0)

{
∑
mi

δXν
mi 〈ν0|

[
â+i âm, Q̂+

ν

]
|ν0〉 −∑

mi
δYν

mi 〈ν0|
[

â+m âi, Q̂+
ν

]
|ν0〉

}
. (55)

As in the TDA case, the above equation represents a sum of independent terms since
each variation is independent of the other ones. By making equal the terms related to the
same variation, we obtain the following relations

〈ν0|
[

â+i âm,
[
Ĥ, Q̂+

ν

]]
|ν0〉 = (Eν − E0) 〈ν0|

[
â+i âm, Q̂+

ν

]
|ν0〉 (56)

〈ν0|
[

â+m âi,
[
Ĥ, Q̂+

ν

]]
|ν0〉 = (Eν − E0) 〈ν0|

[
â+m âi, Q̂+

ν

]
|ν0〉 . (57)

Let us consider the left hand side of Equation (56)

〈ν0|
[

â+i âm,
[
Ĥ, Q̂+

ν

]]
|ν0〉

= ∑
nj

Xν
nj 〈ν0|

[
â+i âm,

[
Ĥ, â+n âj

]]
|ν0〉 −∑

nj
Yν

nj 〈ν0|
[

â+i âm,
[
Ĥ, â+j ân

]]
|ν0〉

≡ ∑
nj

Xν
nj Aminj + ∑

nj
Yν

njBminj. (58)

These equations define the elements of the A and B matrices.
We calculate the right hand side of Equation (56) by using an approximation known

in the literature as Quasi-Boson-Approximation (QBA) consisting in assuming that the ex-
pectation value of a commutator between RPA ground states has the same value of the
commutator between IPM states |Φ0〉. In the specific case under study, we have that

〈ν0|
[

â+i âm, Q̂+
ν

]
|ν0〉 ' 〈Φ0|

[
â+i âm, Q̂+

ν

]
|Φ0〉 . (59)

It is worth remarking that the QBA can be applied only for expectation values of commuta-
tors. The idea is that pairs of creation and destruction operators follow the rule

[â+i âm, â+n âj] ' δmnδij,

which means that the operators Ôim ≡ â+i âm and Ô+
jn ≡ a+n aj behave as boson operators.

By using the QBA, we can write

〈ν0|
[

â+i âm, Q̂+
ν

]
|ν0〉

' ∑
nj

Xν
nj 〈Φ0|[â+i âm, â+n âj]|Φ0〉 −∑

nj
Yν

nj 〈Φ0|[â+i âm, â+j ân]|Φ0〉

= ∑
nj

Xν
nj

{
〈Φ0|â+i âm â+n âj|Φ0〉 − 〈Φ0|â+n âj â+i âm|Φ0〉

}
− ∑

nj
Yν

nj

{
〈Φ0|â+i âm â+j ân|Φ0〉 − 〈Φ0|â+j ân â+i âm|Φ0〉

}
= ∑

nj
Xν

nj 〈Φ0|â+i âm â+n âj|Φ0〉 = Xν
miδmnδij, (60)
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where we have taken into account that the terms multiplying Yν
nj do not conserve the

particle number and, furthermore, that am |Φ0〉 = 0. Equation (56) becomes

∑
nj

Xν
nj Aminj + ∑

nj
Yν

njBminj = (Eν − E0)Xν
mi. (61)

For the calculation of the left hand side of Equation (57), we consider that:

[Ĥ, â+n âj]
+ = (Ĥâ+n âj − â+n âj Ĥ)+ = â+j ânĤ − Ĥâ+j ân = −[Ĥ, â+j ân], (62)

since Ĥ = Ĥ+ and then[
â+i âm, [Ĥ, â+j ân]

]+
= −

[
â+m âi,−[Ĥ, â+n âj]

]
=
[

â+m âi, [Ĥ, â+n âj]
]
. (63)

The double commutator becomes

〈ν0|
[

a+m ai,
[
Ĥ, Q+

ν

]]
|ν0〉

= ∑ Xν
nj 〈ν0|

[
a+m ai,

[
Ĥ, a+n aj

]]
|ν0〉 −∑ Yν

nj 〈ν0|
[

a+m ai,
[
Ĥ, a+j an

]]
|ν0〉

= ∑ Xν
nj 〈ν0|

[
a+i am,

[
Ĥ, a+j an

]]+
|ν0〉 −∑ Yν

nj 〈ν0|
[

a+i am,
[
Ĥ, a+n aj

]]+
|ν0〉

= ∑
nj

Xν
nj(−B∗minj) + ∑

nj
Yν

nj(−A∗minj), (64)

where we considered the definitions of the matrix elements A and B in Equation (58).
For the calculation of the right hand side of Equation (57) by using the QBA, we have

〈ν0|
[

â+m âi, Q+
ν

]
|ν0〉 → (QBA)→ −∑

nj
Yν

nj 〈Φ0|
[

â+m âi, â+j ân

]
|Φ0〉 = Yν

miδijδmn; (65)

therefore, Equation (57) becomes

∑
nj

Xν
nj(−B∗minj) + ∑

nj
Yν

nj(−A∗minj) = (Eν − E0)Yν
mi. (66)

Equations (61) and (66) represent a homogenous system of linear equations whose un-
knowns are RPA amplitudes Xν

ph and Yν
ph. Usually, this system is presented as A B

B∗ A∗

 Xν

Yν

 = (Eν − E0)

 I 0

0 −I

 Xν

Yν

 = (Eν − E0)

 Xν

−Yν

, (67)

where A and B are square matrices whose dimensions are those of the number of the particle–
hole pairs describing the excitation, and X and Y are vectors of the same dimensions.

The expressions of the matrix elements of A and B in terms of effective interaction
between two interacting particles are obtained as in Appendix B and they are:

Aminj → (QBA)→ 〈Φ0|
[

â+i âm,
[
Ĥ, â+n âj

]]
|Φ0〉 = (εm − εi)δmnδij + Vmjin, (68)

Bminj → (QBA)→ −〈Φ0|
[

â+i âm,
[
Ĥ, â+j ân

]]
|Φ0〉 = Vmnij. (69)
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3.2.3. Properties of RPA Equations

We consider RPA equations in the form A B

B∗ A∗

 Xν

Yν

 = ων

 Xν

−Yν

,

where ων = Eν − E0 is the excitation energy.

• If B = 0, we obtain the TDA equations.
• We take the complex conjugate of the above equations and obtain A B

B∗ A∗

 Y∗ν

X∗ν

 = −ων

 Y∗ν

−X∗ν

. (70)

This indicates that RPA equations are satisfied by positive and negative eigenvalues
with the same absolute value.

• Eigenvectors corresponding to different eigenvalues are orthogonal. A B

B∗ A∗

 Xν

Yν

 = ων

 Xν

−Yν

 ;

 A B

B∗ A∗

 Xµ

Yµ

 = ωµ

 Xµ

−Yµ

.

Let us calculate the hermitian conjugate of the second equation

(Xµ+, Yµ+)

 A B

B∗ A∗

 = (Xµ+,−Yµ)ωµ.

We multiply the first equation by (Xµ+, Yµ+) on the left hand side, and the second
equation on the right hand side by  Xν

−Yν

,

and we obtain

(Xµ+, Yµ+)

 A B

B∗ A∗

 Xν

Yν

 = ων(Xµ+, Yµ+)

 Xν

−Yν



(Xµ+, Yµ+)

 A B

B∗ A∗

 Xν

Yν

 = ωµ(Xµ+,−Yµ)

 Xν

Yν

.

By subtracting the two equations, we have

0 = (ων −ωµ)(Xµ+Xν −Yµ+Yν).

Since we assumed ων 6= ωµ, we obtain

(Xµ+Xν −Yµ+Yν) = 0.

• The normalization between two excited states requires
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δνν′ = 〈ν|ν′〉 = 〈ν0|Q̂νQ̂+
ν′ |ν0〉 = 〈ν0|[Q̂ν, Q̂+

ν′ ]|ν0〉 → QBA→ 〈Φ0|[Q̂ν, Q̂+
ν′ ]|Φ0〉

= ∑
mi

(
Xν

miX
ν′
mi −Yν

miY
ν′
mi

)
, (71)

where we used the fact that Q̂ν |ν0〉 = 0 to express the operator as commutator in
order to use the QBA.

3.2.4. Transition Probabilities in RPA

In analogy with the TDA case, we assume that the action of the external field exciting
the system is described by a one-body operator expressed as in Equation (50). The transition
probability between RPA ground state and excited state is described by

〈ν|F̂|ν0〉 = 〈ν0|Q̂ν F̂|ν0〉 = 〈ν0|[Q̂ν, F̂]|ν0〉 , (72)

where we used, again, the fact that Q̂ν |ν0〉 = 0. Since the equation is expressed in terms of
commutator we can use the QBA

〈ν|F̂|ν0〉 → QBA→ 〈Φ0|[Q̂ν, F̂]|Φ0〉

= ∑
µµ′

fµµ′

{
∑
mi

Xν
mi 〈Φ0|[â+i âm, â+µ âµ′ ]|Φ0〉 −∑

mi
Yν

mi 〈Φ0|[â+m âi, â+µ âµ′ ]|Φ0〉
}

. (73)

The two matrix elements are

〈Φ0|[â+i âm, â+µ âµ′ ]|Φ0〉 = 〈Φ0|â+i âm â+µ âµ′ |Φ0〉 − 〈Φ0|â+µ âµ′ â
+
i âm|Φ0〉 = δmµδiµ′ − 0,

〈Φ0|[â+m âi, â+µ âµ′ ]|Φ0〉 = 〈Φ0|â+m âi â+µ âµ′ |Φ0〉 − 〈Φ0|â+µ âµ′ â
+
m âi|Φ0〉 = 0− δmµ′δiµ;

therefore,

〈ν|F̂|ν0〉 ' ∑
µµ′

fµµ′

(
∑
mi

Xν
miδmµδiµ′ + ∑

mi
Yν

miδmµ′δiµ

)
= ∑

mi
(Xν

mi fmi + Yν
mi fim). (74)

Also in RPA, the transition amplitude of a many-body system is expressed as a linear
combination of single-particle transitions.

3.2.5. Sum Rules

We show in Appendix C that, in general, by indicating with |Ψν〉 the eigenstates of the
hamiltonian Ĥ

Ĥ |Ψν〉 = Eν |Ψν〉 ,

for an external operator F̂ inducing a transition of the system from the ground state to the
excited state one has that:

2 ∑
ν

(Eν − E0)
∣∣〈Ψν|F̂|Ψ0〉

∣∣2 = 〈Ψ0|
[

F̂,
[
Ĥ, F̂

]]
|Ψ0〉 . (75)

This expression puts a quantitative limit on the total value of the excitation strength of a
many-body system. This value is determined only by the ground state properties and the
knowledge of the excited states structure is not required. The validity of Equation (75) is
related to the fact that the |Ψν〉 are eigenstates of Ĥ. In actual calculations, states based on
models or approximated solutions of the Schrödinger equations are used and Equation (75)
is not properly satisfied.

On the other hand, for RPA theory, it has been shown [23] that the following rela-
tion holds

2 ∑
ν

(Eν − E0)
∣∣〈ν|F̂|ν0〉

∣∣2 = 〈Φ0|
[

F̂,
[
Ĥ, F̂

]]
|Φ0〉 . (76)
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The above expression, formally speaking, is not a true sum rule since in the left hand side
there are RPA states, both ground and excited states, while in the right hand side there is
an IPM ground state. These two types of states are not eigenstates of the same hamiltonian.
When the residual interaction is neglected, one obtains mean-field excited states |Φph〉, i.e.,
single Slater determinants with a single particle–hole excitation. In this case, Equation (75) is
verified since all these mean-field states are eigenstates of the unperturbed hamiltonian Ĥ0

2 ∑
ph
(εp − εh)

∣∣∣〈Φph|F̂|Φ0〉
∣∣∣2 = 〈Φ0|

[
F̂,
[
Ĥ0, F̂

]]
|Φ0〉 , (77)

where the excitation energies of the full system are given by the difference between the
single-particle energies of the particle–hole excitation.

Since in RPA the full hamiltonian Ĥ = Ĥ0 + V̂res is considered, by inserting this
expression in Equation (76) we obtain

2 ∑
ν

(Eν − E0)
∣∣〈ν|F̂|ν0〉

∣∣2 = 〈Φ0|
[

F̂,
[
Ĥ0, F̂

]]
|Φ0〉+ 〈Φ0|

[
F̂,
[
V̂res, F̂

]]
|Φ0〉 . (78)

For operators F̂ which commute with V̂res, the IPM and RPA sum rules coincide.

3.2.6. RPA Ground State

We have already indicated that RPA ground state is not an IPM state but it contains
effects beyond it, correlations, expressed in terms of hole–particle excitations. A more
precise representation of the RPA ground state comes from a theorem demonstrated by
D. J. Thouless [23] leading to an expression of the RPA ground state of the type [13]:

|ν0〉 = NeŜ |Φ0〉 , (79)

where N is a normalization constant and the operator Ŝ is defined as

Ŝ ≡ 1
2 ∑

ν,minj
s(ν)minj â

+
m âi â+j ân. (80)

The sum considers all the particle–hole, â+m âi, and hole–particle, â+j ân, pairs and the index
ν runs on all the possible angular momentum and parity combinations allowed by the
particle–hole and hole–particle quantum numbers. We indicated with s(ν)minj an amplitude
weighting the contribution of each couple of ph.

Starting from the above expression, it is possible to calculate the s(ν)minj from the knowl-
edge of RPA Xν

ph and Yν
ph amplitudes [14]. By using these expressions, the expectation value

of a one-body operator with respect to the RPA ground state can be expressed as [24,25]

〈ν0|F̂|ν0〉 = 〈ν0|∑
µµ′

fµ µ′ â
+
µ âµ′ |ν0〉

= ∑
h

fh h

[
1− 1

2 ∑
ν

∑
p
|Yν

ph|
2

]
+ ∑

p
fp,p

[
1
2 ∑

ν
∑
h
|Yν

ph|
2

]
. (81)

This clearly shows that the Yν
ph amplitudes modify the expectation value of the operator

with respect to the IPM result. In TDA, the ground state is |Φ0〉 and the Y amplitudes are
zero; therefore, the expectation value of F̂ is given by the sum of the s.p. expectation values
of the states below the Fermi energy, as in the pure IPM. The TDA theory does not contain
ground state correlations as indicated in Equation (41).
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4. RPA with Green Function
4.1. Field Operators and Pictures

In this section, we use the field operators ψ̂+(r), which creates a particle in the point
r. The hermitian conjugate operator ψ̂(r) destroys a particle positioned in r. These two
operators are related to the creation and destruction operators via the s.p. wave functions
φν(r) generated by the solution of the IPM problem:

ψ̂(r) = ∑
ν

âνφν(r) ; ψ̂+(r) = ∑
ν

â+ν φ∗ν(r). (82)

These equations can be inverted to express the creation and destruction operators in terms
of field operator

âν =
∫

d3rφ∗ν(r)ψ̂(r) ; â+ν =
∫

d3rφν(r)ψ̂+(r). (83)

where we exploited the orthonormality of the φν. By using the anti-commutation relations
of the creation and destruction operators, see Equation (A3), we obtain analogous relations
for the field operators:{

ψ̂+(r), ψ̂+(r′)
}
= 0 ;

{
ψ̂(r), ψ̂(r′)

}
= 0 ;

{
ψ̂+(r), ψ̂(r′)

}
= δ(r− r′). (84)

In the Heisenberg picture [16,22], the states are defined as

|ΨH(t)〉 ≡ ei Ĥt
h̄ |ΨS(t)〉, (85)

with respect to those of the Schrödinger picture |ΨS(t)〉. In the above equations, Ĥ is the
full many-body hamiltonian. The states in the Heisenberg picture are time-independent
and the time evolution of the system is described by the operators whose relation with the
time-independent operators of the Schrödinger picture is:

ÔH ≡ ei Ĥt
h̄ ÔSe−i Ĥt

h̄ , (86)

satisfying the equation:

ih̄
∂

∂t
ÔH(t) = [ÔH(t), Ĥ] (87)

By separating the hamiltonian in the Schrödinger picture into two parts

Ĥ = Ĥ0 + Ĥ1, (88)

it is possible to define an interaction picture whose states are defined as

|ΨI(t)〉 ≡ ei Ĥ0t
h̄ |ΨS(t)〉, (89)

and the operators

ÔI(t) = ei Ĥ0t
h̄ ÔSe−i Ĥ0t

h̄ . (90)

In the interaction picture [22], both states and operators evolve with the time as
indicated by the equations

ih̄
∂

∂t
|ΨI(t)〉 = Ĥ1,I(t)|ΨI(t)〉, (91)

and
ih̄

∂

∂t
ÔI(t) =

[
ÔI(t), Ĥ0

]
. (92)
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The fermionic field operators in the Heisenberg and interaction picture are, respec-
tively, defined as:

ψ̂H(x, t) = e
i
h̄ Ĥtψ̂(x)e−

i
h̄ Ĥt ; ψ̂I(x, t) = e

i
h̄ Ĥ0tψ̂(x)e−

i
h̄ Ĥ0t (93)

It can be shown that the anti-commutation relations (84) of the field operators, as well as
those of the creation and destruction operators, see Equations (A3), are conserved in every
representation [22].

4.2. Two-Body Green Function and RPA

The two-body Green function is defined as

(−i)2G(x1, t1, x2, t2, x3, t3, x4, t4) ≡
〈Ψ0|T̂[ψ̂H(x1, t1)ψ̂H(x2, t2)ψ̂

+
H(x3, t3)ψ̂

+
H(x4, t4)]|Ψ0〉〉

〈Ψ0|Ψ0〉
. (94)

In the above expression, |Ψ0〉 indicates the ground state of the system in Heisenberg
representation and T̂ is the time-ordering operator which arranges the field operators in
decreasing time order. Because of the possible values that the times ti can assume, there are
4! = 24 cases, but, for the symmetry properties

G(1, 2, 3, 4) = −G(2, 1, 3, 4) = −G(1, 2, 4, 3) = G(2, 1, 4, 3) , (95)

only six of them are independent. Out of these six cases, only three have physically
interesting properties and between these latter cases we select that where t1, t3 > t2, t4
which implies

(−i)2G(x1, t1, x2, t2, x3, t3, x4, t4) =
−〈Ψ0|ψ̂H(x1, t1)ψ̂

+
H(x3, t3)ψ̂H(x2, t2)ψ̂

+
H(x4, t4)|Ψ0〉

〈Ψ0|Ψ0〉
, (96)

and describes the time evolution of a ph pair.
Since we work in a non-relativistic framework, the creation and also the destruction,

of a particle–hole pair is instantaneous; therefore, we have that

t1 = t3 = t′ e t2 = t4 = t . (97)

For this case, we express the two-body Green function in terms of creation and de-
struction operators as

G(x1, t′, x2, t, x3, t′, x4, t)

= ∑
ν1ν2ν3ν4

φν1(x1)φ
∗
ν3
(x3)φν2(x2)φ

∗
ν4
(x4)〈Ψ0|T̂[âν1(t

′)â+ν3
(t′)âν2(t)â+ν4

(t)]|Ψ0〉
〈Ψ0|Ψ0〉

= ∑
ν1ν2ν3ν4

φν1(x1)φν2(x2)φ
∗
ν3
(x3)φ

∗
ν4
(x4)G(ν1, t′, ν2, t, ν3, t′, ν4, t) . (98)

where it is understood that all the creation and destruction operators are expressed in the
Heisenberg picture. The previous equation defines a two-body Green function depending
on the quantum numbers ν characterizing the single-particle states.

Since this Green function depends only on the time difference τ = t′ − t, we find it
convenient to define the energy dependent two-body Green function as

G̃(ν1, ν2, ν3, ν4, E) =
∫ ∞

−∞
dτ G(ν1, ν2, ν3, ν4, τ) e

i
h̄ Eτ , (99)
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For the case τ > 0, by considering the expression of the creation and destruction operators
in the Heisenberg picture, see Equation (86), and the fact that |Ψ0〉 is eigenstate of Ĥ whose
eigenvalue is E0, we obtain the expression

G̃τ>0(ν1, ν2, ν3, ν4, E) =
〈Ψ0|âν1 â+ν3

∫ ∞
0 dτ e−

i
h̄ (Ĥ−E0−E)τ âν2 â+ν4

|Ψ0〉
〈Ψ0|Ψ0〉

. (100)

We can express the value of the time integral as

lim
η→0

∫ ∞

0
dτ e−

i
h̄ (−Ĥ+E0+E−iη)τ = lim

η→0

−ih̄
E− Ĥ + E0 − iη

; (101)

therefore,

G̃τ>0(ν1, ν2, ν3, ν4, E) = h̄〈Ψ0|âν1 â+ν3

−i
E− Ĥ + E0 + iη

âν2 â+ν4
|Ψ0〉

1
〈Ψ0|Ψ0〉

. (102)

With an analogous calculation for the τ < 0 case, we obtain

i
h̄

G̃(ν1, ν2, ν3, ν4, E) =
i
h̄
(G̃τ>0 + G̃τ<0)

= 〈Ψ0|âν1 â+ν3

1
E− Ĥ + E0 − iη

âν2 â+ν4
|Ψ0〉

1
〈Ψ0|Ψ0〉

− 〈Ψ0|âν2 â+ν4

1
E + Ĥ − E0 + iη

âν1 â+ν3
|Ψ0〉

1
〈Ψ0|Ψ0〉

. (103)

By inserting the completeness of the eigenfunctions of Ĥ, ∑n |Ψn〉〈Ψn| = 1 and considering
Ĥ|Ψn〉 = En|Ψn〉, we obtain the expression

i
h̄

G̃(ν1, ν2, ν3, ν4, E) =
1

〈Ψ0|Ψ0〉

∑
n

[
〈Ψ0|âν1 â+ν3

|Ψn〉〈Ψn| âν2 â+ν4
|Ψ0〉

E− (En − E0)− iη
−
〈Ψ0|âν2 â+ν4

|Ψn〉〈Ψn|âν1 â+ν3
|Ψ0〉

E + (En − E0) + iη

]
. (104)

In this expression, the states |Ψn〉 have the same number of particles as the ground state.
The energy values related to the poles, E = En − E0, represent the excitation energies of the
A particle system.

The unperturbed two-body Green function is obtained by substituting in
Equation (104) the eigenstates |Ψ〉 of the full hamiltonian with |Φ〉, the eigenstates of
the IPM hamiltonian Ĥ0. In this case, the action of the creation and destruction operators
is well defined and the energy eigenvalues are given by the s.p. energies of the ph pair.
Because of the properties of the creation and destruction operators we have that

G̃0(m, i, j, n, E) = h̄
δijδmn

εm − εi − E− iη
, G̃0(i, m, n, j, E) = h̄

δijδmn

εm − εi + E− iη
, (105)

and
G̃0(m, i, n, j, E) = G̃0(i, m, j, n, E) = 0. (106)

We show in Appendix D that the two-body Green function is strictly related to
the response of the system to an external probe. By using F̂, the one-body operator
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of Equation (50) describing the action of the external probe, we can write the transition
amplitude from the ground state to an excited state as

S(E) = ∑
n
|〈Ψ0|F̂|Ψn〉|2δ

(
E− (En − E0)

)
= ∑

ν1ν2

∑
ν3ν4

fν1ν2 f ∗ν3ν4

=
π

(
ih̄G̃(ν1, ν3, ν2, ν4, E)

)
, (107)

where fν1ν2 indicates the matrix element between s.p. wave functions.
The expression (107) of the transition amplitude separates the action of the external

probe from the many-body response which is described by the two-body Green function.
This latter quantity is related to the interaction between the particles composing the system
and it is a universal function independent of the kind of probe perturbing the system. The
knowledge of S(E) allows a direct comparison with observable quantities such as scattering
cross sections.

In the time-dependent perturbation theory, a theorem, called Gell–Man and Low,
indicates that the eigenvector |Ψ0〉 of the full hamiltonian can be written as [22]:

Û(0,−∞)|Φ0〉
〈Φ0|Û(0,−∞)|Φ0〉

≡ |Ψ0〉
〈Φ0|Ψ0〉

, (108)

where the time evolution operator Û can be expressed in powers of the interaction Ĥ1
expressed in the interaction picture

Û(t, t0) =
∞

∑
n=0

(
−i
h̄

)n 1
n!

∫ t

t0

dt1 . . .
∫ t

t0

dtnT̂
[
Ĥ1(t1) . . . Ĥ1(tn)

]
. (109)

In the above equation, we dropped the subindex I to simplify the writing.
We insert Equation (108) into the expression (94) of the two-body Green function and

we obtain a perturbative expression of the full interacting Green function in powers of Ĥ1
and of the unperturbed two-body Green function G0.

It is useful to consider a graphical representation of the Green function, as indicated in
Figure 2. The full two-body Green function is indicated by two continuous thick lines. The
upward arrows stand for the particle state and the downward for the hole. The continuous
thin lines indicate the unperturbed Green function G0. In the figure, we consider only
two-body interactions, i.e., Ĥ1 = Û(x1, x2) which is represented by a dashed line, with x
indicating both space and time coordinates.

Figure 2 shows some of the terms we obtain by carrying out the perturbation expansion
of the two-body Green function. The explicit expressions of the various terms are presented
in Appendix E. We observe that there are diagrams which, by cutting particle and hole
lines, can be separated into two diagrams already present in the expansion. This is the case,
for example, of the diagram E of the figure which is composed by two diagrams of C type
and by the diagram G which is given by the product of a diagram of C type and another
one of F type. The contribution of these diagrams can be factorized in a term containing
the four coordinates x1 · · · x4 of the full Green function times, another term which does
not contain them. The sum of all the diagrams of this second type is identical to that of all
the diagrams of the denominator; therefore, these two contributions simplify the matter.
Finally, the calculation of G can be carried out by considering only the remaining diagrams
of the numerators which are called irreducible.
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Figure 2. Graphical representation of the perturbation expansion of the interacting Green function.
The double thick lines represent G, the double thin lines G0 and the dashed lines the two-body
interaction Û.

Formally, this can be expressed with an equation similar to the Dyson’s equation for
the one-body Green function [22]:

G(x1, x2, x3, x4) = G0(x1, x2, x3, x4)

+
∫

d4y1 d4y2 d4y3 d4y4 G0(x1, x2, y1, y2)K̂(y1, y2, y3, y4)G(y3, y4, x3, x4) . (110)

A graphical representation of Equation (110) is shown in Figure 3. The dashed area
indicates the kernel K̂ containing all the irreducible diagrams which can be inserted
between the four y points.


=
 
+



y4



y1



y3



y2


Figure 3. Graphical representation of Equation (110). The criss-cross box represents the proper
kernel K̂.

RPA consists in considering, in the previous equation, instead of the full kernel K̂, a
single interaction Û depending only on two coordinates

K̂RPA(y1, y2, y3, y4) = Û(y1, y4)[δ(y1 − y2)δ(y3 − y4)− δ(y1 − y3)δ(y2 − y4)] ; (111)



Universe 2023, 9, 141 23 of 61

therefore,

GRPA(x1, x2, x3, x4) = G0(x1, x2, x3, x4)

+
∫

d4 y1 d4 y2 G0(x1, x2, y1, y1)Û(y1, y2)GRPA(y2, y2, x3, x4)

−
∫

d4y1 d4y2 G0(x1, x2, y1, y2)Û(y1, y2)GRPA(y1, y2, x3, x4) , (112)

where we separated the direct and the exchange terms. The graphical representation of the
above equation is given in Figure 4.


=
 
+
 
-


Figure 4. Graphical representation of the two-body Green function in RPA.

In mixed representation, RPA equations are

G̃RPA(ν1, ν2, ν3, ν4, E) = G̃0(ν1, ν2, ν3, ν4, E)

+ ∑
µ1,µ2,µ3,µ4

G̃0(ν1, ν2, µ1, µ2, E) 〈µ1µ3|V̂|µ2µ4〉 G̃RPA(µ3, µ4, ν3, ν4, E)
1
h̄

− ∑
µ1,µ2,µ3,µ4

G̃0(ν1, ν2, µ1, µ2, E) 〈µ1µ2|V̂|µ4µ3〉 G̃RPA(µ3, µ4, ν3, ν4, E)
1
h̄

= ∑
µ1,µ2,µ3,µ4

G̃0(ν1, ν2, µ1, µ2, E)
{

δµ1,ν3 δµ2,ν4

+
1
h̄
〈µ1µ3|V̂|µ2µ4〉 G̃RPA(µ3, µ4, ν3, ν4, E)

− 1
h̄
〈µ1µ2|V̂|µ4µ3〉 G̃RPA(µ3, µ4, ν3, ν4, E)

}
, (113)

where we used Û = V̂/h̄.
As indicated by Equations (105) and (106), there are two possibilities of forming

non-zero unperturbed Green functions. By adopting the usual convention of indicat-
ing with i, j, k, l the hole states and with m, n, p, q the particle states, we express RPA
Equation (113) as:

∑
q,l

{[
Amiql − E δm,q δi,l

]
G̃RPA(q, l, j, n, E) + BmiqlG̃RPA(l, q, j, n, E)

}
= δm,nδi,j, (114)

∑
q,l

{[
A∗miql + E δm,qδi,l

]
G̃RPA(l, q, j, n, E) + B∗miqlG̃

RPA(q, l, j, n, E)
}
= 0, (115)

∑
q,l

{[
Amiql − E)δm,qδi,l

]
G̃RPA(q, l, n, j, E) + BmiqlG̃RPA(l, q, n, j, E)

}
= 0, (116)

∑
q,l

{[
A∗miql + E δm,qδi,l

]
G̃RPA(l, q, n, j, E) + B∗miqlG̃

RPA(q, l, n, j)
}
= δm,nδi,j, (117)
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where we have defined the matrices

Amiql = (εm − εi)δm,qδi,l + Viqml , (118)

Bmiql = −Vilmq. (119)

The calculation is outlined in detail in Appendix F. These equations can be expressed in
matrix form. By defining

G1(E) ≡ G̃RPA(m, i, j, n, E) ; G2(E) ≡ G̃RPA(m, i, n, j, E) ;

G3(E) ≡ G̃RPA(i, m, j, n, E) ; G4(E) ≡ G̃RPA(i, m, n, j, E), (120)

we obtain  A− E I B

B∗ A∗ + E I

 G1(E) G2(E)

G3(E) G4(E)

 =

 I 0

0 I

. (121)

The two-body Green functions depend on the energy E. The poles ωn = En − E0 of
these Green functions are the excitation energies of RPA excited states |Ψn〉. When the
value of the energy E corresponds to that of a pole, the value of the Green function goes to
infinity; therefore, Equation (121) remains valid only if the matrix of the coefficients goes
to zero. For this reason RPA excitation energies are those of the non-trivial solution of the
homogeneous system of equations A−ωn I B

B∗ A∗ + ωn I

 Xn

Yn

 = 0 , (122)

which is the expression (67) of RPA equations.
In Section 3.2.3, we have shown that RPA equations for each positive eigenvalue ωn

admit also a negative eigenvalue −ωn. The set of the vectors of the X and Y amplitudes is
orthogonal

(X∗m,−Y∗m)

 Xn

Yn

 = δm,n,

and complete

∑
n>0

 Xn

Yn

(X∗n, Y∗n )− ∑
n<0

 X∗n

Y∗n

(Xn, Yn) = I,

where n > 0 indicates the sum on the positive ωn and n < 0 the sum on the negative values,
as indicated by Equation (70). By inserting the above expressions in Equation (121), we
identify the solution as G1(E) G2(E)

G3(E) G4(E)

 = ∑
n

1
ωn − E

 Xn

Yn

(X∗m, Y∗m)

− ∑
n

1
−|ωn| − E

 Y∗n

X∗n

(Yn, Xn)

=

 ∑n

(
XnX∗n
ωn−E + YnY∗n

ωn+E

)
∑n

(
XnY∗n
ωn−E + XnY∗n

ωn+E

)
∑n

(
YnX∗n
ωn−E + X∗nYn

ωn+E

)
∑n

(
YnY∗n
ωn−E + XnX∗n

ωn+E

)
, (123)
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where ωn > 0 always. The comparison with the expression of the two-body Green function
in the representation of Equation (104) allows the identification of the X and Y amplitudes as

Xmi = 〈Ψ0|âm â+i |Ψn〉 ; X∗mi = 〈Ψn|âi â+m |Ψn〉 ; (124)

Ymi = 〈Ψ0|âi â+m |Ψn〉 ; Y∗mi = 〈Ψn|âm â+i |Ψ0〉 , (125)

where |Ψn〉 and |Ψ0〉 are, respectively, RPA excited and ground states, which we called |ν〉
and |ν0〉 in Section 3.2.2.

Infinite Systems

In an infinite and homogeneous system with translational invariance, the s.p. wave
functions are the plane waves (11) characterized by the modules of the wave vector k ≡ |k|.
If we use the representation of Equation (104) of the unperturbed two-body Green function,
we obtain terms of the kind

〈Φ0|âν1 â+ν3
|Φn〉〈Φn| âν2 â+ν4

|Φ0〉 = δk1,k4 θ(k1 − kF) δk2,k3 θ(kF − k2), (126)

since the action of the creation and destruction operators on the IPM states |Φ〉 is well
defined.

We consider Green functions depending on the energy, as indicated by Equation (99).
In this representation, by inserting the plane wave function in Equation (98), we obtain for
the unperturbed two-body Green function the expression

G̃0(x1, x2, x3, x4; E) =
1

(2π)6

∫
dk1 dk2eik1·(x1−x4)e−ik2·(x2−x3)G̃0(k1, k2; E), (127)

clearly indicating that there is a dependence only on the difference between the particle and
hole coordinates. This is a consequence of the translational invariance of the system. The
interacting Green function and the kernel of Equation (110) depend only on the coordinate
difference. We can define the Fourier transforms of these quantities depending on the
modules of two momenta

G̃(x1, x2, x3, x4; E) =
1

(2π)6

∫
dk1 dk2eik1·(x1−x4)eik2·(x2−x3)G̃(k1, k2; E) , (128)

K̂(x1, x2, x3, x4) =
1

(2π)6

∫
dk1 dk2eik1·(x1−x4)e−ik2·(x2−x3) ˆ̃K(k1, k2) ; (129)

the kernel does not depend on the energy E.
By inserting these definitions in RPA Equation (112) and substituting K̂ with Û, which

is RPA ansatz, we obtain∫
dk1 dk2eik1·(x1−x4)e−ik2·(x2−x3)G̃RPA(k1, k2; E) =∫
dk1 dk2eik1·(x1−x4)e−ik2·(x2−x3)G̃0(k1, k2; E)

+
∫

dy1dy2dy3dy4

∫
dk1 dk2eik1·(x1−y2)e−ik2·(x2−y1)

G̃0(k1, k2; E)
∫

dka dkbeika ·(y1−y4)e−ikb ·(y2−y3) ˆ̃U(ka, kb)∫
dk3 dk4eik3·(y3−x4)e−ik4·(y4−x3)G̃RPA(k3, k4; E)

+
∫

dy1dy2dy3dy4

∫
dk1 dk2eik1·(x1−y2)e−ik2·(x2−y1)

G̃0(k1, k2; E)
∫

dka dkbeika ·(y1−y4)e−ikb ·(y2−y3) ˆ̃U(ka, kb)∫
dk3 dk4eik3·(y4−x4)e−ik4·(y3−x3)G̃RPA(k3, k4; E),



Universe 2023, 9, 141 26 of 61

where the second term of the right hand side is called direct and the third term is the
exchange. The integration on the y coordinates in the direct term leads to the relations

− ka = k2 = k4 and − kb = k1 = k3, (130)

while that of the exchange term leads to

ka = k2 = −k3 and kb = k1 = −k4. (131)

By considering the above conditions, we have∫
dk1 dk2eik1·(x1−x4)e−ik2·(x2−x3)G̃RPA(k1, k2; E) =∫
dk1 dk2eik1·(x1−x4)e−ik2·(x2−x3)G̃0(k1, k2; E)

+
∫

dk1 dk2eik1·(x1−x4)e−ik2·(x2−x3)G̃0(k1, k2; E) ˆ̃U(k1, k2)G̃RPA(k1, k2; E)

+
∫

dk1 dk2eik1·(x1+x3)e−ik2·(x2+x4)G̃0(k1, k2; E) ˆ̃U(k2, k1)G̃RPA(k2, k1; E).

If we neglect the exchange term, we have a simple algebraic relation between the Green
functions in momentum space

G̃RPA,D(k1, k2; E) = G̃0(k1, k2; E) + G̃0(k1, k2; E) ˜̂U(k1 − k2 = q)G̃RPA,D(k1, k2; E),

G̃RPA,D(k1, k1 + q; E)
[
1− G̃0(k1, k1 + q; E) ˜̂U(q)

]
= G̃0(k1, k1 + q; E),

G̃RPA,D(k1, k1 + q; E) =
G̃0(k1, k1 + q; E)

1− G̃0(k1, k1 + q; E) ˜̂U(q)
. (132)

This expression is commonly used to calculate the linear response of infinite fermion
systems to an external probe. The graphical representation of the above equation is given
in Figure 5. The equation represents an infinite sum of diagrams of ring form and it is,
therefore, called ring approximation.


=


Figure 5. Graphical representation of the ring diagram approximation in RPA.

The exchange term cannot be factorized as the direct one. The inclusion of this term
is sometimes treated by using approximated treatments. One of them is the continuous
fraction technique [26,27].



Universe 2023, 9, 141 27 of 61

5. RPA with Time-Dependent Hartree–Fock

Another way of obtaining RPA secular Equation (67) is that of using time-dependent
Hartree–Fock (TDHF) equations and the variational principle. We apply the variational
principle to the time-dependent Schrödinger equation

δ 〈Ψ(t)|
(

Ĥ − ih̄
∂

∂t

)
|Ψ(t)〉 = 0. (133)

The search for the minimum of the above functional of Ψ(t) is carried out in the Hilbert
subspace spanned by many-body wave functions of the form

|Ψ(t)〉 = e
∑
mi

Cmi(t)â+m âi
|Φ0(t)〉 , (134)

where the time-dependent IPM state has been defined as

|Φ0(t)〉 = e−
i
h̄E0t |Φ0〉 . (135)

In the above equation, |Φ0〉 is the stationary Hartree–Fock ground state of which E0,
Equation (14), is the energy eigenvalue. In Equation (133), the variation of the real and
of the imaginary part of Ψ(t) are independent. The variation is carried on the only time
dependent terms which are Cmi(t) and C∗mi(t). We obtain a system composed by the
equations

δ

δC∗mi(t)
〈Ψ(t)|Ĥ − ih̄

∂

∂t
|Ψ(t)〉 = 0, (136)

δ

δCmi(t)
〈Ψ(t)|Ĥ − ih̄

∂

∂t
|Ψ(t)〉 = 0. (137)

We consider Equation (136) and calculate the expectation value of operators by using the
power expansion of the exponential

e
∑
mi

Cmi(t)â+m âi
= Î+ ∑

mi
Cmi(t)â+m âi +

1
2 ∑

minj
Cmi(t)â+m âiCnj(t)â+n âj + · · · , (138)

For the hamiltonian expectation value, we obtain the expression

〈Ψ(t)|Ĥ|Ψ(t)〉 = 〈Φ0(t)|Ĥ|Φ0(t)〉
+ ∑

mi
C∗mi(t) 〈Φ0(t)|â+i âm Ĥ|Φ0(t)〉

+ ∑
mi

Cmi(t) 〈Φ0(t)|Ĥâ+m âi|Φ0(t)〉

+
1
2 ∑

minj
C∗mi(t)C

∗
nj(t) 〈Φ0(t)|â+j ân â+i âm Ĥ|Φ0(t)〉

+
1
2 ∑

minj
Cmi(t)Cnj(t) 〈Φ0(t)|Ĥâ+m âi â+n âj|Φ0(t)〉

+ ∑
minj

C∗mi(t)Cnj(t) 〈Φ0(t)|â+i âmĤâ+n âjĤ|Φ0(t)〉+ · · · . (139)

The first term of the above equation is the E0 of Equation (14). The linear terms in
Cmi(t) are all zero since they overlap with orthogonal Slater determinants, or, in other
words, since the number of ph operators is odd.
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Let us calculate the matrix element of the fifth term by using the expression of the
hamiltonian given in Equation (12)

〈Φ0(t)|Ĥâ+m âi â+n âj|Φ0(t)〉 = ∑
ν

εν 〈Φ0(t)|â+ν âν â+m âi â+n âj|Φ0(t)〉

− 1
2 ∑

kl
Vklkl 〈Φ0(t)|â+m âi â+n âj|Φ0(t)〉

+
1
4 ∑

µµ′νν′
Vνµν′µ′ 〈Φ0(t)|N̂[â+ν â+µ âµ′ âν′ ]â

+
m âi â+n âj|Φ0(t)〉 . (140)

The first and second terms are zero because of the orthogonality of the Slater determinants.
With a calculation analogous to that leading to the interacting term of Aminj in Equation (68)
(this calculation is presented in Equation (A19)), we obtain

1
4 ∑

µµ′νν′
Vνµν′µ′ 〈Φ0(t)|N̂[â+ν â+µ âµ′ âν′ ]â

+
m âi â+n âj|Φ0(t)〉 = Vijmn. (141)

The fifth term of Equation (139) can be written as

1
2 ∑

minj
Cmi(t)Cnj(t) 〈Φ0(t)|Ĥâ+m âi â+n âj|Φ0(t)〉 =

1
2 ∑

minj
Cmi(t)Cnj(t)Vijmn. (142)

By working in an analogous manner for the fourth term of Equation (139), we obtain

1
2 ∑

minj
C∗mi(t)C

∗
nj(t) 〈Φ0(t)|â+j ân â+i âm Ĥ|Φ0(t)〉 =

1
2 ∑

minj
C∗mi(t)C

∗
nj(t)Vmnij. (143)

The expression of the last term of Equation (139) is

∑
minj

C∗mi(t)Cnj(t) 〈Φ0(t)|â+i âm Ĥâ+n âj Ĥ|Φ0(t)〉

= ∑
mi
|Cmi|2 ∑

k
εk + ∑

mi
|Cmi|2(εm − εi)

−1
2 ∑

mi
|Cmi|2 ∑

kl
Vklkl + ∑

minj
CmiC∗njVmjin

≡ E0 ∑
mi
|Cmi|2 + ∑

mi
|Cmi|2(εm − εi) + ∑

minj
CmiC∗njVmjin, (144)

where we used the definition (14) of E0. The final expression of Equation (139) is then

〈Ψ(t)|Ĥ|Ψ(t)〉 = E0

(
1 + ∑

mi
|Cmi|2

)
+ ∑

mi
|Cmi|2(εm − εi) + ∑

minj
CmiC∗njVmjin

+
1
2 ∑

minj
Cmi(t)Cnj(t)Vijmn +

1
2 ∑

minj
C∗mi(t)C

∗
nj(t)Vmnij. (145)

Let us calculate the second term of Equation (136), containing the time derivation. By
considering the expression (134) of |Ψ(t)〉, we have

ih̄ 〈Ψ(t)| ∂

∂t
|Ψ(t)〉 = E0 〈Ψ(t)|Ψ(t)〉+ ih̄ ∑

mi

d
dt

Cmi(t) 〈Ψ(t)|â+m âi|Ψ(t)〉 . (146)
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We make a power expansion of the exponential function in Equation (134) and obtain

〈Ψ(t)|Ψ(t)〉 = 〈Φ0(t)|Φ0(t)〉
+ ∑

minj
C∗mi(t)Cnj(t) 〈Φ0(t)|â+i âm â+n âj|Φ0(t)〉+ · · · , (147)

and after the application of the Wick’s theorem

〈Ψ(t)|Ψ(t)〉 = 1 + ∑
mi
|Cmi(t)|2 + · · · . (148)

The terms of first order in C are zero because of the odd number of ph excitation
pairs. By using the power expansion of the exponential to calculate the second term of
Equation (146), we have

〈Ψ(t)|â+m âi|Ψ(t)〉 = ∑
nj

C∗nj 〈Φ0(t)|â+j ân â+m âi|Φ0(t)〉+ · · · = C∗mi + · · · . (149)

The term related to the time derivative becomes

ih̄ 〈Ψ(t)| ∂

∂t
|Ψ(t)〉 = E0

(
1 + ∑

mi
|Cmi(t)|2

)
+ ih̄ ∑

mi
C∗mi(t)

d
dt

Cmi(t) + · · · . (150)

We put together the results of Equations (145) and (150); we consider terms up to the second
order in C and obtain the expression

〈Ψ(t)|Ĥ − ih̄
∂

∂t
|Ψ(t)〉 ' ∑

mi
|Cmi(t)|2(εm − εi) + ∑

minj
CmiC∗njVmjin

+
1
2 ∑

minj
Cmi(t)Cnj(t)Vijmn +

1
2 ∑

minj
C∗mi(t)C

∗
nj(t)Vmnij

− ih̄ ∑
mi

C∗mi(t)
d
dt

Cmi(t). (151)

We have to impose the variational condition

δ

δC∗mi(t)
〈Ψ(t)|Ĥ − ih̄

∂

∂t
|Ψ(t)〉 = ∂

∂C∗mi(t)
〈Ψ(t)|Ĥ − ih̄

∂

∂t
|Ψ(t)〉 = 0, (152)

where the variational derivative has been changed in partial derivatives since the C’s are
the only terms depending on time. By working out the derivative, we obtain the expression

Cmi(t)(εm − εi) + ∑
nj

C∗njVmnij + ∑
nj

CnjVmjin = ih̄ ∑
mi

d
dt

Cmi(t). (153)

We consider harmonic oscillations around the ground state

Cmi(t) = Xmie−iωt + Ymieiωt. (154)

where X, Y and ω are real numbers. By inserting this expression in Equation (153) and
separating the positive and negative frequencies, we obtain the system of equations

Xmi(εm − εi) + ∑
nj

VmjinXnj + ∑
nj

VmnijYnj = h̄ωXmi, (155)

Y∗mi(εm − εi) + ∑
nj

VmjinY∗nj + ∑
nj

VmnijX∗nj = −h̄ω∗Xmi, (156)
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which is identical to Equation (67) where the A and B matrices have been defined by
Equations (68) and (69).

6. Continuum RPA

If the excitation energy ω of the system is larger than |εh|, the particle lying on this
state can be emitted and leave the system. In an atom, this effect produces a positive ion, in
a nucleus a new nucleus with A− 1 nucleons. The RPA approach which explicitly considers
the emission of a particle is called Continuum RPA (CRPA), where continuum refers to the
fact that for εp > 0 the IPM Schrödinger equation has a continuous spectrum. In this case,
the s.p. wave function has an asymptotically oscillating behavior.

In CRPA, the operator (54) defining the excited state is written as

Q̂†
ν = ∑

[p]h
∑
∫

εp

[
Xν

ph(εp) â†
p(εp) âh − Yν

ph(εp) â†
h âp(εp)

]
, (157)

where we have introduced the symbol

∑
∫

εp
≡ ∑

εF≤εp≤0
+
∫ ∞

0
dεp (158)

to indicate a sum on the discrete energies and an integral on the continuum part of the
spectrum. The symbol [p] indicates the set of quantum numbers characterizing the particle
state with the exclusion of the energy.

RPA secular Equation (67) with the continuum can be written as

(εp − εh −ω) Xν
ph(εp) +

∑
[p′ ]h′

∑
∫

εp′

[
Vph′hp′(εp, εp′) Xν

p′h′(εp′) + Vpp′hh′(εp, εp′)Yν
p′h′(εp′)

]
= 0 , (159)

(εp − εh + ω)Yν
ph(εp) +

∑
[p′ ]h′

∑
∫

εp′

[
Vhpp′h′(εp, εp′) Yν

p′h′(εp) + Vhh′pp′(εp, εp′) Xν
p′h′(εp′)

]
= 0 . (160)

where we have explicitly written the dependences on the particle energies which are now
continuous variables.

In order to discuss the implications related to the fact that εp can assume a continuous
set of values, it is useful to express the X and Y RPA amplitudes as:

Xν
ph(εp) = Aν

phδ(εp − εh −ω) +P
BX,ν

ph (εp)

εp − εh −ω
, (161)

Yν
ph(εp) =

BY,ν
ph (εp)

εp − εh + ω
. (162)

When εp assumes the value εp = εh +ω, in the integrals of (159) and (160), the X amplitudes
have a pole. In the above expression, the contribution of the pole, multiplied by a constant
Aν

ph, is separated from the principal part, indicated by P.
The CRPA secular equations in terms of the new unknown can be written as

BX,ν
ph (εp) + ∑

[p′ ]h′
∑
∫

εp′

Vph′hp′(εp, εp′)
BX,ν

p′h′(εp′)

εp′ − εh′ −ω
+ Vpp′hh′(εp, εp′)

BY,ν
p′h′(εp′)

εp′ − εh′ + ω


= − ∑

[p′ ]h′
Vph′hp′(εp, εp′)Aν

p′h′δ(εp′ − εh′ −ω) , (163)
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BY,ν
ph (εp) + ∑

[p′ ]h′
∑
∫

εp′

Vhpp′h′(εp, εp′)
BY,ν

p′h′(εp′)

εp′ − εh′ + ω
+ Vhh′pp′(εp, εp′)

BX,ν
p′h′(εp′)

εp′ − εh′ −ω


= − ∑

[p′ ]h′
Vhpp′h′(εp, εp′)Aν

p′h′δ(εp′ − εh′ −ω) . (164)

The above equations indicate a system of linear equations whose unknowns are the B’s.
The continuum threshold, ωthr, is the minimum value of the energy necessary to emit

the particle, i.e., the absolute value of the s.p. energy of the hole state closest to the Fermi
surface. For ω < ωthr, no particle can be emitted. In this case, all the Aν

p′h′ = 0; therefore,
the system is homogeneous. Solutions, different from the trivial one, are obtained when
the determinant of the known coefficients is zero. This happens for some specific values
of the excitation energy ω. Below the emission threshold, the CRPA equations predict a
discrete spectrum of solutions. When ω > ωthr, some ph pairs have enough energy to
put the particle in the continuum, i.e., with εp > 0. In the CRPA jargon these ph pairs are
called open channels. Obviously, the other ph pairs where εp < 0 are called closed channels.
Every open channel generates a coefficient different from zero in the right hand side of
Equations (163) and (164). The problem is defined by imposing boundary conditions, which
is equivalent to saying that we have to select specific values of the Aν

ph coefficients. The
choice commonly adopted consists in imposing that the particle is emitted in a specific
open channel, called elastic channel. This means

Aν
ph = δp,p0 δh,h0 , (165)

where p0 and h0 are the quantum numbers characterizing the elastic channel. The sums
in terms of the right hand sides of Equations (163) and (164) collapse to a single term. For
each value of the excitation energy ω, the system has to be solved a number of times equal
to the number of open channels.

The solution of the CRPA system of equations can be obtained by solving directly the
set of Equations (163) and (164). The s.p. particle wave functions in the continuum are
obtained by solving the s.p. Schrödinger equation with asymptotically oscillating boundary
conditions. This is the classical problem of a particle elastically scattered by a potential.
This problem has to be solved for a set of εp energy values mapping the continuum in
such a way that the integral of Equation (158) is numerically stable. This means that εp
must reach values much larger than those of the excitation energy region one wants to
investigate. The selection of the εp values to obtain the s.p. wave function is not a simple
problem to be solved. The various particles may have more or less sharp resonances and
they have to be properly described by the choice of the εp values mapping the continuum.

There is another technical problem in the direct approach to the solution of the CRPA
Equations (163) and (164). The numerical stability of the interaction matrix elements V is
due to the fact that, in the integrals, hole wave functions, which asymptotically go to zero,
are present. This works well for the direct matrix elements

〈p1h2|V̂|h1 p2〉 =
∫

d3r1

∫
d3r2φ∗p1

(r1)φ
∗
h2
(r2)V(r1, r2)φh1(r1)φp2(r2), (166)

but it is a problem for the exchange matrix element

〈p1h2|V̂|p2h1〉 =
∫

d3r1

∫
d3r2φ∗p1

(r1)φ
∗
h2
(r2)V(r1, r2)φp2(r1)φh1(r2), (167)
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where the two particle wave functions, both oscillating, are integrated together. The direct
approach is suitable to be used with zero-range interactions V(r1, r2) = V0δ(r1 − r2). In
this case, direct and exchange matrix elements are identical

〈p1h2|V̂|h1 p2〉 = 〈p1h2|V̂|p2h1〉 = V0

∫
d3r1φ∗p1

(r1)φ
∗
h2
(r1)φp2(r1)φh1(r1), (168)

and the hole wave functions are always present in the integral. This ensures the numerical
convergence. The direct approach is used, for example, in Refs. [28,29], where the CRPA
equations are expanded on a Fourier–Bessel basis.

Another method of solving the CRPA equations consists in reformulating the secular
Equations (159) and (160) with new unknown functions which do not have explicit depen-
dence on the continuous particle energy εp. The new unknowns are the channel functions f
and g defined as:

f ν
ph(r) = ∑

∫
εp

Xν
ph(εp) φp(r, εp) , (169)

and
gν

ph(r) = ∑
∫

εp
Yν∗

ph (εp) φp(r, εp) . (170)

In the first step of this procedure, we multiply Equations (163) and (164) by φp(r, εp),
which is the eigenfunction of the s.p. hamiltonian

ĥφp(r, εp) = εpφp(r, εp), (171)

and we obtain

(εp− εh−ω)φp(r, εp) Xν
ph(εp) = ĥ φp(r, εp) Xν

ph(εp) − (εh +ω) φp(r, εp) Xν
ph(εp) . (172)

Since the s.p. hamiltonian ĥ does not depend on εp, we can write

∑
∫

εp
ĥ φp(r, εp) Xν

ph(εp) = ĥ f ν
ph(r) . (173)

We apply this procedure, i.e., multiplication of φp(r) and integration on εp, to all the
terms of Equations (159) and (160). By considering that∫

dεpφ∗p(r1)φp(r2) = δ(r1 − r2),

we obtain a new set of CRPA secular equations where the unknowns are the channel
functions f and g,

ĥ fph(r)− (εh + ω) fph(r) = −Fph(r)

+ ∑
εp<εF

φp(r)
∫

d3r1φ∗h(r1)Fph(r1) , (174)

ĥ gph(r)− (εh − ω) gph(r) = −Gph(r)

+ ∑
εp<εF

φp(r)
∫

d3r1 φ∗h(r1)Gph(r1) , (175)

where we have defined

Fph(r) = ∑
[p′ ]h′

∫
d3 r2V(r, r2)

{
φ∗h′(r2)

[
φh(r) fp′h′(r2)− fp′h′(r) φh(r2)

]

+ g∗p′h′(r2)

[
φh(r) φh′(r2) − φh′(r) φh(r2)

]}
, (176)
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and Gph is obtained from the above equation by interchanging the f and g channel functions.
The last terms of both Equations (174) and (175) are the contributions of particle wave
functions φp which are not in the continuum.

We changed a set of algebraic equations with unknowns depending on the continuous
variable εp into a set of integro-differential equations whose unknowns depend on r. In
analogy to what we have discussed above, for the direct solution of the CRPA secular
equations, we solve Equations (174) and (175) a number of times equal to the number of
the open channels, by imposing that the particle is emitted only in the elastic channel.

In spherical systems, the boundary conditions are imposed on the radial parts of the f
and g functions. For an open ph channel, the outgoing asymptotic behavior of the channel
function f p0h0

ph is

f p0h0
ph (r → ∞) → Rp0(r, εp) δp,p0 δh,h0 + λ H−p (εh + ω, r) , (177)

where λ is a complex normalization constant and H−p (εh + ω, r) is an ingoing Coulomb
function if the emitted particle is electrically charged or a Hankel function in cases of
neutron. The radial part of the s.p. wave function Rp is the eigenfunction of the s.p.
hamiltonian for positive energy. In the case of a closed channel, the asymptotic behavior is
given by a decreasing exponential function

f p0h0
ph (r → ∞) → 1

r
exp

[
−r
(

2m|εh + ω|
h̄2

) 1
2
]

, (178)

in analogy to the case of the channel functions gp0h0
ph ,

gp0h0
ph (r → ∞) → 1

r
exp

[
−r
(

2m|εh −ω|
h̄2

) 1
2
]

. (179)

This approach solves the two technical problems of the direct approach indicated above,
since the integration εp is formally done in the definition of the two channel functions f
and g.

These CRPA secular equations can be solved by using a procedure similar to that
presented in Refs. [30,31]. The channel functions f and g are expanded on the basis of
Sturm functions Φµ

p which obey the required boundary conditions (177)–(179).
In the IPM, the particle emission process is described by considering that a particle

lying on the hole state h0 is emitted in the particle state p0. The CRPA considers this fact
in the elastic channel and, in addition, takes care of the fact that the residual interaction
mixes this direct emission with all the other ph pairs compatible with the total angular
momentum of the excitation.

7. Quasi-Particle RPA (QRPA)

In the derivations presented in the previous sections, we considered that the IPM
ground state is defined by a unique Slater determinant |Φ0〉, where all the s.p. states
below the Fermi energy are fully occupied and those above it are completely empty. This
description does not consider the presence of an effect which is very important in nuclei:
the pairing. This effect couples two like-fermions to form a unique bosonic system. In
metals this produces the effects of superconductivity. In nuclear physics this leads to the
fact that all the even–even nuclei, without exceptions, have spin zero.

A convenient description of pairing effects is based on the Bardeen–Cooper–Schrieffer
(BCS) theory of superconductivity [32]. In this approach, the choice of |Φ0〉 for the descrip-
tion of the system ground state is abandoned.



Universe 2023, 9, 141 34 of 61

Let us consider a finite fermion system and use the expression Equation (8) for the s.p.
wave functions. We introduce a notation to indicate time-reversed s.p. wave functions

|k〉 := |nl
1
2

jm〉 ; |−k〉 := |nl
1
2

j−m〉 . (180)

The BCS ground state is defined as

|BCS〉 :=
∞

∏
k>0

(
uk + vk â+k â+−k

)
|−〉 , (181)

where we have indicated with |−〉 the state describing the physical vacuum. The v2
k factor

is the occupation probability of the k-th s.p. state, and u2
k = 1− v2

k the probability of being
empty. When pairing effects are negligible, for example, in doubly magic nuclei, vk = 1 for
all the s.p. states below the Fermi surface and vk = 0 for all the states above it; therefore,
|BCS〉 = |Φ0〉.

A convenient manner of handling the |BCS〉 states is to define quasi-particle creation
and destruction operators which are linear combinations of usual particle creation and
destruction operators. The relations are known as Bogoliubov–Valatin transformations

α̂k = uk âk − vk â+−k, (182)

α̂+k = uk â+k − vk â−k. (183)

Since the quasi-particle operators are linear combination of the creation and destruction
operators, anti-commutation relations analogous to (A3) are valid also for the α̂ and α̂+

operators. It is possible to show that [14]

α̂k |BCS〉 = 0, (184)

indicating that the |BCS〉 states can be appropriately called quasi-particle vacuum. The
BCS ground state is not an eigenstate of the number operator

N̂ = ∑
k

â+k âk, (185)

and the number of particles is conserved only on average [13,14]

〈BCS|N̂|BCS〉 = 2 ∑
k>0

v2
k = A. (186)

The values of the vk coefficients, and consequently those of uk, are obtained by exploit-
ing the variational principle. For this reason, it is common practice to use a definition of the
hamiltonian containing the Lagrange multiplier λ, related to the total number of particle A

Ĥ = Ĥ − λN̂. (187)

The hamiltonian Ĥ is written by expressing in Equation (A13) the â and â+ operators
in terms of the quasi-particle operators α+ and α. By observing the operator structure, it is
possible to identify four different terms (see Equation (13.32) of [14])

Ĥ = Ĥ − λN̂ = Ĥ0 + Ĥ11 + Ĥ22 + Ĥint, (188)

where λ is present only in the first three terms. The various terms are defined as follows.

1. Ĥ0 is purely scalar,

Ĥ0 = ∑
k

[
(εk − λ− µk)2v2

k + ukvk ∑
k′

Vk,k′ ,k,k′uk′vk′

]
. (189)
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2. Ĥ11 depends on α̂+k α̂k,

Ĥ11 = ∑
k

{
[εk − λ− µk](u2

k − v2
k) + 2ukvk∆k

}
α̂+k α̂k. (190)

3. Ĥ22 depends on N̂[α̂+k α̂+k′ + α̂kα̂k′ ].
4. Ĥint = Ĥ40 + Ĥ31 + Ĥ22, where

Ĥ40 depends on [α̂+k1
α̂+k2

α̂+k3
α̂+k4

+ h.c.],
Ĥ31 depends on [α̂+k1

α̂+k2
α̂+k3

α̂k4 + h.c.],
and finally,

Ĥ22 =
1
2 ∑

abcd
V(22)

abcd α̂+ka
α̂+kb

α̂kd
α̂kc , (191)

with
V(22)

abcd = (uaubucud + vavbvcvd + 4uavbucvd)Vabcd. (192)

In the above equations, we used the following scalar quantities:

∆k = −∑
k′

Vk,−k,k′ ,−k′uk′vk′ , (193)

εk =
∫

d3r φ∗k (r)

(
−h̄2∇2

2m

)
φk(r) +

1
2 ∑

k′
Vk,k′ ,k,k′ v

2
k′ , (194)

µk = −1
2 ∑

k′
Vk,k′ ,k,k′ v

2
k′ . (195)

Because of Equation (184) the expectation value of Ĥ with respect to the BCS ground state is

〈BCS|Ĥ|BCS〉 = 〈BCS|Ĥ0|BCS〉 ≡ EBCS
A ; (196)

therefore, the application of the variational principle is

δ(〈BCS|Ĥ0|BCS〉) = 0, (197)

which implies the relation [13,14]:

(u2 − v2)∆k = 2vkuk(εk − λ + µk)⇒ vkuk =
∆k

2
√
(εk − λ− µk)2 + ∆2

k

. (198)

We insert the above result in Equation (190) and obtain the BCS s.p. energies

Ĥ11 =

{√
(εk − λ− µk)2 + ∆2

k

}
α̂+k α̂k := εBCS

k α̂+k α̂k. (199)

In the BCS approach, the radial expressions of the s.p. wave functions are obtained by
carrying out IPM calculations and only the occupation amplitudes vk and uk are modified.
There is a more fundamental approach, the Hartree–Fock–Bogolioubov theory, where s.p.
wave functions, energies and occupation probabilities are calculated in a unique theoretical
framework whose only input is the effective nucleon–nucleon interaction.

After having defined a new ground state containing pairing effects, we can use it to
develop the theory describing the harmonic vibrations around it. The derivation of the
QRPA secular equations is carried out by using the EOM method described in Section 3. In
this case, the Slater determinant |Φ0〉 is substituted by the BCS ground state |BCS〉 and the
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particle creation and destruction operators âk and â+k by the quasi-particle operators α̂k and
α̂+k . The QRPA excitation operator is given by

Q+
ν ≡ ∑

a≤b
Xν

abα̂+a α̂+b − ∑
a≤b

Yν
abα̂aα̂b . (200)

The indexes a and b containing all the quantum numbers which identify the quasi-particle
states are not, any more, referred to as particle or hole states. In this approach, the idea of
Fermi surface has disappeared. Each quasi-particle state can be partially occupied. For this
reason, in the above equation, we had to impose restrictions on the sums in order to avoid
double counting.

In the present case, the EOM (39) assumes the expression

〈BCS|
[
δQ̂ν, [Ĥ, Q̂+

ν ]
]
|BCS〉 = ω 〈BCS|

[
δQ̂ν, Q̂+

ν

]
|BCS〉 , (201)

where we have substituted Ô with δQ̂n. Following the steps of the derivation of RPA
equations, see Section 3.2, and defining A and B matrices as

Aab,cd ≡ 〈BCS|
[
α̂aα̂b, [Ĥ, α̂+c α̂+d ]

]
|BCS〉 , (202)

Bab,cd ≡ − 〈BCS|
[
α̂aα̂b, [Ĥ, α̂cα̂d]

]
|BCS〉 , (203)

it is possible to obtain a set of linear equations analogous to those of RPA

∑
c≤d

Aab,cdXν
cd + ∑

c≤d
Bab,cdYν

cd = ωνXν
ab, (204)

∑
c≤d

B∗cd,abXν
cd + ∑

c≤d
Acd,abYν

cd = −ωνYν
ab, (205)

which can be written in matrix form analogously to Equation (67). This calculation is
explicitly carried out in Chapter 18 of Ref. [14] and it shows that only Ĥ0, Ĥ11 and Ĥ22
contribute to the A and B matrices. These matrices contain, in addition to the particle–hole
excitations present in the common RPA, also particle–particle and hole–hole transitions,
since each s.p. state is only partially occupied. The solution of the QRPA secular equations,
for each excited state, provides the X and Y amplitudes which indicate the contribution of
each quasi-particle excitation pair.

The QRPA solutions have the same properties of those of RPA solutions. The QRPA
equations allow positive and negative eigenergies with the same absolute value. Eigen-
vectors corresponding to different energy eigenvalues are orthogonal. The set of QRPA
eigenstates is complete.

The transition amplitudes from the QRPA ground state to an excited state, induced by
an external one-body operator F̂, Equation (50), is

〈QRPA; ν|F̂|QRPA; 0〉 = ∑
a≤b

fab(vaub + uavb)(Xν
ab + Yν

ab). (206)

For ph transitions only, when va = 1, ua = 0 and vb = 0, ub = 1 one recovers the
ordinary RPA expression (74).

8. Specific Applications

In this section, I discuss some pragmatic issues arising in actual RPA calculations. The
input of RPA calculations is composed by the s.p. energies and wave functions and also
by the effective interaction between the particles forming the system. There are various
possible choices of these quantities and they define different types of calculations.

A fully phenomenological approach is based on the Landau–Migdal theory of finite Fermi
systems [33,34]. In this theory, the attention is concentrated on the small vibrations on top
of the ground state, which is assumed to be perfectly known. The s.p. wave functions
are generated by solving the MF Equation (4) with a phenomenological potential whose
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parameters are chosen to reproduce at best the empirical values of the s.p. energies of the
levels around the Fermi surface. In RPA calculations, these empirical values are used when
available; otherwise, the s.p. energies obtained by solving the MF equation are considered.
The interaction is a zero-range density dependent Landau–Migdal force whose parameters
are selected to reproduce some empirical characteristics of the excitation spectrum.

This approach has shown a great capacity to describe features of the excited states and
also a remarkable predictive power. For example, the presence of a collective monopole
excitation in 208Pb was predicted at the right energy [35] before it was identified by ex-
periments with α [36] and 3He scattering [37]. The drawback consists in the need for a
continuous tuning of the MF potential and the interaction parameters, since the results
strongly depend on the input. This means that there is a set of force parameters for each nu-
cleus, and also in the same nucleus the values of these parameters change if the dimensions
of the configuration space are modified.

An approach which avoids this continuous setting of the free parameters is the so-
called self-consistent approach. In this case, the s.p. wave functions and energies are
generated by solving HF or DFT equations. The parameters of the effective interaction
are tuned to reproduce at best experimental binding energies and charge radii, all along
the isotope table. The same interaction, unique for all the nuclei, is used also in RPA
calculations.

The density dependent zero-range Skyrme force is probably the interaction most used
in this type of calculation [38]. The zero-range characteristic allows great simplifications
of the expressions of the interaction matrix elements and the numerical calculations are
relatively fast. There are tens of different sets of parameters of the Skyrme force, each of
them properly tuned to describe some specific characteristics of the nuclei. The zero-range
feature of the Skyrme force is mitigated by the presence of momentum dependent terms.
On the other hand, the sensitivity on the dimensions of the s.p. configuration space is not
negligible. For this reason, in BCS and QRPA calculations it is necessary to use a different
interaction to treat the pairing.

These drawbacks are overcome by interactions which have finite range, a feature which
clearly makes much more involved the numerical calculations. A widely used finite-range
interaction is that of Gogny [39]. Despite this difference, the philosophy of the calculations
carried out with the two kinds of interaction is the same: a unique force, valid all along the
nuclide chart, tuned to reproduce ground state properties with HF calculations and used in
RPA. Discrete RPA calculations carried out with Gogny force show a convergence of the
results after certain dimensions of the configuration space have been reached.

The self-consistent approach does not provide an accurate description of the excited
states obtained with the phenomenological approach. On the other hand, by using self-
consistent approaches it is possible to make connections between the properties of the
ground and of the excited state and also between features appearing in different nuclei,
everything described within a unique theoretical framework. This approach can make
predictions on properties of nuclei far from stability where empirical quantities have not
yet been measured.

As an example of the RPA result, we consider the case of the 3− state in 208Pb already
mentioned in Section 2.4. We show in Figure 6 a comparison between the transition densities
calculated with an RPA theory (full line), that obtained by an s.p. transition (dashed lines)
and the empirical transition density (dots) extracted from the inelastic electron scattering
data of Ref. [40]. The s.p. excitation was obtained by considering the proton transition from
the 1s1/2 hole state to the 2 f7/2 particle state with the excitation energy of 5.29 MeV. RPA
calculation was carried out with the phenomenological approach and the excitation energy
is of 2.66 MeV to be compared with an experimental value of 2.63 MeV.
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Figure 6. Electron scattering transition densities for the first 3− excited state of 208Pb. The empirical
density, indicated by the dots, is extracted from the inelastic electron scattering data of Ref. [40].
The dashed line shows the transition density calculated in an IPM particle model where the state is
described by the s.p. proton transition from the 1s1/2 hole state to the 2 f7/2 particle state. The full
line shows the RPA result.

The s.p. transition, which is what the IPM at its best can provide, is unable to describe
the large values of the transition density at the nuclear surface. This surface vibration is a
characteristic feature of this highly collective state. RPA is able to reproduce the value of
the excitation energy and also the correct behavior of the transition density.

9. Extensions of RPA
9.1. Second RPA

The main limitation of RPA theory is due to the fact that the Q̂+
ν operator considers

only 1p− 1h and 1h− 1p types of excitations, see Equation (54). The many-body system
allows more complicated excitation modes where n-particle and n-holes are created. The
extension of Q̂+

ν to consider also 2p− 2h excitations is called Second RPA (SRPA) [41–43].
In this theory, the operator which defines the excited states is

Q̂+
ν ≡ ∑

m,i

(
Xν

mi â
+
m âi −Yν

mi â
+
i âm

)
+ ∑

m<n,i<j

(
Xν

mnij â
+
m â+n âi âj −Yν

mnij â
+
i â+j âm ân

)
+ ∑

m,n,i,j
Zν

mjin â+m â+j ân âi. (207)

where the X, Y and Z factors are real numbers.
We insert this operator into the EOM Equation (39) and substitute Ô with δQ̂ν. Since

δQ̂ν implies variations of the coefficients in (207) and these variations are independent of
each other, we obtain five equations

〈RPAII|
[
â+i âm, [Ĥ, Q̂+

ν ]
]
|RPAII〉 = ων 〈RPAII|

[
â+i âm, Q̂+

ν

]
|RPAII〉 , (208)

〈RPAII|
[
â+m âi, [Ĥ, Q̂+

ν ]
]
|RPAII〉 = ων 〈RPAII|

[
â+m âi, Q̂+

ν

]
|RPAII〉 , (209)

〈RPAII|
[

â+i â+j ân âm, [Ĥ, Q̂+
ν ]
]
|RPAII〉 = ων 〈RPAII|

[
â+i â+j ân âm, Q̂+

ν

]
|RPAII〉 , (210)

〈RPAII|
[
â+m â+n âj âi, [Ĥ, Q̂+

ν ]
]
|RPAII〉 = ων 〈RPAII|

[
â+m â+n âj âi, Q̂+

ν

]
|RPAII〉 , (211)

〈RPAII|
[
â+i â+n âj âm, [Ĥ, Q̂+

ν ]
]
|RPAII〉 = ων 〈RPAII|

[
â+i â+n âj âm, Q̂+

ν

]
|RPAII〉 , (212)

where |RPAII〉 is the SRPA ground state defined by the equation

Qν |RPAII〉 = 0. (213)
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In analogy to what is presented in Section 3.2.2, we use the QBA by assuming

〈RPAII|
[
Ô1 , Ô2

]
|RPAII〉 ' 〈Φ0|

[
Ô1 , Ô2

]
|Φ0〉 , (214)

where Ô are two generic operators and |Φ0〉 indicates, as usual, the IPM ground state. It is
convenient to define the following matrix elements

〈Φ0|
[
â+i âm, [Ĥ, â+n âj]

]
|Φ0〉 = Ami,nj, (215)

〈Φ0|
[

â+i âm, [Ĥ, â+j ân]
]
|Φ0〉 = −Bmi,nj, (216)

〈Φ0|
[

â+i âm, [Ĥ, â+n â+p âl âj]
]
|Φ0〉 = Ami,npjl , (217)

〈Φ0|
[

â+i âm, [Ĥ, â+j â+l âp ân]
]
|Φ0〉 = −Bmi,npjl , (218)

〈Φ0|
[

â+i â+j ân âm, [Ĥ, â+p â+q âl âk]
]
|Φ0〉 = Amnij,pqkl , (219)

〈Φ0|
[

â+i â+j ân âm, [Ĥ, â+k â+l âq âp]
]
|Φ0〉 = −Bmnij,pqkl . (220)

The Ami,nj and Bmi,nj matrix elements are identical to those defined in Equation (58). Explicit
expressions of the other matrix elements can be found in Ref. [41]. With the help of these
definitions, Equations (208)–(212) can be expressed as:

∑
pk

(
Ami,pkXν

pk + Bmi,pkYν
pk

)
+ ∑

p<q,k<l
Ami,pqklXν

pqkl = ωνXν
mi, (221)

∑
pk

(
B+

mi,pkXν
pk + A+

mi,pkYν
pk

)
+ ∑

p<q,k<l
A+

mi,pqklY
ν
pqkl = −ωνYν

mi, (222)

∑
pk

Amnij,pkXν
pk + ∑

p<q,k<l
Amnij,pqklXν

pqkl = ωνXν
mnij, (223)

∑
pk

A+
mnij,pkXν

pk + ∑
p<q,k<l

A+
mnij,pqklY

ν
pqkl = −ωνYν

mnij, (224)

where it appears evident that the Z terms of Equation (207) do not contribute.
The above equations form the complete set of SRPA secular equations. Usually,

one does not search for the whole solution of these equations, but one considers only
the unknowns Xν

mi and Yν
mi. This is done by formally extracting Xν

mnij and Yν
mnij from

Equations (223) and (224), respectively, and by inserting the obtained expressions into
Equations (221) and (222). In this way, we obtain two equations where the only unknowns
are Xν

mi and Yν
mi

∑
pk

[
Ami,pk − ∑

p1<q1,k1<l1
∑

p2<q2,k2<l2

Ami,p1q1k1l1

(
Ap1q1k1l1,p2q2k2l2 −ωνδp1,p2 δq1,q2 δk1,k2 δl1,l2

)−1
Ap2q2k2l2,pk

]
Xν

pk

+∑
pk

Bmi,pkYν
pk = ωνXν

mi, (225)

∑
pk

[
A+

mi,pk − ∑
p1<q1,k1<l1

∑
p2<q2,k2<l2

A+
mi,p1q1k1l1

(
A+

p1q1k1l1,p2q2k2l2
−ωνδp1,p2 δq1,q2 δk1,k2 δl1,l2

)−1
A+

p2q2k2l2,pk

]
Yν

pk

+∑
pk

B+
mi,pkXν

pk = −ωνYν
mi, (226)
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which, in matrix form, can be written in analogy to Equation (67) as A B

B+ A+

 Xν

Yν

 = ων

 Xν

−Yν

. (227)

The second terms in square brackets of Equations (225) and (226) couples 1p− 1h excitations
to 2p− 2h excitations. If these terms are zero, RPA equations are recovered. The secular
SRPA equations have the same properties as RPA equations.

1. Positive and negative energy eigenvalues with the same absolute value are allowed.
2. Eigenvectors of different eigenvalues are orthogonal.
3. The normalization between the excited states implies

∑
mi

(
Xν

miX
ν′
mi −Yν

miY
ν′
mi

)
= δν,ν′ . (228)

The number of terms of the A+
p1q1k1l1,p2q2k2l2

and Ap1q1k1l1,p2q2k2l2 matrix elements is
quite large; for this reason, the so-called diagonal approximation is often used. This
approximation consists in considering in Ap1q1k1l1,p2q2k2l2 only the diagonal part depending
on the s.p. energies involved in the 2p− 2h excitations

A+
p1q1k1l1,p2q2k2l2

−→ (εp1 + εq1 − εk1 − εl1)δp1,p2 δq1,q2 δk1,k2 δl1,l2 . (229)

The expression of the transition amplitude between the SRPA ground state and excited
states can be calculated as indicated in Section 3.2.4 and the same result, Equation (74), is
obtained. In this theoretical framework, the SRPA approach modifies the values of the X
and Y RPA amplitudes by coupling them to the 2p− 2h excitation space.

9.2. Particle-Vibration Coupling RPA

The approach presented in the previous section is general but rather difficult to
implement because of the large number of 2p− 2h pairs to consider. Many of the 2p− 2h
matrix elements are relatively small with respect to the 1p− 1h terms. Instead of evaluating
many irrelevant matrix elements, it is more convenient to identify the important ones and
calculate only them.

This is the basic idea of Particle-Vibration Coupling RPA (PVCRPA) [44], also called
Core Coupling RPA (CCRPA), where RPA excited states are coupled to s.p. states. In this
approach, the excited states have the expression

|R〉 = ∑
ν

∑
ph
|ph〉 ⊗ |ν〉 , (230)

where |ν〉 is an RPA excited state, |ph〉 is ph excitation pairs and ⊗ indicates a tensor
coupling.

We define a set of operators which project the eigenstate Ψ of the hamiltonian on IPM
eigenstates |Φ0〉, RPA states |ν〉 (composed by 1p− 1h excitations) and particle-vibration
coupled states |R〉 (composed by 2p− 2h) excited pairs:

P̂ |Ψ〉 = |Φ0〉 (231)

Q̂1 |Ψ〉 = |ν〉 (232)

Q̂2 |Ψ〉 = |R〉 (233)
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These operators have the properties

P̂2 = P̂; Q̂2
1 = Q̂1; Q̂2

2 = Q̂2; (234)

P̂Q̂1 = P̂Q̂2 = P̂1P̂2 = 0; (235)

P̂ + Q̂1 + Q̂2 = Î. (236)

The latter property implies that |Ψ〉 does not contain excitations more complex than 2p− 2h
and automatically neglects some term of the many-body hamiltonian.

We can write the eigenvalue equation as

Ĥ |Ψ〉 = Ĥ(P̂ + Q̂1 + Q̂2) |Ψ〉 = ω(P̂ + Q̂1 + Q̂2) |Ψ〉 . (237)

We multiply both sides of the above equation, respectively, by P̂, Q̂1 and Q̂2, and, by using
the properties (234)–(236), we obtain the following equations

(ω− P̂ĤP̂)P̂ |Ψ〉 = P̂ĤQ̂1 |Ψ〉+ P̂ĤQ̂2 |Ψ〉 (238)

(ω− Q̂1ĤQ̂1)Q̂1 |Ψ〉 = Q̂1ĤP̂ |Ψ〉+ Q̂1ĤQ̂2 |Ψ〉 (239)

(ω− Q̂2ĤQ̂2)Q̂2 |Ψ〉 = Q̂2ĤP̂ |Ψ〉+ Q̂2ĤQ̂1 |Ψ〉 . (240)

We formally obtain P̂ |Ψ〉 from Equation (238) and Q̂2 |Ψ〉 from Equation (240) and we
insert it into Equation (239). This allows us to express this latter equation as:

(ω− Q̂1ĤQ̂1)Q̂1 |Ψ〉 = Q̂1ĤP̂
1

ω− P̂ĤP̂ + iη
P̂ĤQ̂1 |Ψ〉

+ Q̂1ĤP̂
1

ω− P̂ĤP̂ + iη
P̂ĤQ̂2 |Ψ〉

+ Q̂1ĤQ̂2
1

ω− Q̂2ĤQ̂2 + iη
Q̂2ĤP̂ |Ψ〉

+ Q̂1ĤQ̂2
1

ω− Q̂2ĤQ̂2 + iη
Q̂2ĤQ̂1 |Ψ〉 , (241)

where we inserted in the denominator a term iη to avoid divergences. In the two terms
containing P̂ |Ψ〉 and Q̂2 |Ψ〉, we could insert again the results of Equations (238) and (240)
and we obtain terms with many denominator factors. We neglect these terms and obtain an
eigenvalue equation of the form [45]

Ĥ(ω)Q̂1 |ΨR〉N = (ΩN − iΓN)Q̂1 |Ψ〉N

=

[
Q̂1ĤQ̂1 + Q̂1ĤP̂

1
ω− P̂ĤP̂ + iη

P̂ĤQ̂1

+ Q̂1ĤQ̂2
1

ω− Q̂2ĤQ̂2 + iη
Q̂2ĤQ̂1

]
Q̂1 |ΨR〉N , (242)

where we distinguished the energy ω characterizing the effective hamiltonian Ĥ from the
energy eigenvalue which can be complex because of the imaginary parts inserted in the
denominators.

Since the Hilbert subspace spanned by the Q̂1 |ΨR〉 states is composed by 1p− 1h
components only, we can expand each Q̂1 |ΨR〉 state in terms of RPA eigenstates |ν〉 which
form a basis

Q̂1 |ΨR〉N = ∑
ν

FN
ν |ν〉 , (243)



Universe 2023, 9, 141 42 of 61

and write the eigenvalue Equation (242) in a matrix form

∑
ν′
〈ν|Ĥ(ω)|ν′〉FN

ν′ = (ΩN − iΓN)F
N

ν . (244)

The solution of the above eigenvalue problem provides the values of the FN
ν′ coefficients.

The transition probability of a transition from the ground state |ΨR〉0 to an excited state
induced by a one-body operator F̂ is given by:

N 〈ΨR | Q̂+
1 F̂Q̂+

1 |Ψ
R〉0 = ∑

ν

FN
ν 〈ν|F̂|ν0〉 = ∑

ν

FN
ν ∑

mi
(Xν

mi fmi + Yν
mi fim), (245)

where we used the result of Equation (74).
In this approach, one has first to solve RPA equations for various multipoles which

have to be inserted in the sums on ν. The choice of RPA solutions to be inserted is an input
of the method and it is based on plausible physics hypotheses.

9.3. Renormalized RPA

The extensions of RPA theory presented in Sections 9.1 and 9.2 aimed at including
excitation modes more complicated than 1p− 1h. The renormalized RPA (r-RPA) attacks
another weak point of RPA theory: the QBA (59). This approximation forces pairs of
fermionic operators to work as they would be bosonic operators. For this reason, in the
literature, the QBA is associated to the statement that RPA violates the Pauli principle. The
r-RPA theory avoids the use of the QBA.

As in the ordinary RPA, we indicated with |ν0〉 the ground state of the system and
with |ν〉 the excited state which is a combination of 1p− 1h and 1h− 1p excitations. We
consider a Q̂+

ν operator whose action is

|ν〉 = Q̂+
ν |ν0〉 ≡∑

ph

(
Xν

phB̂
+
ph −Yν

phB̂ph

)
|ν0〉 , (246)

where the renormalized p− h operator is

B̂+
ph ≡ ∑

p′h′
Nph,p′h′ â

+
p âh, (247)

and Nph,p′h′ is a number. The EOM method implies that the correlated ground state satisfies
the equation

Q̂ν |ν0〉 = 0.

By using the anti-commutation relations (A3) of the creation and destruction operators, we
express the orthonormality condition relating the excited states as

δνν′ = 〈ν|ν′〉 = 〈ν0|
[
Q̂ν′ , Q̂+

ν

]
|ν0〉

= ∑
ph,p′h′

(
Xν′ ∗

p′h′X
ν
ph 〈ν0|

[
B̂p′h′ , B̂

+
ph

]
|ν0〉+ Yν′ ∗

p′h′Y
ν
ph 〈ν0|

[
B̂+

p′h′ , B̂ph

]
|ν0〉

)
= ∑

ph,p′h′

(
Xν′ ∗

p′h′X
ν
ph −Yν′ ∗

p′h′Y
ν
ph

)
∑

mi,nj
N∗p′h′ ,mi Nph,nj

(
δmn 〈ν0|â+j âi|ν0〉 − δij 〈ν0|â+n âm|ν0〉

)
. (248)

The above expression is simplified if we use the s.p. basis formed by the natural orbits. By
definition, this is the basis where the one-body density matrix is diagonal [46]

〈ν0|â+α âβ|ν0〉 = nαδαβ. (249)
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If we assume that

Nph,p′h′ =
δpp′δh,h′√

nh − np
, (250)

we obtain
∑

ph,p′h′

(
Xν′ ∗

p′h′X
ν
ph −Yν′ ∗

p′h′Y
ν
ph

)
= δνν′ , (251)

which is an expression analogous to that of the standard RPA, Equation (71). It is worth
remarking that now the indexes p and h do not refer any more to s.p. states which, in
the ground state, are fully occupied or completely empty. The natural orbit s.p. states are
partially occupied with probability nα; therefore, all the indexes in the sums of the above
equations run on the full configuration space. To avoid double counting, we assume that
the i, j, k, h indexes indicate natural orbits with energies smaller than those of the states
labelled with the m, n, p, q indexes.

We proceed by using the EOM approach analogously to what was indicated in
Section 3.2.2 where, now, the â+p âh operators are substituted by B̂+

ph, and we define the
following matrix elements

Aphp′h′ ≡ 〈ν0|
[
B̂ph, [Ĥ, B̂+

p′h′ ]
]
|ν0〉 , (252)

and
Bphp′h′ ≡ − 〈ν0|

[
B̂ph, [Ĥ, B̂p′h′ ]

]
|ν0〉 . (253)

We obtain a set of equations analogous to those of the usual RPA A B

B∗ A∗

 Xν

Yν

 = ων

 Xν

−Yν

. (254)

The evaluation of the A and B matrix elements is carried out by using the expressions
of the B̂ operators in terms of Q̂ operators

B̂+
ph = ∑

ν

(
Xν∗

phQ̂+
ν + Yν

phQ̂ν

)
, (255)

B̂ph = ∑
ν

(
Xν

phQ̂ν + Yν∗
ph Q̂+

ν

)
, (256)

and we obtain

Aphp′h′ =
1
2

(√
nh − np

nh′ − n′p
+

√
nh′ − np′

nh − np

)
(ε̃pp′δhh′ − ε̃hh′δpp′)

+
√
(nh − np)(nh′ − np′)Vph′hp′ , (257)

and
Bphp′h′ =

√
(nh − np)(nh′ − np′)Vhh′pp′ . (258)

In the above expressions, we used the natural orbit energies defined as

ε̃αα′ = 〈α|
−h̄2∇2

2m
|α′〉+ ∑

β

nβVαβα′β. (259)

The key point of the r-RPA consists in expressing the occupation probabilities nα in
terms of X and Y amplitudes. In Ref. [47], by using a method which iterates the anti-
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commutation relations of the creation and destruction operators, it is shown that the
expressions of these occupation probabilities up to the fourth order in Y are

nh ' 1−∑
p

∑
νν′

∆νν′
ph ; np '∑

h
∑
νν′

∆νν′
ph , (260)

with

∆νν′
ph =

δνν′ −
1
2 ∑

p′h′
(nh′ − np′)Xν′

p′h′X
ν∗
p′h′

(nh − np)Yν
phYν′ ∗

ph . (261)

This result inserted in Equations (257) and (258) generates expressions of the A and
B matrix elements in terms of X and Y amplitudes; therefore, Equation (254) becomes a
system of nonlinear equations in the latter unknowns. This is solved by using an iterative
procedure. Starting from some initial guess for the X and Y amplitudes, obtained, for
example, by solving the standard RPA equations, one calculates the A and B matrix
elements. The solution of Equation (254) provides new values of the X and Y amplitudes.
The procedure is repeated until convergence is reached. A review of recent applications of
the r-RPA theory is presented in Ref. [6].

10. Correlated RPA

Interactions built to describe systems composed of two particles are called microcospic.
These interactions show similar features independently of the particles considered, nu-
cleons, atoms or molecules. They are short ranged, meaning that they are zero after a
certain value of the distance between the two particles. They have an attractive pocket at
intermediate distances and a strongly repulsive core at short inter-particle distances. This
latter feature inhibits the use of microscopic interactions in theories based on perturbation
expansion such as RPA. The derivation of the RPA with the Green function formalism
clearly shows that RPA is the first term of a perturbative expansion of the two-body Green
functions. The presence of the strongly repulsive core would produce extremely large value
of the interaction matrix elements with respect to the energy eigenvalues. This is because
the s.p. wave functions obtained in the IPM would allow the particles to get too close to
each other. The traditional RPA requires the use of effective interactions, i.e., interactions
which do not contain a short range repulsion.

Microscopic many-body theories aim to describe many-particle systems by using
microscopic interactions. One method of handling the problem of short range repulsion is
to use a correlation function which modifies the IPM wave functions in such a way that
two particles do not get too close to each other. This is the basic idea of the Correlated Basis
Function theory [46,48,49]. The ansatz is that the ground state of the interacting particle
system can be expressed as

|Ψ0〉 =
F |Φ0〉

〈Φ0|F+F|Φ0〉
1
2

, (262)

where |Φ0〉 is the IPM Slater determinant and F is a correlation function. These two
elements of the state are determined by minimizing the energy functional

δE[Ψ0] = δ

[
〈Φ0|F+ĤF|Φ0〉
〈Φ0|F+F|Φ0〉

]
= 0, (263)

where the hamiltonian Ĥ contains the microscopic interaction. The usual ansatz on the
expression of the correlation function F is

F(r1, · · · , rA) =
A

∏
i<j

f (rij), (264)
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where f is a two-body correlation function depending only on the distance rij between
the two interacting fermions. The need to keep finite the product of the interaction V̂ and
the wave function |Ψ〉 requires that f is almost zero for small values of rij and it rapidly
assumes the value of 1 when the distance becomes larger than that of the short range
repulsive core. The minimization of the energy functional is carried out by changing the
parameters of f and also the set of s.p. wave functions forming |Φ0〉.

After having solved the problem of finding the minimum of E[Ψ0], the correlated
RPA aims to describe the excitations of the system in this theoretical framework. There
is an ambiguity in defining the expression of the excited state. If we consider the |Ψ0〉
of Equation (262) as ground state, the approach of the EOM (see Section 3) implies the
calculation of matrix elements of the form

〈Φ0|F+ â+i âmĤâ+n âjF|Φ0〉 , (265)

whose evaluation requires the knowledge of the effects of creation and destruction operators
on F |Φ0〉. We attack the problem by considering the correlation function acting on an
exited IPM state. This implies that the ansatz for the excited states is analogous to that of
Equation (262)

|Ψ〉 = F |Φ〉
〈Φ|F+F|Φ〉

1
2

, (266)

where |Φ〉 is the Thouless variational ground state (79)

|Φ〉 = e
∑
mi

Cmi â+m âi
|Φ0〉 , (267)

and the Cmi coefficients are defined by using a variational procedure which minimizes the
energy functional

δE[Ψ] = δ 〈Ψ|Ĥ|Ψ〉 = 0. (268)

In the expression (267) of |Φ〉, we can consider E as a function of the Cmi coefficients
and we make a power expansion around the ground state energy value

H00 =
〈Φ0|F+ĤF|Φ0〉
〈Φ0|F+F|Φ0〉

, (269)

which is obtained by considering all the Cmi coefficients equal to zero in Equation (267).
The power expansion can be written as

E[Cmi, C∗mi] = H00 + ∑
mi

([
δE

δCmi

]
0
Cmi +

[
δE

δC∗mi

]
0
C∗mi

)

+
1
2 ∑

minj

[
δ2E

δCmiδCnj

]
0

CmiCnj +
1
2 ∑

minj

[
δ2E

δC∗miδC∗nj

]
0

C∗miC
∗
nj

+ ∑
minj

[
δ2E

δC∗miδCnj

]
0

C∗miCnj + · · · , (270)

where the subindex 0 indicates that, after the evaluation of the variational derivative, all
the C’s must be set equal to zero.

The second term of the above equation is δE, the first variation of the energy functional.
We obtain the minimum when this variation is zero and this implies that each variational
term must be zero. Let us consider the term with the variation about C∗mi

δE
δC∗mi

=
∂

∂C∗mi

[
〈Φ|F+ĤF|Φ〉
〈Φ|F+F|Φ〉

]
, (271)
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where we have considered that, in this case, the functional derivative coincides with the
partial derivative. By using the expression (267), we obtain

δE
δC∗mi

=
〈Φ|â+i âmF+ĤF|Φ〉
〈Φ|F+F|Φ〉 − 〈Φ|â+i âmF+F|Φ〉 〈Φ|F

+ĤF|Φ〉
〈Φ|F+F|Φ〉2

. (272)

After calculating the variation, we have to impose that all the C’s go to zero; this is
equivalent to saying that in Equation (267) |Φ〉 = |Φ0〉, and we obtain a relation

〈Φ0|â+i âmF+ĤF|Φ0〉
〈Φ0|F+F|Φ0〉

= H00
〈Φ0|â+i âmF+F|Φ0〉
〈Φ0|F+F|Φ0〉

. (273)

An analogous calculation carried out for the variation about Cmi generates an expression
which is the complex conjugate of (273).

The fact that the value of E is a minimum, when the first variational derivatives are
zero, is ensured if the sum of all the second order variational derivatives is positive. It is
convenient to tackle this problem in matrix form by defining the matrix elements

Aminj ≡
[

δ2E
δC∗miδCnj

]
0

and Bminj ≡
[

δ2E
δC∗miδC∗nj

]
0

. (274)

By carrying out calculations analogous to those carried out for the first variational deriva-
tives, i.e., by considering Equation (267) and making the limit for C → 0, we obtain the
expressions

Aminj =
〈Φ0|â+i âmF+ĤFâ+n âj|Φ0〉

〈Φ0|F+F|Φ0〉
− H00

〈Φ0|â+i âmF+ĤFâ+n âj|Φ0〉
〈Φ0|F+F|Φ0〉

. (275)

and

Bminj =
〈Φ0|â+i âm â+j ânF+ĤF|Φ0〉

〈Φ0|F+F|Φ0〉
− H00

〈Φ0|â+i âm â+j ânF+ĤF|Φ0〉
〈Φ0|F+F|Φ0〉

. (276)

We consider the set of the C’s as a vector; therefore, we write the condition that the
sum of the second variational derivative is positive in matrix form as

1
2
(C∗ TCT)

 A B

B∗ A∗

 C

C∗

 > 0. (277)

This is equivalent to asking that in the eigenvalue problem A B

B∗ A∗

 C

C∗

 = λ

 C

C∗

, (278)

the eigenvalues λ are all positive. By inserting Equation (278) into Equation (277), we
obtain

1
2
(C∗ TC + CT C) > 0, (279)

which is satisfied for λ > 0 since the part inside the round brackets is certainly positive
because it is the sum of squares moduli of complex numbers.

The condition (273) and its complex conjugate, together with (277) allows us to build
equations for the Correlated RPA.

We consider Equation (137)

〈δΨ(t)|Ĥ − ih̄
∂

∂t
|Ψ(t)〉 = 0, (280)
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where now the state |Φ(t)〉 is

|Ψ(t)〉 = F |Φ(t)〉
〈Φ(t)|F+F|Φ(t)〉

1
2

, (281)

In the above equation, the |Φ(t)〉 states are defined analogously to Equation (267) but now
the C coefficients are time-dependent

|Φ(t)〉 = e
∑
mi

Cmi(t)â+m âi
|Φ0(t)〉 , (282)

and the time dependence of the ground state is defined as

|Φ0(t)〉 = e
i
h̄ H00t |Φ0〉 , (283)

analogously to the usual interaction picture (see Equation (89)).
Since only the C amplitudes can be varied, we can express Equation (280) as

〈δΨ(t)|Ĥ − ih̄
∂

∂t
|Ψ(t)〉

= ∑
mi

δ 〈Ψ(t)|
δCmi

(
Ĥ − ih̄

∂

∂t

)
|Ψ(t)〉 δCmi

+ ∑
mi

δ 〈Ψ(t)|
δC∗mi

(
Ĥ − ih̄

∂

∂t

)
|Ψ(t)〉 δC∗mi

≡ ∑
mi
(SmiδCmi + RmiδC∗mi) = 0. (284)

The above equation is verified only if both the matrix elements Rmi and Smi are zero for all
the m and i particle–hole pairs and for all times t.

The evaluation of Rmi proceeds by considering the expressions (281) for |Ψ(t)〉, (282)
for |Φ(t)〉 and (283) for |Φ0(t)〉. We show in Appendix G the details of the calculation
leading to the expression

0 = Rmi = ∑
nj

AminjCnj(t) + ∑
nj

BminjC∗nj(t)− ih̄ ∑
nj

d
dt

Cnj Mminj, (285)

where the A and B matrix elements are those of Equations (275) and (276), respectively, and
we defined

Mminj =
〈Φ0|â+i âmF+Fâ+n âj|Φ0〉

〈Φ0|F+F|Φ0〉

−
〈Φ0|â+i âmF+F|Φ0〉 〈Φ0|F+Fâ+n âj|Φ0〉

〈Φ0|F+F|Φ0〉2
. (286)

Analogously to what is presented in Section 5, we consider harmonic oscillations of
the C amplitudes

Cmi(t) = Xmie−iωt + Y∗mie
iωt. (287)

We insert Equation (287) into Equation (285); we separate the positive and negative fre-
quency oscillations and obtain

∑
nj

AminjXnj + ∑
nj

BminjYnj(t) = h̄ω ∑
nj

Xnj Mminj, (288)
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and
∑
nj

AminjY∗nj + ∑
nj

BminjX∗nj(t) = −h̄ω ∑
nj

Y∗nj Mminj. (289)

By considering the complex conjugated of the second equation we can cast the system
in a matrix form  A B

B∗ A∗

 Xν

Yν

 = h̄ων

 M 0

0 −M

 Xν

Yν

. (290)

The structure of the standard RPA equations can be recovered by performing a trans-
formation on (290) such that the matrix on the right is converted into a unit-diagonal form M 0

0 −M

 −→
 I 0

0 −I

. (291)

The properties of these equations have been studied [12] and they are similar to those
quoted in Section 3.2.3.

Obviously, we want to interpret the eigenvalues h̄ω of Equation (290) as excitation
energies of the system. The question is if the amplitudes X and Y can be used as in
Section 3.2.4 to evaluate the transition probabilities. This is not straightforward since in the
present approach we have worked with a hamiltonian of the type F̂+ĤF̂. Consequently,
the one-body operators describing the external operator should also be described as F̂+ÔF̂.

11. Summary and Conclusions

In this article, I presented three different methods to obtain RPA secular equations.
The EOM approach emphasizes the fact that RPA considers only excitations of 1p− 1h

type and also that the RPA ground state is not the the IPM ground state, but it contains
correlations. These correlations are described in terms of ph pairs; therefore, RPA excited
states contain also hp excitations which are taken into account by the Y amplitudes.

RPA secular equations are obtained by truncating at the first order the expansion of the
two-body Green function in powers of the interaction. As a consequence of this truncation,
RPA requires the use of effective interactions, i.e., interactions without the strongly repulsive
core at short inter-particle distances, a feature which, instead, characterizes the microscopic
interactions.

The derivation of RPA obtained with the TDHF approach clearly indicates that RPA
has to be used to describe harmonic oscillations around the many-body ground state, i.e.,
excitations whose energies are relatively small with respect to the global binding energy of
the system.

RPA calculations require in input a set of s.p. wave functions and energies and also the
effective particle–hole interaction. The solution of RPA secular equations provides not only
the excitation spectrum, but for each excited state also the description of the corresponding
wave function in terms of 1p− 1h and 1h− 1p excitation pairs. The knowledge of RPA
wave functions allows a rather straightforward evaluation of observable quantities because
many-body transition amplitudes are expressed as linear combinations of s.p. transitions.

RPA is able to describe in a unique theoretical framework both single-particle and
collective excitations. This is particularly useful in atomic nuclei where these two types of
excitations are both present in the same energy range.

RPA is able to predict emergent phenomena which are unexpected in the IPM. In the
present article, I have considered, as an illustrative example, the case of the 3− state of the
208Pb nucleus. RPA has been widely used to investigate the giant resonances in nuclei [5].
The position of the peaks of the resonances and the total strengths are well described. These
latter quantities are related to RPA sum rules whose values are rather different from those
obtained in the IPM, as was pointed out in Section 3.2.5. The accuracy of most modern
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data indicates that, even though RPA provides reasonable values of the total excitation
strengths, it fails in describing their energy distributions. This is the main reason leading to
an extension of the theory.

The main limitation of RPA is the fact that it considers 1p− 1h excited pairs only. The
straightforward extension consists in considering, in addition, also 2p − 2h excitations.
The formulation of the SRPA has been presented in Section 9.1. Applications of the SRPA
are numerically very involved, but the obtained results are rather promising. Another
method of including 2p− 2h excitations consists in coupling s.p. wave functions to RPA
vibrational modes.

It is possible to untie RPA theory from the use of effective interactions. The formulation
of a theory which uses microscopic interactions has been presented in Section 10. To the
best of my knowledge, this formulation of RPA has never been used in actual calculations.
Its validity in the description of observables remains an open question.

RPA is a milestone in many-body theories even though nowadays its role and relevance
is sometime overlooked because its relative simplicity in favour of theories makes use of
microscopic interactions.

Funding: This research received no external funding.

Conflicts of Interest: The author declares that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

CCRPA Core coupling RPA
DFT Density Functional Theory
EOM Equation of Motion
HF Hartree–Fock
hp Hole–particle
IPM Independent Particle Model
KS Khon-Sham
MF Mean-Field
ONR Occupation Number Representation
ph Particle–hole
PVCRPA Particle-vibration coupling RPA
QRPA Quasi-particle RPA
RPA Random Phase Approximation
r-RPA Renormalized RPA
s.p. Single particle
SRPA Second RPA
TDHF Time-dependent Hartree–Fock

Appendix A. The Hartree–Fock Hamiltonian

In this Appendix we obtain a useful expression of the hamiltonian for its use in HF
and RPA calculations. We consider the expression of the hamiltonian in ONR [13,22]

Ĥ = ∑
νν′

Tν,ν′ â
+
ν âν′ +

1
4 ∑

νν′µµ′
Vνµν′µ′ â

+
ν â+µ âµ′ âν′ , (A1)

where we have defined
Tν,ν′ = 〈ν|T̂|ν′〉, (A2)

and Vνµν′µ′ is the antisymmetric matrix element of Equation (13). We indicate with â+ν and
âν the usual fermion creation and destruction operators satisfying the anti-commutation
relations {

âν, â+ν′
}
= δνν′ {âν, âν′} = 0

{
â+ν , â+ν′

}
= 0, (A3)
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From the definition of contraction (see [22]) we have that

â+ν âν′ = δνν′δν′i ; âν â+ν′ = 0 ; âν âν′ = 0 ; â+ν â+ν′ = 0 . (A4)

where i indicates a state below the Fermi surface. By considering the definition of normal
ordered product N̂ we obtain

â+ν âν′ = N̂[â+ν âν′ ] + â+ν âν′ , (A5)

and, for the Wick’s theorem,

â+ν â+µ âµ′ âν′ = N̂[â+ν â+µ âµ′ âν′ ]

+ N̂[â+µ âµ′ ]â
+
ν âν′ + N̂[â+ν âν′ ]â

+
µ âµ′

− N̂[â+µ âν′ ]â
+
ν âµ′ − N̂[â+ν âµ′ ]â

+
µ âν′

+ â+µ âµ′ â
+
ν âν′ − â+ν âµ′ â

+
µ âν′ . (A6)

We insert the above expression in Equation (A1)

Ĥ = ∑
νν′

Tνν′ â
+
ν âν′ +

1
4 ∑

µµ′νν′
Vνµν′µ′

{
N̂[â+ν â+µ âµ′ âν′ ]

+ N̂[â+µ âµ′ ]δνν′δνi + N̂[â+ν âν′ ]δµµ′δµi − N̂[â+µ âν′ ]δνµ′δνi − N̂[â+ν âµ′ ]δµν′δµi

+ δνν′δνiδµµ′δµj − δνµ′δνiδµν′δµj

}
, (A7)

where we have already considered the fact that a contraction is different from zero only if
the single-particle state is of hole type, i.e., if its energy is below the Fermi surface.

By considering the restrictions imposed by the Kronecker’s δ, we obtain

Ĥ = ∑
νν′

Tνν′ â
+
ν âν′ +

1
4 ∑

µµ′νν′
Vνµν′µ′N̂[â+ν â+µ âµ′ âν′ ]

+
1
4 ∑

µµ′i
Vµiµ′iN̂[â+µ âµ′ ] +

1
4 ∑

νν′i
Viνiν′N̂[â+ν âν′ ]

− 1
4 ∑

µν′i
Viµν′iN̂[â+µ âν′ ]−

1
4 ∑

νµ′i
Vνiiµ′N̂[â+ν âµ′ ]

+
1
4 ∑

ij
Vijij −

1
4 ∑

ij
Vijji . (A8)

The definition (13) of the antisymmetric matrix element implies the following relations:

Vνµν′µ′ = −Vµνν′µ′ = Vµνµ′ν′ = −Vνµµ′ν′ , (A9)

therefore

Ĥ = ∑
νν′

Tνν′ â
+
ν âν′ +

1
4 ∑

µµ′νν′
Vνµν′µ′N̂[â+ν â+µ âµ′ âν′ ]

+ ∑
νν′i

Vνiν′iN̂[â+ν âν′ ] +
1
2 ∑

ij
Vijij . (A10)
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We use the definition (A5) of N̂ and we obtain the following expression for the hamiltonian

Ĥ = ∑
νν′

(
Tνν′ + ∑

i
Vνiν′i

)
â+ν âν′

+
1
4 ∑

µµ′νν′
Vνµν′µ′N̂[â+ν â+µ âµ′ âν′ ]−

1
2 ∑

ij
Vijij . (A11)

This expression makes evident the presence of a one-body hamiltonian operator, the term
multiplying â+ν âν′ .

Up to now, we did not make any assumption on the structure of the basis of single-
particle wave functions composing the Slater determinant on which the creation and
destruction operators are acting. We choose the single-particle basis which diagonalizes
the one-body term of Equation (A11)(

Tνν′ + ∑
i

Vνiν′i

)
δν,ν′ ≡ hνν′δν,ν′ = ενδν,ν′ . (A12)

In this basis, the expression of the hamiltonian is

Ĥ = ∑
ν

εν â+ν âν −
1
2 ∑

ij
Vijij +

1
4 ∑

µµ′νν′
Vνµν′µ′N̂[â+ν â+µ âµ′ âν′ ] ≡ Ĥ0 + V̂res . (A13)

where Ĥ0 is the sum of the first two terms.

Appendix B. RPA Double Commutators

In this Appendix, we calculate the double commutator

〈Φ0|
[

â+i âm, [Ĥ, â+n âj]
]
|Φ0〉 ,

of Equation (47) by considering the hamiltonian expressed as in Equation (A13). The second
term of the hamiltonian (A13) is a number, therefore commuting with every operator. By
considering the anti-commutation rules (A3) of the creation and destruction operators, we
have that

[â+α âβ, â+n âj] = δnβ â+α âj − δjα â+n âβ,

therefore, the commutator of the hamiltonian can be written as

[Ĥ, â+n âj] = ∑
αβ

hαβ

(
δnβ â+α âj − δjα â+n âβ

)
+

1
4 ∑

αα′ββ′
Vαβα′β′

[
N̂[â+α â+β âβ′ âα′ ], â+n âj

]
.

The double commutator of the first term of the hamiltonian can be rewritten as

hαβ 〈Φ0|
[

â+i âm,
(
δnβ â+α âj − δjα â+n âβ

)]
|Φ0〉

= hαβ 〈Φ0|
(
â+i âmδnβ â+α âj − â+i âmδjα â+n âβ

)
|Φ0〉

= hαβ 〈Φ0|â+i âm â+α âj|Φ0〉 δnβ − hαβ 〈Φ0|â+i âm â+n âβ|Φ0〉 δjα

= hαβδijδmαδnβ − hαβδiβδmnδjα

= (εm − εi)δijδmn, (A14)

where in the last step we considered the diagonal expression of hα,β, Equation (A12).
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For the calculation of the second term of the hamiltonian we have that[
N̂[â+α â+β âβ′ âα′ ], â+n âj

]
= N̂[â+α â+β âβ′ âα′ ]â

+
n âj − â+n âjN̂[â+α â+β âβ′ âα′ ],

therefore

〈Φ0|
[

â+i âm, N̂[â+α â+β âβ′ âα′ ]â
+
n âj

]
−
[

â+n âjN̂[â+α â+β âβ′ âα′ ], â+i âm

]
|Φ0〉

= 〈Φ0|â+i âmN̂[â+α â+β âβ′ âα′ ]â
+
n âj|Φ0〉 (A15)

− 〈Φ0|N̂[â+α â+β âβ′ âα′ ]â
+
n âj â+i âm|Φ0〉 (A16)

+ 〈Φ0|â+i âm â+n âjN̂[â+α â+β âβ′ âα′ ]|Φ0〉 (A17)

− 〈Φ0|â+n âjN̂[â+α â+β âβ′ âα′ ]â
+
i âm|Φ0〉 . (A18)

The terms (A16) and (A18) are zero since am |Φ0〉 = 0. The situation for the term (A17) is
more involved. In the application of the Wick’s theorem one can see that in all the possible
set of contractions there are always terms where â+n is contracted with âα′ or âβ′ and these
contractions are zero. Only the term (A15) is different from zero and, by applying the
Wick’s theorem we have to consider all the possible contractions and we obtain

〈Φ0|a+i amN̂[a+α a+β aβ′ aα′ ]a
+
n aj|Φ0〉 = δiα′δmαδβ′nδβj − δiα′δmβδβ′nδαj

− δiβ′δmαδα′nδβj + δiβ′δmβδα′nδαj. (A19)

This expression is used to obtain the TDA Equation (48) whose terms are equivalent
to the Aminj matrix elements (58) of RPA equation.

For the term Bminj of Equation (58) we use again the expression (A13) of the hamilto-
nian. In this case also the contribution of the one-body term is zero. By considering the
anti-commutation properties of the creation and destruction operators we obtain

[â+α âβ, â+j ân] = δβj â+α ân − δnα â+j âβ,

therefore

〈Φ0|
[

â+i âm,
[
â+α âβ, â+j an

]]
|Φ0〉

= 〈Φ0|â+i âm â+α ân|Φ0〉 → 0

− 〈Φ0|â+α ân â+i âm|Φ0〉 → 0

− 〈Φ0|â+i âm â+j âβ|Φ0〉 = δjβδim → 0

+ 〈Φ0|â+j âβ â+i âm|Φ0〉 → 0.

For the two-body term we have to evaluate

〈Φ0|
[

a+i am,
[
N̂[a+α a+β aβ′ aα′ , a+j an

]]
|Φ0〉 .

Three terms of the double commutators are zero since they contain am |Φ0〉 = 0. Only
the term

− 〈Φ0|â+i âm â+j ân â+α â+β âβ′ âα′ |Φ0〉 ,

is different from zero, therefore

Bminj =
1
4 ∑

αβα′β′
Vαβα′β′ 〈Φ0|â+i âm â+j ân â+α â+β âβ′ âα′ |Φ0〉 . (A20)

By considering the symmetry properties of V and all the possible contractions we obtain
Equation (69).
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Appendix C. Sum Rules

We derive here the expression of the sum rule (75).

〈Ψ0|
[

F̂, [Ĥ, F̂]
]
|Ψ0〉 = 〈Ψ0|

[
F̂ĤF̂− F̂F̂Ĥ − ĤF̂F̂ + F̂ĤF̂)

]
|Ψ0〉

=
[
2 〈Ψ0|F̂ĤF̂|Ψ0〉 − 〈Ψ0|F̂F̂|Ψ0〉 E0 − E0 〈Ψ0|F̂F̂|Ψ0〉

]
= 2 〈Ψ0|F̂(Ĥ − E0)F̂|Ψ0〉 .

We insert the completeness ∑ν |Ψν〉 〈Ψν| = I

2 〈Ψ0|F̂ ∑
ν

|Ψν〉 〈Ψν|(Ĥ − E0)F̂|Ψ0〉

= 2 〈Ψ0|F̂ ∑
ν

|Ψν〉 〈Ψν|(Eν − E0)F̂|Ψ0〉 = 2 ∑
ν

(Eν − E0) 〈Ψ0|F̂|Ψν〉 〈Ψν|F̂|Ψ0〉 .

Appendix D. Linear Response

Let us consider the situation where the many-body system is subject to an external
perturbation. We express the total hamiltonian describing the perturbed system as sum of
the hamiltonian Ĥ describing the system in absence of the perturbation, whose eigenstates
are |Ψ〉, plus a time-dependent term Ĥext(t):

Ĥtot = Ĥ + Ĥext(t) = Ĥ + F̂A(t) , (A21)

where F̂ is the operator describing the action of the external perturbation on the system.
The function A(t) describes the time evolution of the perturbation and is defined such as
A(t) = 0 for t < t0 = 0. This means that the perturbation is switched on after a specific
time, t0 which we define as zero time.

We assume that, under the action of the external perturbation, the reaction times of the
many-body system are much faster than those needed to the perturbation to switch on and
off. Then, when the perturbation is totally switched on the hamiltonian is Ĥtot = Ĥ + F̂. In
this case we can treat F̂ as a perturbative term of the total time-dependent hamiltonian. For
this reason, we can consider the equation of motion (91) in the interaction picture

ih̄
∂

∂t
|ΨI(t)〉 = F̂I(t)|ΨI(t)〉 , (A22)

where
F̂I(t) = e

i
h̄ Ĥt F̂e−

i
h̄ Ĥt e |ΨI(t)〉 = e

i
h̄ Ĥt|Ψ(t)〉 . (A23)

In this section, we use the convention that states and operators without sub-indexes are
expressed in the Schrödinger picture. We formally integrate Equation (A22)

ih̄
∫ t

−∞
dt′

∂

∂t′
|ΨI(t′)〉 =

∫ t

−∞
dt′ F̂I(t′)|ΨI(t′)〉, (A24)

and obtain the expression

|ΨI(t)〉 = |ΨI(−∞)〉 − i
h̄

∫ t

−∞
dt′ F̂I(t′)|ΨI(t′)〉 . (A25)

Since the perturbation is switched off when t = −∞ we have that |ΨI(−∞)〉 = |Ψ0〉 which
is the ground state of the system. We can express the above equation as perturbative
expansion by iterating |ΨI(t)〉

|ΨI(t)〉 = |Ψ0〉 −
i
h̄

∫ t

−∞
dt′ F̂I(t′)|Ψ0〉 + · · · (A26)
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We call D̂ the operator which describe how the system reacts to the external per-
turbation induced by the operator F̂. The expectation value of this operator is given by

〈ΨI(t)|D̂I(t)|ΨI(t)〉

=

{
〈Ψ0|+

i
h̄

∫ t

−∞
dt′ F̂I(t′)〈Ψ0| + · · ·

}
D̂I(t)

{
|Ψ0〉 −

i
h̄

∫ t

−∞
dt′ F̂I(t′)|Ψ0〉 + · · ·

}
= 〈Ψ0|D̂I(t)|Ψ0〉+

i
h̄

∫ t

−∞
dt′〈Ψ0|[F̂I(t′), D̂I(t)]|Ψ0〉 + · · · (A27)

We define the response function as

R(t′ − t) =


0 t′ < t
i
h̄
〈Ψ0|[F̂I(t′), D̂I(t)]|Ψ0〉

〈Ψ0|Ψ0〉
t′ > t

. (A28)

This definition implies causality. The system cannot respond before that the perturbation is
switched on.

By making explicit the time dependence of F̂I(t′) and D̂I(t),

F̂I(t′) = e
i
h̄ Ĥt′ F̂e−

i
h̄ Ĥt′ ; D̂I(t) = e

i
h̄ ĤtD̂e−

i
h̄ Ĥt , (A29)

we can express the response as

R(t′ − t) =
i
h̄
〈Ψ0|B̂e

i
h̄ (Ĥ−E0)(t−t′)D̂|Ψ0〉
〈Ψ0|Ψ0〉

− i
h̄
〈Ψ0|D̂e−

i
h̄ (Ĥ−E0)(t−t′)B̂|Ψ0〉
〈Ψ0|Ψ0〉

, (A30)

and, since it depends only on the time difference τ = t − t′, by using the definition of
Fourier transform, we obtain

R̃(E) =
∫ ∞

−∞
dτ R(τ) e

i
h̄ Eτ

=
i
h̄

(
〈Ψ0|F̂

∫ ∞

−∞
dτe

i
h̄ (Ĥ−E0+E)τ D̂|Ψ0〉 −

i
h̄
〈Ψ0|D̂

∫ ∞

−∞
dτe−

i
h̄ (Ĥ−E0−E)τ F̂|Ψ0〉

)
1

〈Ψ0|Ψ0〉

= −〈Ψ0|F̂(Ĥ − E0 + E + iη)−1D̂|Ψ0〉
〈Ψ0|Ψ0〉

− 〈Ψ0|D̂(Ĥ − E0 − E− iη)−1 F̂|Ψ0〉
〈Ψ0|Ψ0〉

. (A31)

We insert the completeness ∑n |Ψn〉〈Ψn| = 1 and obtain

R̃(E) = ∑
n

[
〈Ψ0|D̂|Ψn〉〈Ψn|F̂|Ψ0〉

E− (En − E0) + iη
− 〈Ψ0|F̂|Ψn〉〈Ψn|D̂|Ψ0〉

E + (En − E0) + iη

]
1

〈Ψ0|Ψ0〉
. (A32)

The poles of R̃(E) correspond to the excitation energies of the system. For each positive
pole there is a negative pole, equal in absolute value to the positive one.

We consider the Dirac expression

1
x′ − x± iη

= P
1

x′ − x
∓ iπδ(x− x′) , (A33)

where P indicates the principal part, therefore

δ(x− x′) = − 1
π
=
(

1
x′ − x± iη

)
, (A34)

with the symbol = indicating the imaginary part.
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We assume D̂ = F̂, as it usually happens and consider only positive energies. The
transition probability from the ground state to an excited state is given by

S(E) = − 1
π
=
(

R(E)
)
= ∑

n
|〈Ψ0|F̂|Ψn〉|2δ

(
E− (En − E0)

)
. (A35)

This is the traditional expression obtained by applying the time-dependent perturbation
theory [16]. Assuming that F̂ is a one-body operator

F̂ = ∑
ν1ν2

fν1ν2 âν1 â+ν2
and fν1ν2 =

∫
d3r φ∗ν1

(r) f (r) φν2(r) , (A36)

we obtain

R̃(E) = ∑
ν1ν2

∑
ν3ν4

∑
n

[
fν1ν2 f ∗ν3ν4

〈Ψ0|âν1 â+ν2
|Ψn〉〈Ψn|âν3 â+ν4

|Ψ0〉
E− (En − E0) + iη

− fν3ν4 f ∗ν1ν2

〈Ψ0|âν3 â+ν4
|Ψn〉〈Ψn|âν1 â+ν2

|Ψ0〉
E + (En − E0) + iη

] 1
〈Ψ0|Ψ0〉

, (A37)

Since F̂ is hermitian, fν1ν2 = f ∗ν2ν1
and the indexes ν are dummy, we can write

R̃(E) = ∑
ν1ν2

∑
ν3ν4

fν1ν2 f ∗ν3ν4

∑
n

[ 〈Ψ0|âν1 â+ν2
|Ψn〉〈Ψn|âν3 â+ν4

|Ψ0〉
E− (En − E0) + iη

−
〈Ψ0|âν3 â+ν4

|Ψn〉〈Ψn|âν1 â+ν2
|Ψ0〉

E + (En − E0) + iη

] 1
〈Ψ0|Ψ0〉

= ∑
ν1ν2

∑
ν3ν4

fν1ν2 f ∗ν3ν4
(−i)G̃(ν1, ν3, ν2, ν4, E) , (A38)

where, in the last step, we considered the expression (104) of the two-body Green function.
The transition probability is given by

S(E) = − 1
π
=
(

R(E)
)
= ∑

ν1ν2

∑
ν3ν4

fν1ν2 f ∗ν3ν4

=
π

(
ih̄G̃(ν1, ν3, ν2, ν4, E)

)
. (A39)

Appendix E. Green Function Expansion Terms

In this appendix we show the explicit expressions of the diagrams of Figure 2. The
x and y labels indicate both space and time coordinates. The integration on all the y
coordinates is understood. The symbol Û indicates the two-body interaction.

A ≡ G0(x1, x2, x3, x4), (A40)

B ≡ G0(x1, x2, y1, y1)Û(y1, y2)G0(y2, y2, x3, x4), (A41)

C ≡ G0(x1, x2, y1, y2)Û(y1, y2)G0(y1, y2, x3, x4), (A42)

D ≡ G0(x1, x2, y1, y1)Û(y1, y2)G0(y2, y2, y3, y3)Û(y3, y4)G0(y4, y4, x3, x4), (A43)

E ≡ G0(x1, x2, y1, y2)Û(y1, y2)G0(y1, y2, y3, y4)Û(y3, y4)G0(y3, y4, x3, x4), (A44)

F ≡ G0(x1, x2, y1, y3)Û(y1, y2)G0(y2, y2, y3, y2)Û(y3, y4)G0(y1, y4, x3, x4), (A45)

G ≡ G0(x1, x2, y1, y3)Û(y1, y2)G0(y2, y2, y4, y4)Û(y3, y4)G0(y1, y3, y5, y6)

Û(y5, y6)G0(y5, y6, x3, x4). (A46)
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Appendix F. RPA Green Function in Matrix Form

We consider Equation (113) and we calculate first

h̄G̃RPA(m, i, j, n, E)

= ∑
µ1,µ2,µ3,µ4

G̃0(m, i, µ1, µ2, E)
{

δµ1,jδµ2,n + 〈µ1µ3|V̂|µ2µ4〉 G̃RPA(µ3, µ4, j, n, E)

− 〈µ1µ2|V̂|µ4µ3〉 G̃RPA(µ3, µ4, j, n, E)
}

.

Because of Equations (105) and (106) we have that

h̄G̃RPA(m, i, j, n, E) =
δi,jδm,n

εm − εi − E

{
1

+ ∑
µ3,µ4

[
+ 〈iµ3|V̂|mµ4〉 G̃RPA(µ3, µ4, j, n, E)− 〈im|V̂|µ4µ3〉 G̃RPA(µ3, µ4, j, n, E)

]}
.

Making explicit the sum on µ3 and µ4 and considering that, for the conservation of the
number of particles, one of the indexes must indicate a particle state and the other one a
hole state, we can rewrite the above expression as:

h̄(εm − εi − E)G̃RPA(m, i, j, n, E)−∑
lq

[
〈il|V̂|mq〉 G̃RPA(l, q, j, n, E)

+ 〈iq|V̂|ml〉 G̃RPA(q, l, j, n, E)

− 〈im|V̂|lq〉 G̃RPA(q, l, j, n, E)

− 〈im|V̂|ql〉 G̃RPA(l, q, j, n, E)
]
= δi,jδm,n.

By considering the antisymmetrized matrix element (13) we can express the above
equation as

∑
lq

{[
h̄(εm − εi − E)δi,lδm,q + ViqmlG̃RPA(q, l, j, n, E)

+ VilmqG̃RPA(l, q, j, n, E)
]
= δi,jδm,n,

which is Equation (114). The evaluation of Equations (115)–(117) is carried out in analogous
manner.

Appendix G. Correlated TDHF

In this section, we obtain the explicit expression of the Rmi and Smi factors defined in
Equation (284) as

Rmi ≡
δ 〈Ψ(t)|
δC∗mi(t)

(
Ĥ − ih̄

∂

∂t

)
|Ψ(t)〉 , (A47)

and

Smi ≡
δ 〈Ψ(t)|
δCmi(t)

(
Ĥ − ih̄

∂

∂t

)
|Ψ(t)〉 . (A48)

To simplify the writing we define

D = 〈Φ(t)|F+F|Φ(t)〉 , (A49)

By considering Equation (282) for |Φ(t)〉 we have

δ

δC∗mi(t)
D

1
2 =

1
2
〈Φ(t)|â+i âmF+F|Φ(t)〉

D 1
2

, (A50)
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and

∂

∂t
D = ∑

nj

d
dt

C∗nj(t) 〈Φ(t)|â+j ânF+F|Φ(t)〉

+ ∑
nj

d
dt

Cnj(t) 〈Φ(t)|F+Fâ+n âj|Φ(t)〉 . (A51)

From the time dependence (282) and (283) of |Φ(t)〉 we have

ih̄
∂

∂t
|Φ(t)〉 = H00 |Φ(t)〉+ ih̄ ∑

nj

d
dt

Cnj(t)â+n âj |Φ(t)〉 . (A52)

We use the above expressions and Equation (281) of |Ψ(t)〉 and obtain the following
expressions

δ 〈Ψ(t)|
δC∗mi(t)

=
〈Φ(t)| â+i âmF+

D 1
2

− 1
2
〈Φ(t)|â+i âmF+F|Φ(t)〉

D 〈Ψ(t)| , (A53)

δ 〈Ψ(t)|
δCmi(t)

= −1
2
〈Φ(t)|F+Fâ+m âi|Φ(t)〉

D 〈Ψ(t)| , (A54)

(
Ĥ − ih̄

∂

∂t

)
|Ψ(t)〉 =

(Ĥ − ih̄ ∂
∂t )F |Φ(t)〉
D 1

2
+

ih̄
2

F |Φ(t)〉
D3/2

∂

∂t
D. (A55)

Putting together the above equations, we obtain

0 = Rmi =
1
D 〈Φ(t)|â+i âmF+ĤF|Φ(t)〉

− 1
2

1
D 〈Φ(t)|â+i âmF+F|Φ(t)〉H00

− 1
2

1
D2 〈Φ(t)|â+i âmF+F|Φ(t)〉 〈Φ(t)|F+ĤF|Φ(t)〉

− ih̄
D ∑

nj

d
dt

Cnj(t) 〈Φ(t)|â+i âmF+Fâ+n âj|Φ(t)〉

+
3
4

ih̄
D2 ∑

nj

d
dt

Cnj(t) 〈Φ(t)|â+i âmF+F|Φ(t)〉 〈Φ(t)|F+Fâ+n âj|Φ(t)〉

+
1
4

ih̄
D2 ∑

nj

d
dt

C∗nj(t) 〈Φ(t)|â+i âmF+F|Φ(t)〉 〈Φ(t)|â+j ânF+F|Φ(t)〉 , (A56)

and

0 = −2Smi =
1
D2 〈Φ(t)|F+Fâ+m âi|Φ(t)〉 〈Φ(t)|F+ĤF|Φ(t)〉

− 1
D 〈Φ(t)|F+Fâ+m âi|Φ(t)〉H00

− ih̄
D2 〈Φ(t)|F+Fâ+m âi|Φ(t)〉∑

nj

d
dt

Cnj(t) 〈Φ(t)|F+Fâ+n âj|Φ(t)〉

+
ih̄
2

1
D2 〈Φ(t)|F+Fâ+m âi|Φ(t)〉[

∑
nj

d
dt

C∗nj(t) 〈Φ(t)|â+j ânF+F|Φ(t)〉

+∑
nj

d
dt

Cnj(t) 〈Φ(t)|F+Fâ+n âj|Φ(t)〉
]
. (A57)
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We carry out a power expansion of Equation (282)

〈Φ(t)| = 〈Φ0(t)|
[

1 + ∑
mi

C∗mi(t)â+i âm + · · ·
]

, (A58)

and

|Φ(t)〉 =
[

1 + ∑
mi

Cmi(t)â+m âi + · · ·
]
|Φ0(t)〉 . (A59)

Since H00 is a number, the expectation values of an operator between |Φ0(t)〉 states
are identical to those obtained between those calculated between time-independent |Φ0〉
states. This means that the expression (273) is also valid in the form

〈Φ0(t)|â+i âmF+ĤF|Φ0(t)〉
〈Φ0(t)|F+F|Φ0(t)〉

= H00
〈Φ0(t)|â+i âmF+F|Φ0(t)〉
〈Φ0(t)|F+F|Φ0(t)〉

. (A60)

We use the approximation

〈Φ(t)|F+ĤF|Φ(t)〉
〈Φ(t)|F+F|Φ(t)〉 '

〈Φ0(t)|F+ĤF|Φ0(t)〉
〈Φ0(t)|F+F|Φ0(t)〉

= H00. (A61)

This expression has been obtained by using the expansions (A58) and (A59) in both numer-
ator and denominator and by neglecting all the terms containing C’s.

By using the expansions (A58) and (A59) and the approximation (A61) in Equation (A57)
we obtain the relation

0 = ∑
nj

d
dt

Cnj(t)
〈Φ0|F+Fâ+n âj|Φ0〉
〈Φ0|F+F|Φ0〉

− ∑
nj

d
dt

C∗nj(t)
〈Φ0|â+j ânF+F|Φ0〉
〈Φ0|F+F|Φ0〉

. (A62)

We consider the expansions (A58) and (A59) and the approximation (A61) in
Equation (A56) and obtain

Rmi =

1
D 〈Φ0(t)|

[
1 + ∑

nj
C∗nj(t)â+j ân + · · ·

]
â+i âmF+ĤF

[
1 + ∑

nj
C∗mi(t)â+n âj + · · ·

]
|Φ0(t)〉

− 1
2

1
D 〈Φ0(t)|

[
1 + ∑

nj
C∗nj(t)â+j ân + · · ·

]
â+i âmF+F

[
1 + ∑

mi
C∗nj(t)â+n âj + · · ·

]
|Φ0(t)〉[

H00 +
〈Φ(t)|F+ĤF|Φ(t)〉
〈Φ(t)|F+F|Φ(t)〉

]
+ K

[
dC
dt

]
, (A63)

where we have indicated with K the terms depending on the derivative of C’s. We retain
only the terms containing a single C, we use the approximation (A61) and obtain
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Rmi =
1
D 〈Φ0(t)| â+i âmF+ĤF |Φ0(t)〉

+
1
D ∑

nj
C∗nj(t) 〈Φ0(t)| â+j ân â+i âmF+ĤF |Φ0(t)〉

+
1
D ∑

nj
Cnj(t) 〈Φ0(t)| â+i âmF+ĤFâ+n âj |Φ0(t)〉

− 1
D 〈Φ0(t)| â+i âmF+F |Φ0(t)〉H00

− 1
D ∑

nj
C∗nj(t) 〈Φ0(t)| â+j ân â+i âmF+F |Φ0(t)〉H00

− 1
D ∑

nj
Cnj(t) 〈Φ0(t)| â+i âmF+Fâ+n âj |Φ0(t)〉H00

+ K

[
dC
dt

]
. (A64)

By applying the condition (A60) the terms without C’s cancels and we obtain

Rmi = ∑
nj

Aminj + ∑
nj

Bminj +K

[
dC
dt

]
= 0. (A65)

where we used the definitions (275) and (276).
We use the relation (A62) and we can write the term dependent on the derivative of

the C’s as:

K

[
dC
dt

]
= −ih̄ ∑

nj
∑
nj

dCnj(t)
dt

[
〈Φ0(t)| â+i âmF+Fâ+n âj |Φ0(t)〉

〈Φ0(t)| F+F |Φ0(t)〉

−
〈Φ0(t)| â+i âmF+F |Φ0(t)〉 〈Φ0(t)| F+Fâ+n âj |Φ0(t)〉

〈Φ0(t)| F+F |Φ0(t)〉2

]

≡ −ih̄ ∑
nj

∑
nj

dCnj(t)
dt

Mminj. (A66)
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