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ABORT-like detection strategies to combat
possible deceptive ECM signals

in a network of radars
Angelo Coluccia, Member, IEEE and Giuseppe Ricci, Senior Member, IEEE

Abstract—We address adaptive detection of coherent signals
backscattered by possible point-like targets in presence of ther-
mal noise, clutter, noise-like interferers and, possibly, coherent
interferers, i.e., deceptive electronic countermeasure (ECM). To
this end, we assume a network of radars: for a given cell under
test only a subset of the radars receives ECM signals. Training
data containing thermal noise, clutter, and noise-like interferers
are available. The problem at hand is solved resorting to the
generalized likelihood ratio test (GLRT) and to ad hoc solutions:
at the design stage we assume that data collected by the radars
can be noise only (namely, thermal noise, clutter, and possible
noise-like interferers) plus possible coherent interferers or noise
plus coherent useful signal. The performance assessment shows
that the proposed solutions are effective in presence of ECM
systems.

Index Terms—Adaptive radar detection, constant false alarm
rate (CFAR), generalized likelihood ratio test (GLRT), digital
radio frequency memory (DRFM), electronic countermeasure
(ECM), electronic counter-countermeasures (ECCM).

I. INTRODUCTION

Electronic countermeasure (ECM) techniques are aimed at
denying information (detection, position, track initiation, etc.
of one or more targets) that the victim radar seeks, or at
surrounding desired radar echoes with so many false targets
that the true information cannot be extracted [1]. On the other
hand, nowadays radar systems are equipped with the so-called
electronic counter-countermeasures (ECCM) which are aimed
at countering the effects of the enemy’s ECM and eventually
succeeding in the intended mission. ECCM techniques can
be categorized as antenna-based, transmitter-based, receiver-
based, and signal-processing-based depending on the main
radar subsystem where they take place. The reader is referred
to [1, and references therein] for a detailed description of the
major ECCM techniques.

An effective category of ECM techniques is the so-called
deceptive ECM (DECM). Deception is the intentional and
deliberate transmission or retransmission of amplitude, fre-
quency, phase, or otherwise modulated intermittent or con-
tinuous wave signals for the purpose of misleading in the
interpretation or use of information by the radar. In particular,
repeater DECM systems generate coherent returns that attempt
to emulate the amplitude, frequency, and temporal characteris-
tics of actual radar returns. Repeaters are usually implemented
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using a digital radio frequency memory (DRFM) [2], [3]. In
a DRFM system the input radio frequency signal is generally
first down-shifted in frequency and then sampled with a high-
speed analog-to-digital converter (ADC). The stored samples
are manipulated in amplitude, frequency, and phase and subse-
quently processed by a digital-to-analog (DAC) converter, up
converted, and transmitted back to the victim radar. A typical
DECM technique is the range gate pull off (RGPO) aimed at
introducing a false target into the radar return signal; since
the deception signal is typically stronger than the radar return
signal, it captures the range-tracking circuits. The deception
signal is then progressively delayed using the DRFM, thereby
“walking” the range gate off the actual target. When the
range gate is sufficiently removed from the actual target, the
deception jammer is turned off, thus forcing the radar into a
target reacquisition mode [1].

Antenna-related techniques capable of preventing jamming
signals from entering through the radar sidelobes are the so-
called sidelobe blanking (SLB) and sidelobe canceling (SLC)
techniques [4]. A SLB system is effective against interference
pulses (but also strong targets) entering the radar receiver
via the antenna sidelobes; in particular, it can be used to
suppress coherent repeater interference (CRI). The idea is
that, employing an auxiliary antenna (coupled to a parallel
receiving channel) in addition to the main antenna, it is
possible, by suitable choice of the antenna gains, to distinguish
signals entering the sidelobes from those entering the mainlobe
(and the former may be suppressed). However, the possible
presence of noise-like interference (NLI) makes the detection
task even more challenging. In fact, it has been shown in
[4] that the presence of NLI can reduce the capability of a
conventional SLB of blanking CRI. Suppression of NLI can
be accomplished via a sidelobe canceler (SLC) system. SLC
uses an array of auxiliary antennas to adaptively estimate
the direction of arrival and the power of the jammers and,
subsequently, to modify the receiving pattern of the radar
antenna placing nulls in the jammers’ directions. Since SLB is
effective against CRI whereas SLC combats (continuous) NLI,
SLB and SLC can be jointly used against their simultaneous
presence [5]. In [4] it is also shown that a data dependent
threshold (DDT), based on [6], outperforms a cascade of SLC
and SLB stages. The important result is that the DDT should
be preferred to the latter because, with the same number of
receiving channels, it allows to cancel one more NLI.

The detector proposed in [6] is a special case of the more
general class of tunable (possibly space-time) detectors which



have been shown to be an effective means to attack detection
of mainlobe targets or rejection of CRI notwithstanding the
presence of NLI and clutter [6]-[18]. A way to design tunable
receivers relies on the so-called two-stage architecture; such
schemes are formed by cascading two detectors (usually with
opposite behaviors in terms of selectivity): the overall one
declares the presence of a target in the cell under test only
when data survive both detection thresholdings [7]-[10], [14]-
[18]. Such detectors can also be used as classifiers: in this case,
the first stage is less selective than the second one and it is used
to discriminate between the null hypothesis and the alternative
that a structured signal is present. In case of detection, the
second stage is aimed at discrimination between mainlobe and
sidelobe signals, as explicitly shown in [15] for the adaptive
sidelobe blanker (ASB) (referred to in the following as the
modified ASB in order to stress its classification capabilities).
Adaptive detection and discrimination between useful signals
and CRI in presence of thermal noise, clutter, and possible
NLI has also been addressed in [19]. To this end, a class of
detectors is proposed by resorting to a generalized likelihood
ratio test (GLRT)-based for multiple hypotheses [20]. In par-
ticular, therein the CRI is assumed to belong to the orthogonal
complement of the space spanned by the nominal steering
vector (after whitening by the true covariance matrix of the
composite disturbance). This approach, based on a modified
adaptive beamformer orthogonal rejection test (ABORT), see
also [18], [21], allows to investigate the discrimination ca-
pabilities of adaptive arrays when the CRI is not necessarily
confined to the “sidelobe beam pattern,” but might also be a
mainlobe deception jammer.

It is also worth noting that most of the above adaptive
detectors guarantee the constant false alarm rate (CFAR) prop-
erty. Adaptive CFAR detectors are really ECCM techniques
(of the signal-processing-related category) since they enhance
the detection against structured interferences (in space and/or
time) while maintaining the CFAR property that allows these
detected targets to be effectively tracked.

In this paper, we assume a network of radars: for a given cell
under test only a subset of the radars receives ECM signals
(CRI). This means that space diversity can be exploited, in
addition to other differences between the signature of the target
and the CRI. The problem at hand is solved resorting to the
GLRT and to ad hoc solutions. At the design stage we assume
that data collected by the radars can be noise only (namely,
thermal noise, clutter, and NLI) plus possible CRI or noise
plus a coherent useful signal. More precisely, we consider
two different instances: the subset of radars under ECM is
preassigned (i.e., deterministically given, but not necessarily
known) as in [22], or each radar is under ECM with a
given probability. The remainder of the paper is organized
as follows: next section is devoted to the problem formulation
and to the description of the newly-proposed detectors. Section
III provides the performance assessment of the detectors (also
in comparison to natural competitors). Concluding remarks
are given in Section IV while Appendix A contains some
mathematical derivations.

II. PROBLEM STATEMENT AND DETECTOR DESIGNS

Assume that a network of NR radars senses the surveillance
area. Each radar is equipped with a linear array formed by Na

antennas that collect Nt samples from the range cell under test
(CUT). The signal received from the CUT can be noise only,
i.e., thermal noise plus clutter (including possible NLI) or a
noisy version of the signal backscattered by the target that we
model as a coherent target echo. The signal received from a
subset of the radars and from the CUT may also contain a
manipulated radar signal (a CRI). As customary, we suppose
that a set of secondary data, free of signal components and
CRI, but sharing the same statistical properties of the remain-
ing disturbance in the CUT, is available (namely that each
radar experiences an homogeneous environment). Secondary
data are usually chosen as range cells surrounding the CUT
in order to preserve the homogeneity assumption. Focusing on
data collected by the ith radar, i ∈ NR = {1, . . . , NR}, we
denote by zi ∈ CN×1, N = Na×Nt, the vector containing the
returns from the CUT and by zi,k ∈ CN×1, k = 1, . . . ,K,
K ≥ N , the secondary data. The problem of detecting the
possible presence of a coherent return from a given cell (in
range, doppler, and azimuth) is formulated in terms of the
following hypothesis test




H0 :

{
zi = ni + Iiui, i ∈ NR
zi,k = ni,k, i ∈ NR, k = 1, . . . ,K

H1 :

{
zi = xivi + ni, i ∈ NR
zi,k = ni,k, i ∈ NR, k = 1, . . . ,K

(1)

where
• vi ∈ CN×1 is the known steering vector of the target as

viewed by the ith radar.
• ui ∈ CN×1 is an unknown vector representing the

possible presence of the CRI; it is modeled as a signal
orthogonal to vi in the whitened space [21].

• xi ∈ C is an unknown (deterministic) factor.
• Ii is an indicator function that takes on values 0 and 1. We

can either model the Iis as deterministic (known or better
unknown) parameters or as random variables (rvs) with
a preassigned (not necessarily known) statistical charac-
terization; for instance, we might assume I1, . . . , INR

to
be independent and identically distributed (iid) Bernoulli
rvs, Ii ∼ B(1, p), and, in addition, suppose that the set
{I1, . . . , INR

} is independent of that of the noise terms.
Notice that, for NR = 1 and p = 0, the above hypothesis
testing problem reduces to that leading to Kelly’s detector
[23]; similarly, for NR = 1 and p = 1, the above
hypothesis testing problem reduces to that leading to the
whitened-ABORT (W-ABORT) [21].

• The ni and the ni,k ∈ CN×1, i ∈ NR, k = 1, . . . ,K,
are iid complex normal random vectors with zero mean
and unknown, positive definite covariance matrix Ri ∈
CN×N , i.e., ni, ni,k ∼ CNN (0,Ri).

It is worth remarking that ui is introduced at the design
stage to enhance the selectivity of the detector, making it more
inclined to decide for H0 in case of mismatches, i.e., when a
CRI is present [21]. Clearly, although it is not required that



the actual CRI is orthogonal to vi, the ability of the detector
to reject mismatched signals will depend on their degree of
deviation (in the whitened space) from vi. As a matter of fact,
the assumption about ui is only a way to represent what is
different from vi without adopting any specific ECM model1.

We cannot resort to the Neyman-Pearson criterion since we
do not know xi ∈ C, Ri ∈ CN×N , ui ∈ CN×1, and, possibly,
Ii. We can resort instead to the GLRT and to ad hoc solutions.

For future reference, denote by Zi the overall data matrix
collected from the ith radar, i.e.,

Zi = [zi zi,1 · · · zi,K ] (2)

and by fi(·) the density of the ni and the ni,k, i.e.,

fi(n) =
1

πN det(Ri)
e−n

†R−1i n, n ∈ CN×1

with † denoting conjugate transpose, det(·) the determinant of
the matrix argument, and −1 the matrix inverse.

A. GLRT and ad hoc detector for deterministic Ii
Herein we model the Iis as deterministic parameters; more-

over, we denote by NR1 ⊂ NR the set of integers indexing
the Iis that are equal to one. Assume that NR1 is known;
later we will discuss how this information can be practically
obtained by means of an additional pre-detection stage.

The pdf of Zi is given by

f1,i(Zi) = fi (zi − xivi)
K∏

k=1

fi (zi,k)

=
1

πN det(Ri)
e−(zi − xivi)

†
R−1i (zi − xivi)

×
K∏

k=1

1

πN det(Ri)
e−z

†
i,kR

−1

i zi,k (3)

under H1. Similarly, under H0, the pdf of Zi is

f0,i(Zi) =

{
fi (zi)

∏K
k=1 fi (zi,k) , i ∈ NR \ NR1

fi (zi − ui)
∏K

k=1 fi (zi,k) , i ∈ NR1

that is

f0,i(Zi) =





1

πN det(Ri)
e−z

†
iR
−1
i zi

×
K∏

k=1

1

πN det(Ri)
e−z

†
i,kR

−1

i zi,k ,

i ∈ NR \ NR1

1

πN det(Ri)
e−(zi − ui)

†
R−1i (zi − ui)

×
K∏

k=1

1

πN det(Ri)
e−z

†
i,kR

−1

i zi,k ,

i ∈ NR1 .

1Indeed, in Section III the performance assessment does not impose any
orthogonality: the CRI is simulated via a signal similar to vi, but for some
Doppler mismatch aimed at deceiving the detector with a false target.

Remember that the unknown parameters are the Ris, i ∈
NR, under both hypotheses, the uis, i ∈ NR1, under H0, and
the xis, i ∈ NR, under H1. Then, the GLRT is

∏

i∈NR1

maxxi
maxRi

f1,i (Zi)

maxui
maxRi

f0,i (Zi)

×
∏

i∈NR\NR1

maxxi
maxRi

f1,i (Zi)

maxRi
f0,i (Zi)

H1
>
<
H0

T (4)

where T is a threshold to be set according to the desired
probability of false alarm (Pfa).

It is well-known that [18], [21], [23]

max
xi,Ri

f1,i (Zi) =

(
K + 1

πe

)(K+1)N
1

detK+1 (Si)
(5)

× 1
(

1 + z†iS
−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

)K+1

where

Si =

K∑

k=1

zi,kz
†
i,k (6)

max
Ri

f0,i (Zi) =

(
K + 1

πe

)(K+1)N

× 1

detK+1 (Si)

1
(

1 + z†iS
−1
i zi

)K+1

for i ∈ NR \ NR1 and

max
ui

max
Ri

f0,i (Zi) =

(
K + 1

πe

)(K+1)N

× 1

detK+1
(
S′i −wiw

†
i

)

for i ∈ NR1 with

wi = zi − vi
v†iS

′−1
i zi

v†iS
′−1
i vi

and S′i = Si +ziz
†
i =

∑K
k=1 zi,kz

†
i,k +ziz

†
i . It turns out that

the GLRT for the case at hand is given by

∏

i∈NR1

det
(
S′i −wiw

†
i

)

det (Si)

(
1 + z†iS

−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

)

×
∏

i∈NR\NR1

1 + z†iS
−1
i zi

1 + z†iS
−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

H1
>
<
H0

T (7)



where T denotes a proper modification of the original thresh-
old. If, instead, NR1 is not known, but for its cardinality, r
say, it turns out that the GLRT can be written as

min
NR1

∏

i∈NR1

det
(
S′i −wiw

†
i

)

det (Si)

(
1 + z†iS

−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

)

×
∏

i∈NR\NR1

1 + z†iS
−1
i zi

1 + z†iS
−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

H1
>
<
H0

T (8)

where T is a threshold to be set according to the desired Pfa.
A few remarks are now in order. First, observe that the detector
is (up to the minimization over NR1) the product of statistics
equivalent to the well-known statistic of Kelly’s detector, for
i ∈ NR \ NR1, and to the W-ABORT, for i ∈ NR1. Second,
minimization over NR1 cannot be conducted in closed form,
thus limiting the feasibility of the detector for large values
of NR. However, to deal with an unknown NR1, an ad hoc
solution, consisting of the cascade of two stages, can also
be conceived. The first stage is made by NR classifiers:
the ith classifier processes data collected by the ith radar
to determine if the received signal contains an ECM signal,
as shown in [15]. It relies on two detectors: an AMF [24]
that is used to discriminate between the noise-only hypothesis
and the alternative that a structured signal is present; in case
of detection, a Kelly’s detector is aimed at discriminating
between mainlobe and sidelobe signals. The second stage
is the GLRT for known Ii, fed by data collected by the
overall network and by the output of the classifiers. Denoting
by Îi the output of the ith classifier, where Îi = 1 if the
classifier has decided for the presence of an ECM signal
(Îi = 0 otherwise), the second stage ad hoc GLRT is obviously
obtained from equation (7) by replacing NR1 with the set of
integers indexing the Îi that are equal to one. The overall
ad hoc detector will be referred to as two stage network W-
ABORT (2S-N-W-ABORT).

B. A GLRT for random Ii

Herein we model the Iis as rvs. More precisely, we assume
that I1, . . . , INR

are iid Bernoulli rvs, Ii ∼ B(1, p), and, in
addition, suppose that the set {I1, . . . , INR

} is independent of
that of the noise terms. For the time being we assume that
p ∈ (0, 1) is known. It follows that the pdf of Zi is given by
equation (3) under H1 and by

f0,i(Zi) = [pfi (zi − ui) + (1− p)fi (zi)]
K∏

k=1

fi (zi,k)

=
1

πN det(Ri)

[
pe−(zi − ui)

†
R−1i (zi − ui)

+ (1− p)e−z
†
iR
−1
i zi

]

×
K∏

k=1

1

πN det(Ri)
e−z

†
i,kR

−1

i zi,k

under H0. Then, the GLRT is

∏

i∈NR

maxRi
maxxi

f1,i (Zi)

maxRi
maxui

f0,i (Zi)

H1
>
<
H0

T (9)

where T is a threshold to be set according to the desired Pfa.
The compressed likelihood under H1 can be expressed

in terms of the right-hand side of equation (5). As to the
maximization of the pdf of the observables under H0, it is
possible to show, following the lead of [21], that

max
ui

f0,i(Zi) = max
ui

[pfi (zi − ui) + (1− p)fi (zi)]

×
K∏

k=1

fi (zi,k) (10)

=
1

πN det(Ri)

[
p e
−

∣∣∣z†iR−1i vi

∣∣∣
2

v†iR
−1
i vi

+ (1− p) e−z
†
iR
−1
i zi

]

×
K∏

k=1

1

πN det(Ri)
e−z

†
i,kR

−1

i zi,k

=
e
−Tr

(
R−1

i S′i
)

πN(K+1) detK+1(Ri)
[pg(Ri) + (1− p)]

where Tr(·) denotes the trace of the matrix argument,

g(Ri) = e
z†iR

−1
i zi −

∣∣∣z†iR−1i vi

∣∣∣
2

v†iR
−1
i vi

(and S′i = Si + ziz
†
i =

∑K
k=1 zi,kz

†
i,k + ziz

†
i ). Setting to

zero the derivative with respect to Ri of the above partially-
compressed likelihood yields

∂

∂Ri

e
−Tr

(
R−1

i S′i
)

detK+1(Ri)
[pg(Ri) + (1− p)]

= −(K + 1)
e
−Tr

(
R−1

i S′i
)

detK+1(Ri)
[pg(Ri) + (1− p)]R−1i

+
e
−Tr

(
R−1

i S′i
)

detK+1(Ri)
[pg(Ri) + (1− p)]R−1i S′iR

−1
i

− e
−Tr

(
R−1

i S′i
)

detK+1(Ri)
pg(Ri)R

−1
i

(
zi −

v†iR
−1
i zi

v†iR
−1
i vi

vi

)

×
(
zi −

v†iR
−1
i zi

v†iR
−1
i vi

vi

)†
R−1i = 0 .

Letting

bi(Ri) =
v†iR

−1
i zi

v†iR
−1
i vi



the previous equation can be re-written as

∂

∂Ri

e
−Tr

(
R−1

i S′i
)

detK+1(Ri)
[pg(Ri) + (1− p)]

= −(K + 1)
e
−Tr

(
R−1

i S′i
)

detK+1(Ri)
[pg(Ri) + (1− p)]R−1i

+
e
−Tr

(
R−1

i S′i
)

detK+1(Ri)
[pg(Ri) + (1− p)]R−1i S′iR

−1
i

− e
−Tr

(
R−1

i S′i
)

detK+1(Ri)
pg(Ri)R

−1
i

× (zi − bi(Ri)vi) (zi − bi(Ri)vi)
†
R−1i = 0 . (11)

It turns out that stationary points must solve the following
equation

(K + 1)Ri = S′i −
pg(Ri)

pg(Ri) + (1− p)
× (zi − bi(Ri)vi) (zi − bi(Ri)vi)

†

or, otherwise stated, must have the following structure

Ri =
1

K + 1

[
S′i + aiwiw

†
i

]
, ai ∈ (−1, 0), bi ∈ C (12)

where
ai = − pg(Ri)

pg(Ri) + (1− p)
and

wi = zi − bi(Ri)vi.

The following theorem shows how to compute ai and bi.
Theorem 1: The solutions of equation (11) have the form

of the right-hand side of (12) with

bi =
v†iS

′−1
i zi

v†iS
′−1
i vi

(13)

and ai ∈ (−1, 0) computed by solving the following equation

ai = − 1

1 + 1−p
p e

−(K+1)

z†iS
′−1
i zi − |v

†
iS
′−1

i zi|2

v†iS
′−1

i vi

1 + ai

(
z†iS

′−1
i zi − |v

†
iS
′−1

i zi|2
v†iS

′−1

i vi

)

(14)

Proof See Appendix A.

Thus, the ith factor of the compressed likelihood under H0

is given by

max
Ri,ui

f0,i(Zi) =
e
−Tr

(
ˆR
−1

0,iS
′
i

)

πN(K+1) detK+1(R̂0,i)

×
[
pg(R̂0,i) + (1− p)

]
(15)

with R̂0,i denoting the maximizer of the likelihood in the form
of the right-hand side of equation (12), ai and bi, obtained,
in turn, by Theorem 1. In particular, we compute the ais by
means of standard numerical root finding techniques.
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Fig. 1. Simulated scenario: circles indicate radar positions while the cross
indicates the target position.

Then, the GLRT for the case at hand can be written as

∏

i∈NR

1

detK+1 (Si)
1

1+z†iS
−1

i zi−
|z†iS−1i vi|2
v†iS

−1
i vi




K+1

e−Tr
(
ˆR
−1

0,iS
′
i

)

detK+1
(
R̂0,i

)
[
pg(R̂0,i) + (1− p)

]
H1
>
<
H0

T

It can also be recast as

∏

i∈NR
Λi (Zi)

H1
>
<
H0

T

with

Λi (Zi) =

e
Tr
(
R̂
−1
0,iS

′
i

)

detK+1
(
R̂
−1
0,iSi

)

[
1 + z†iS

−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

]K+1

× 1

pe

z†i R̂
−1
0,izi −

∣∣∣z†i R̂
−1
0,ivi

∣∣∣
2

v†i R̂
−1
0,ivi + (1− p)

and will be referred to in the following as one stage network
W-ABORT (1S-N-W-ABORT).

III. PERFORMANCE ANALYSIS

The performance analysis is conducted by Monte Carlo sim-
ulation. To this end, we resort to 100/Pfa independent trials
to evaluate the thresholds necessary to ensure a preassigned
value of Pfa and to 104 independent trials to compute the
probabilities to decide for H1 under useful signal only (Pd),
under ECM only, and under useful signal plus ECM.

We consider a scenario with NR = 10 radars located as in
Fig. 1, where circles indicate radar positions (and coordinates
are expressed in meters). The radars have the same transmitted
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Fig. 2. Pd vs SNR in presence of target only (absence of ECM). N = 4 and
K = 8.

power and antenna gain. Each radar has a different carrier
frequency in a range of ±250 MHz around 1 GHz, pulse
repetition frequency equal to 5 kHz, Na = 1 antennas. For
each radar, the clutter is exponentially correlated with one-lag
correlation coefficient equal to ρ = 0.95; more precisely, the
(m,n)th entry of the matrix Ri is given by rmn = ρ|m−n|.

The cross indicates the target position, whose velocity
modulus is constantly set to 300 m/s, while the direction is a
rv uniformly distributed in (0, 2π). Thus, at each iteration,
the radial velocity of the target changes and so does the
corresponding normalized Doppler frequency seen at each
radar, νi say. The amplitudes of the target (i.e., the xis) are
generated as independent Rayleigh-distributed rvs. The signal-
to-noise ratio at radar i (SNRi) is defined as

SNRi = E[x2i ] v†iR
−1
i vi.

Obviously,
SNRid

4
i

λ2i
=

SNRjd
4
j

λ2j

where di is the distance of the ith radar to the target and λi
the corresponding wavelength.

As regards the possible presence of a CRI, it is simulated
as a signal aimed at deceiving the detector with a false target.
To this end, it is simulated as a signal similar to vi, but
for a mismatched Doppler frequency γνi with γ a uniformly
distributed rv in (0, 1). The amplitude of the possible interferer
at radar i is taken 100 times stronger than the root mean square
value of the corresponding useful signal; it impinges on radar
No. i with probability p and independent from radar to radar.

For comparison purposes we also consider three natural
competitors, namely a “product of Kelly’s statistics,” referred
to in the following as Π-Kelly, and given by

∏

i∈NR

1 + z†iS
−1
i zi

1 + z†iS
−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

H1
>
<
H0

T
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Fig. 3. Pd vs SNR in presence of target only (absence of ECM). N = 16
and K = 32.

a “product of ABORT statistics,” referred to in the following
as Π-ABORT, namely (see also [25], [22])

∏

i∈NR

1 +
|z†iS−1i vi|2
v†iS

−1
i vi

1 + z†iS
−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

H1
>
<
H0

T

and a “product of W-ABORT statistics,” referred to in the
following as Π-W-ABORT, and given by

∏

i∈NR

det
(
S′i −wiw

†
i

)

det (Si)

(
1 + z†iS

−1
i zi −

|z†iS−1i vi|2
v†iS

−1
i vi

)
H1
>
<
H0

T

where

wi = zi − vi
v†iS

′−1
i zi

v†iS
′−1
i vi

.

In addition to the 2S-N-W-ABORT we also consider a two
stage network detector implementing the plain ABORT idea to
process data of radars that are supposed (as part of the decision
process) under ECM; for this reason, it is referred to as 2S-N-
ABORT. Finally, we consider a heuristic variant of the 1S-N-
W-ABORT obtained letting ai = −1, i = 1, . . . , NR, which
is obviously less time-consuming than the 1S-N-W-ABORT.

The thresholds of the detectors are set to guarantee Pfa =
10−3 by considering the noise-only distribution of the corre-
sponding statistics. As to the implementation of the two-stage
detectors (2S-N-ABORT and 2S-N-W-ABORT) we assume
that for each classifier, the threshold of the AMF and that of the
Kelly’s detector are set to guarantee Pfa = 10−3 separately.

Simulation results are reported in Figs. 2–10 as a function
of SNR=SNR1 where radar No. 1 is the one with coordinates
(3000, 500). More precisely, Figs. 2 and 3 plot Pd (namely
the probability to decide H1 in presence of target only) vs
SNR of the proposed detectors (i.e., the 2S-N-W-ABORT, the
1S-N-W-ABORT, and the heuristic variant of the latter) and



−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

P
(H

1
 |
 E

C
M

)

 

 

2S−N−ABORT

2S−N−W−ABORT

1S−N−W−ABORT

1S−N−W−ABORT heuristic

Π−Kelly

Π−ABORT

Π−W−ABORT

Fig. 4. Probability of (erroneously) detecting H1 vs SNR in presence of
ECM signals. N = 4, K = 8, and p = 0.4.
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Fig. 5. Probability of (erroneously) detecting H1 vs SNR in presence of
ECM signals. N = 16, K = 32, and p = 0.4.

their competitors, while Figs. 4 and 5 refer to the presence
of ECM signals only. Such figures show that the 2S-N-W-
ABORT guarantees the detection power of the Π-Kelly, and
better rejection capabilities than the Π-ABORT (and obviously
of the Π-Kelly) for not too low SNR values. It is though
less selective than the Π-W-ABORT and of both the 1S-
N-W-ABORT and its heuristic variant. However, such more
selective detectors are less powerful than the 2S-N-W-ABORT
in presence of target only. In Figs. 6, 7, and 8 we plot the
probability to detect the useful signal (H1 hypothesis of the
test) when both target and ECM signals are present. Figs. 6 and
7 refer to p = 0.4 while Fig. 8 assumes p = 0.1. It is apparent
that the 1S-N-W-ABORT (and its heuristic variant), the 2S-
N-W-ABORT, and the Π-W-ABORT are selective in that tend
to reject a mix of target and ECM signals. In particular, the
1S-N-W-ABORT (and its heuristic variant as well) is the most
effective one to reject the H1 hypothesis in presence of ECM
and possibly useful signal in the all range of SNR values.
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Fig. 6. Probability to detect H1 vs SNR in presence of both target and ECM
signals. N = 4, K = 8, and p = 0.4.
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Fig. 7. Probability to detect H1 vs SNR in presence of both target and ECM
signals. N = 16, K = 32, and p = 0.4.

Notice also that the 1S-N-W-ABORT and its heuristic variant
are practically equivalent in the considered instances.

We also conducted a preliminary analysis on the perfor-
mance of the 1S-N-W-ABORT in order to quantify the influ-
ence of a possible mismatch between the actual (and unknown)
value of p and the nominal one. For the ease of clarification,
we distinguish in the following between the probability that a
radar is under ECM, referred to as P(ECM), and the parameter
p used in the design of the 1S-N-W-ABORT (also used for
setting the threshold). In particular, in Figs. 9 and 10 we plot
the performance of the 1S-N-W-ABORT designed assuming
p = 0.4 in presence of ECM signals and ECM signals plus
useful one, respectively. Results show that for P(ECM) = 0.6
and P(ECM) = 0.9 the detector designed for p = 0.4 returns
performance very close to the performance for P(ECM) = 0.4
and, actually, very close to the performance that would have
been obtained for p = 0.6, 0.9 (the corresponding curves are
not included to avoid to burden too much the figures). The
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Fig. 8. Probability to detect H1 vs SNR in presence of both target and ECM
signals. N = 16, K = 32, and p = 0.1.
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Fig. 9. Sensitivity analysis of the 1S-N-W-ABORT: probability of (erro-
neously) detecting H1 vs SNR in presence of ECM signals. N = 4, K = 8.

behavior of the detector is different for P(ECM) = 0.1: for
this scenario the 1S-N-W-ABORT is less selective and, in
fact, from Fig. 10, we see that the probability to choose H1

(under ECM plus useful signal) increases and tends to about
0.35 for high SNR values. However, notice that the same is
true for the 1S-N-W-ABORT designed for p = 0.1 and that,
for P(ECM) = 0.1, the Π-W-ABORT is much less selective
as shown in the same figure. This behavior can be easily
explained observing that, for P(ECM) = 0.1, there is a non-
negligible number of Monte Carlo runs where the ECM is
absent; actually, for these cases, the probability to choose H1,
“under ECM plus useful signal,” is Pd which, in turn, is close
to one for high SNR values, as can be seen from Fig. 2. For
this reason, in Fig. 10 and for P(ECM) = 0.1, we observe an
increase of the probability to choose H1 of both the 1S-N-W-
ABORT and the Π-W-ABORT.

Finally, we have evaluated the relative computational time
of the algorithms discussed above. Being the computational
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Fig. 10. Sensitivity analysis of the 1S-N-W-ABORT: probability to detect
H1 vs SNR in presence of both target and ECM signals. N = 4, K = 8.
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Fig. 11. Relative elapsed time, normalized to the fastest algorithm (Π-Kelly).

time linked to the complexity of the statistic, one can expect
that the Π-Kelly is the fastest algorithm, while the 1S-N-W-
ABORT is the slowest one due to the numerical resolution of
equation (14). Notice that detectors involving the W-ABORT
statistic require also the computation of S′ and its inverse,
and that the two-stage detectors require an additional detection
task, though based on simple statistics.

The numerical results, reported in Fig. 11 in terms of
relative elapsed time, are in agreement with the considerations
above: in particular, the Π-ABORT and Π-W-ABORT are
(slightly) more complex than the Π-Kelly, and the two-stage
detectors immediately follow in the ranking; the 1S-N-W-
ABORT has the greatest complexity, which however can be
dramatically reduced avoiding the numerical resolution of
equation (14), as indicated by the elapsed time of the heuristic
variant with fixed ai = −1.

IV. CONCLUSIONS

We have addressed adaptive detection of coherent signals
backscattered by point-like targets in presence of disturbance
and possible ECM signals, assuming a network of radars where
for a given cell under test only a subset of the radars may
receive ECM signals. The problem has been solved resorting to



the GLRT and to ad hoc solutions. We considered two different
instances: the subset of radars under ECM is deterministically
given (but not necessarily known) or each radar is under ECM
with a given probability. For the first case a two-stage archi-
tecture has been proposed: the first stage is aimed at detecting
the radars that are actually under ECM; the second stage
jointly processes the collected signals according to a GLRT
strategy that “enhances the selectivity of the radars under
ECM”. For the second case we have designed the GLRT and
also considered a heuristic variant. The performance analysis
shows that the proposed solutions are effective in presence of
ECM systems in that allow to reject the CRI while ensuring
satisfactory performance in presence of useful signal only; in
particular, it is possible to choose one of the proposed detectors
according to the desired trade-off between selectivity and
detection capabilities. Due to the terrific rejection capabilities
of both the 1S-N-W-ABORT and its heuristic variant, it might
be worth investigating the performance of a Π-Kelly (or even a
more robust stage) cascaded by the proposed heuristic detector
(due to its simplicity) to classify more accurately the following
hypotheses: noise only, signal only, ECM (possibly plus a
useful signal).

Finally, it is worth remarking that the increase in computa-
tional complexity of the proposed detectors compared to the
competitors is very contained except for the 1S-N-W-ABORT,
whose statistic requires a numerical rooting procedure. Simu-
lations suggest that a great improvement might be obtained by
means of a closed-form (approximate) solution, a point which
is part of our ongoing work.

APPENDIX A
PROOF OF THEOREM 1

In the following we get rid of the index i.
By the matrix inversion lemma, we have that

R−1 = (K + 1)
(
S′ + aww†

)−1

=
K + 1

a

(
S′

a
+ ww†

)−1

=
K + 1

a

(
aS′−1 − a2S′−1ww†S′−1

1 + aw†S′−1w

)

= (K + 1)

(
S′−1 − aS′−1ww†S′−1

1 + aw†S′−1w

)

and, hence, also that

z†R−1z = (K + 1)

(
z†S′−1z − a |z

†S′−1w|2
1 + aw†S′−1w

)

v†R−1z = (K + 1)

(
v†S′−1z − av†S′−1ww†S′−1z

1 + aw†S′−1w

)

and

v†R−1v = (K + 1)

(
v†S′−1v − a |v

†S′−1w|2
1 + aw†S′−1w

)
.

It turns out that
b = c/d (16)

with

c = v†S′−1z

+ a
(
v†S′−1z w†S′−1w − v†S′−1w w†S′−1z

)

and

d = v†S′−1v + a
(
v†S′−1v w†S′−1w − |v†S′−1w|2

)
.

Moreover, we observe that

w†S′−1w = (z − bv)†S′−1(z − bv)

= z†S′−1z + |b|2v†S′−1v
− 2R

{
bz†S′−1v

}
, (17)

v†S′−1w = v†S′−1(z − bv) = v†S′−1z − bv†S′−1v,

w†S′−1z = (z − bv)†S′−1z

= z†S′−1z − bv†S′−1z, (18)
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)
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)
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and
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)
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.

Moreover,

c′ = v†S′−1z w†S′−1w − v†S′−1w w†S′−1z

= b
(
v†S′−1vz†S′−1z − |v†S′−1z|2

)
(19)

and

d′ = v†S′−1v w†S′−1w − |v†S′−1w|2
= v†S′−1vz†S′−1z − |v†S′−1z|2. (20)

It follows that equation (16) can be re-written as

b =
v†S′−1z + ac′

v†S′−1v + ad′
(21)

that finally yields

b =
v†S′−1z

v†S′−1v
. (22)



On the other hand, in order to compute a we start with

1
K+1 ln [g(R)] =

1

K + 1
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where
e = z†S′−1zw†S′−1w − |z†S′−1w|2.

Then, we observe that, plugging equation (22) into equa-
tions (17) and (18), yields
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and
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hence,
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It turns out that
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Then, plugging equation (25), together with equations (19),
(20), and (24), into the right-most side of equation (23), returns
after some algebra

ln [g(R)]

K + 1
=

z†S′−1z − |v
†S′−1z|2

v†S′−1v

1 + a

(
z†S′−1z − |v†S

′−1z|2
v†S′−1v
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Finally, we observe that equation

−a =
pg(R)

pg(R) + (1− p)
can be re-cast as

a = − 1

1 + 1−p
p

1

g(R)

and that, by using equation (26), we get the equation for a in
the statement of the theorem. Q.E.D.
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