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A B S T R A C T   

Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells 
depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of 
mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum 
number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance 
has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., 
point mutations, deletions, copy number variations) have been identified in the setting of several human dis-
eases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of 
developing cancer and neurodegenerative conditions, including Parkinson’s and Alzheimer’s disease, have been 
associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several 
tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute 
to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control 
pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a 
wide range of conditions.   

1. Introduction 

The mammalian mitochondrial DNA (mtDNA) is a double-stranded 
circular molecule of about 16.5 kb packaged in nucleoid-like struc-
tures within the mitochondrial matrix. mtDNA includes 37 DNA regions 
encoding for 13 subunits of the electron transport chain (ETC) com-
plexes I, III, IV, and V, 2 rRNAs (12S rRNA and 16S rRNA), and 22 tRNAs 
(Attardi and Schatz, 1988). mtDNA also holds two non-coding regions 

(NCRs) that control mtDNA transcription and replication. One NCR is 
called displacement loop (D-loop). In its 900 bp of length, the D-loop 
hosts the two promoters of the heavy mtDNA strands (HSP1 and HSP2), 
the promoter of the light strand (LSP), and the origin of replication of the 
heavy mtDNA strand (OriH). Herein, a set of accessory regulatory pro-
teins are recruited and compose the major site of mtDNA transcriptional 
regulation (Scarpulla, 2008). Another minor NCR of 30 bp is located 
between the two coding regions for the tRNACys and tRNAAsn and 
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includes the origin of mtDNA replication of the light strand (OriL). 
mtDNA exists as a multi-copy genome. Each cell contains hundreds 

to thousands of mtDNA copies, with large variations depending on cell 
metabolism and the exposure to endogenous and/or environmental 
stressors (Bonawitz et al., 2006). The genesis of new organelles, mito-
chondrial biogenesis, is triggered by replication and transcription pro-
cesses that guarantee the minimum number of organelles per cell (Picca 
and Lezza, 2015). The primary role of mitochondria is to fuel cellular 
processes by supplying adenosine triphosphate (ATP) and produce me-
tabolites for the synthesis of macromolecules (Frezza, 2017). However, 
the list of processes in which these organelles are involved continues to 
grow and include, among others, the regulation of redox balance, cell 
death/survival signals, and heme biosynthesis (Piel et al., 2019; Vaki-
fahmetoglu-Norberg et al., 2017). 

Mitochondria are dynamic and plastic organelles that establish 
homo- and heterotypic interactions with several cellular compartments 
(Picca et al., 2022, 2020). The optimization of mitochondrial responses 
to specific cell/tissue demands is achieved also via these contacts (Picca 
et al., 2022, 2020). Inter-organelle contact sites also serve as molecular 
platforms for the displacement of mitochondrial components (Picca 
et al., 2022, 2020). The release of mitochondrial portions at the systemic 
level has also been shown to hold immunostimulatory properties that 
can be sensed by innate immunity receptors for which circulating 
mtDNA may play a major role (Picca et al., 2017). 

mtDNA inheritance follows a maternal lineage although bi-parental 
inheritance has also been reported in some species (Gyllensten et al., 
1991; Kvist et al., 2003; St. John and Schatten, 2004; Zhao et al., 2004) 
and in the case of mitochondrial diseases in humans (Schwartz and 
Vissing, 2002). However, the latter case is still a matter of debate 
(Filosto et al., 2003; Taylor et al., 2003). Indeed, results from whole- 
genome sequencing analyses have identified nuclear-encoded mito-
chondrial sequences (NUMTs) that may represent a source of bias in the 
hypothesis of bi-parental inheritance. mtDNA mutations have been 
identified in several human diseases (Lawless et al., 2020). Both spo-
radic and inherited rare disorders involving the nervous system are 
characterized by mtDNA mutations. Polymorphic mtDNA variants have 
also been associated with a higher risk of developing cancer and 
neurodegenerative conditions, including Parkinson’s (PD) and Alz-
heimer’s disease (AD) (Coskun et al., 2012). An age-associated accrual 
of mtDNA mutations has also been found in several tissues and organs, 
which may contribute to the development of aging phenotypes (Sri-
vastava, 2017). 

The role played by mtDNA homeostasis and mtDNA quality control 
pathways in human health is actively investigated for the possibility of 
developing targeted therapeutics for a wide range of conditions. 

2. Mitochondrial biogenesis and mitochondrial DNA inheritance 

2.1. Mitochondrial biogenesis: the work of an intricated machinery 

Mitochondrial biogenesis is the result of a fine coordination of 
multiple pathways engaging mitochondrial and nuclear genomes. These 
involve a set of processes, including mtDNA replication and transcrip-
tion, and the synthesis, import and assembly of nuclear-encoded mito-
chondrial proteins. 

mtDNA replication and transcription are under the control of the 
master regulator of mitochondrial biogenesis, peroxisome proliferator- 
activated receptor gamma coactivator 1-alpha (PGC-1α), a member of 
the PGC-1 family proteins (Handschin and Spiegelman, 2006; Scarpulla, 
2008). Upon activation, either by phosphorylation or deacetylation, 
PGC-1α triggers the expression of a set of transcription factors. Among 
these, the nuclear respiratory factor (NRF) 1 and 2, and estrogen-related 
receptor-α (ERR-α) upregulate the expression of the mitochondrial 
transcription factor A (TFAM) and the associated mitochondrial tran-
scription factors B1 and B2 (TFB1M and TFB2M) (Handschin and Spie-
gelman, 2006; Rebelo et al., 2011). The increase of TFAM protein 

expression in the nucleus and its subsequent translocation into the 
mitochondrion signal at the organelle the beginning of a new replication 
and/or transcription process (Picca and Lezza, 2015). Herein, the 
binding of TFAM to mtDNA is pivotal and intervenes in the regulation of 
mitochondrial biogenesis (Picca and Lezza, 2015). 

TFAM belongs to the high-mobility-group (HMG) family proteins and 
can bind to the mtDNA without sequence specificity (Parisi and Clayton, 
1991). Beyond the coordination of mtDNA replication and transcription, 
TFAM contributes to mtDNA maintenance and participate to mito-
chondrial repair processes (Canugovi et al., 2010; Ekstrand et al., 2004). 
These activities are made possible also by architectural roles of TFAM on 
mtDNA (e.g., bending and unwinding) (Fisher et al., 1992). However, 
the best characterized function of TFAM is the coordination of mtDNA 
transcription and translation via recruitment of the mitochondrial 
initiation factors (mtIF2 and mtIF3) and the mitochondrial elongation 
factors (mtEFTu, mtEFTs, and mtEFG1) encoded by the nucleus (Mai 
et al., 2017). In addition, protein expression of the mitochondrial 
translational release factor 1-like (mtRF1L) and the recycling factors 
(mtRRF1 and mtRRF2) as well as that of the translational activator of 
cytochrome c oxidase (COX) 1 regulates the rate of mitochondrial- 
encoded proteins under the control of nuclear genes (Fig. 1). 

Fig. 1. Schematic representation of the events involved in mitochondrial 
biogenesis. Created with BioRender.com, accessed on 24 April 2023. 
Abbreviations: AMPK, AMP-activated protein kinase; cAMP, cyclic AMP; CaMK, 
Ca2+/calmodulin-dependent protein kinase; CREB, cAMP response element- 
binding protein; DeAc, deacetylation; NAD, nicotinamide adenine dinucleo-
tide; NRF, nuclear respiratory factor; PGC-1α, peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha; Sirt1, sirtuin 1; TFAM, mitochondrial 
transcription factor A. 
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2.2. Mitochondrial DNA inheritance: maternal lineage, homoplasmy, and 
heteroplasmy 

Although paternal transmission of mtDNA has been documented in 
mammals (Gyllensten et al., 1991; Kvist et al., 2003; Zhao et al., 2004), 
its actual existence in humans is still a matter of debate (Filosto et al., 
2003; Luo et al., 2018; Lutz-Bonengel and Parson, 2019; McWilliams 
and Suomalainen, 2019; Taylor et al., 2003) as it seems more the results 
of an experimental artifact (Annis et al., 2019; Balciuniene and Balciu-
nas, 2019; Wei et al., 2020). Regardless, paternal transmission of mtDNA 
in humans is an exceptionally rare event (Rius et al., 2019). Therefore, 
unlike nuclear DNA (nDNA), mtDNA inheritance is considered to follow 
a maternal lineage (Fig. 2). 

The modality of mtDNA inheritance is important for determining 
variant acquisition by the offspring (van den Ameele et al., 2020). 
mtDNA inheritance in humans has been implicated in several common 
and rare diseases (Wei and Chinnery, 2020). “Homoplasmy” occurs 
when mutations follow a germ line inheritance, while the term “heter-
oplasmy” denotes somatic mutations that are inherited along with wild- 
type molecules. In the case of heteroplasmic mutations, the proportion 
of heteroplasmy, reflecting the percentage of mutated alleles inherited, 
defines whether this would translate into a biochemical defect at the 
cellular level (Fig. 3). Although considered to be a rare event until the 
advent of deep re-sequencing techniques, mtDNA heteroplasmy is now 
recognized as a frequent phenomenon in mitochondrial diseases (Li 
et al., 2010; Payne et al., 2013). 

According to the mitochondrial theory of aging, mtDNA mutations 
accumulate over time mainly due to a less sophisticated repair ma-
chinery than nDNA (Yakes and Van Houten, 1997) and proximity to the 

source of reactive oxygen species (ROS). However, the hypothesis that 
some of the clonally expanded mutations observed in older adults may 
have been inherited at a very low level of heteroplasmy and probably 
even held at birth is gaining support (Keogh and Chinnery, 2013). 
Therefore, heteroplasmic and homoplasmic mtDNA mutations can in 
principle both be maternally inherited and contribute to rare genetic 
diseases and other disorders when coupled with additional factors. The 
dissection of the inheritance mechanisms of these mutations is of 
outmost importance for their implications in mitochondrial medicine. 

3. Mitochondrial DNA mutations in human diseases 

3.1. Mitochondrial DNA copy number variations in mitochondrial 
diseases 

Mitochondrial diseases include a wide range of hereditary disorders 
characterized by deficiency in oxidative phosphorylation in several tis-
sues and organs (La Morgia et al., 2020). These disorders arise either 
from mutations in nuclear genes encoding for proteins involved in 
mtDNA expression or primary mtDNA mutations impacting the abun-
dance and/or function of proteins encoded by the mtDNA (La Morgia 
et al., 2020; Rahman, 2020) (Fig. 4). Different clinical phenotypes have 
been observed depending on the type of mutations (La Morgia et al., 
2020; Rahman, 2020). 

Mutations in genes involved in mtDNA maintenance (e.g., mtDNA 
replication, nucleotide metabolism, mitochondrial quality control 
mechanisms) have been identified in the so-called mtDNA depletion 
syndromes, a class of autosomal recessive disorders characterized by 
heavy tissue-specific mtDNA depletion (Viscomi and Zeviani, 2017). 

Fig. 2. Nuclear and mitochondrial DNA inheritance in humans. Nuclear DNA follows a biparental inheritance while mitochondrial DNA is inherited maternally. 
Adapted from “Mitochondrial Inheritance”, by BioRender (2021a). 
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Mutations in the nuclear POLGA gene, encoding for the catalytic subunit 
of the mitochondrial polymerase-γ (PolgA), is a major contributor to 
these syndromes (Rahman and Copeland, 2019). Over 300 POLGA gene 
mutations have been identified and associated with a variety of mtDNA 
alterations (e.g., reduced mtDNA copy number, accrual of mtDNA mu-
tations and deletions) and related disorders manifesting from infancy to 
late adulthood (Dimmock et al., 2010). However, a direct relationship 
between POLGA mutations, phenotypic manifestations, and mtDNA 
copy number variations has not always been verified (Tzoulis et al., 
2006). In fact, the knock-in mouse for POLGA showed premature aging 
and high levels of mtDNA point mutations and deletion, but no varia-
tions in mtDNA copy number (Trifunovic et al., 2004). However, copy 
number variations have been identified in people with mitochondrial 
syndromes carrying homoplasmic and heteroplasmic mtDNA mutations. 
In individuals with mitochondrial encephalopathy, lactic acidosis, and 
stroke-like episodes (MELAS), levels of heteroplasmic m.3243A>G 
mutations and mtDNA copy number were associated with disease 
severity (Grady et al., 2018). Levels of mtDNA copy number were also 
associated with different phenotypes in people with myoclonus epilepsy 
with ragged-red fibers (MERFF) (Liu et al., 2006). An association be-
tween mtDNA copy number and disease penetrance was observed in 
people with Leber’s hereditary optic neuropathy (LHON) carrying 
homoplasmic mutations (Bianco et al., 2018, 2017; Giordano et al., 
2014). Finally, people with Pearson’s syndrome or Kearns–Sayre syn-
drome, bearing heteroplasmic single mtDNA deletions, have a high 
mtDNA copy number that is not correlated with the size or the position 
of the mtDNA deletion (Bai and Wong, 2005). 

Taken as a whole, these findings indicate that mtDNA copy number 

may be involved in the onset and progression of mitochondrial diseases. 
In this setting, an increase in mtDNA copy number may be interpreted as 
a compensatory mechanism to sustain mitochondrial bioenergetics 
deficits, delay disease onset, and attenuate phenotypic expression 
(Filograna et al., 2019; Kauppila et al., 2016). 

3.2. Mitochondrial DNA mutations and cancer 

More than 80 years ago, Otto Warburg (1956) demonstrated that 
cells from solid cancer were characterized by a phenomenon known as 
“aerobic glycolysis” highlighting the role of mitochondria in cancer. 
Metabolic reprogramming is one of the hallmarks of cancer biology 
(Hanahan and Weinberg, 2011) and the role of mitochondria in this 
phenomenon is supported by the identification of several mtDNA mu-
tations in cancer cells (Bartoletti-Stella et al., 2011; Brandon et al., 2006; 
Chinnery et al., 2002; Copeland et al., 2002; Gasparre et al., 2008; 
Guerra et al., 2017b; Pereira et al., 2012; Wallace, 2012). In 2006, the 
results of a meta-analysis indicated that most significant mtDNA vari-
ants identified in cancer cells consisted in the same polymorphisms in 
different human populations (Brandon et al., 2006). Following this 
finding, mtDNA mutations were classified in two types of variants: 1) de 
novo mutations that act as “inducers” of carcinogenesis, and 2) func-
tional variants, that act as carcinogenesis “adaptors” allowing cancer 
cells to adapt to and survive in different environments (Kopinski et al., 
2021). 

The mechanisms by which mtDNA mutations determine tumori-
genesis have not yet been completely clarified. It is known that mtDNA 
mutations are associated with ROS production and altered redox status, 

Fig. 3. Mechanisms of mitochondrial DNA (mtDNA) clonal expansion, heteroplasmy, and mutant phenotype expression. 
Adapted from “mtDNA heteroplasmy”, by BioRender (2021b). 
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whose role in cancer cell growth has been widely described (Arnold 
et al., 2013; Petros et al., 2005; Wallace et al., 2010). Furthermore, 
mtDNA mutations can change mitochondrial metabolism, which in turn 
can induce modifications in the expression of nDNA and the epigenome 
(Dang et al., 2009; Wallace et al., 2010; Wallace and Fan, 2010). In fact, 
mutations in genes responsible for nDNA-encoded mitochondrial en-
zymes of the tricarboxylic acid cycle have been indicated to induce 
cancers by modifying the epigenome (Dang et al., 2009; Letouzé et al., 
2013; Lu et al., 2012), while mutations in the mtDNA can result in 
epigenome modifications in osteosarcoma cells (Kopinski et al., 2019; 
Picard et al., 2014). 

It has also been clarified that mtDNA variants can have three distinct 
origins with different clinical relevance: 1) inherited variants, which run 
in families; 2) somatic mutations, which occur in individuals or cell and 
can accumulate with age also contributing to the aging clock; and 3) 
variants associated with ancient mtDNA lineages, known as haplogroups 
and responsible for adaptation to changing tissue or geographic envi-
ronments. Alterations of several processes related to mitochondrial 
bioenergetics, including aerobic glycolysis (Courtney et al., 2018; De 
Berardinis and Chandel, 2016), ROS production, regulation of calcium 
levels (Huang et al., 2000; Petros et al., 2005; Stewart et al., 2015), and 

inter-organelle interaction (Herrera-Cruz and Simmen, 2017) occur 
during tumorigenesis and cancer progression. Both nDNA and mtDNA 
mutations, but also changes in mtDNA copy number and altered gene 
expression, can contribute to these changes. Neoplastic transformation 
can be due to all three classes of clinically relevant mtDNA variants 
(Kopinski et al., 2021). 

mtDNA mutations in tumors have been mostly reported in protein 
subunits of complex I (Gaude and Frezza, 2014). In this setting, a 
glycolytic switch of cancer cells and ROS-driven metastatization has 
been reported (Calabrese et al., 2013; He et al., 2013; Ishikawa et al., 
2008). Tumorigenesis has also been shown to be influenced by muta-
tions in complex III, IV, and V (Dasgupta et al., 2009). 

Cancer cell growth has been associated with mutations in complex III 
genes via increases in ROS production and apoptotic resistance (Das-
gupta et al., 2009). Mutations in mitochondrial and nuclear genes of 
complex IV subunits seem to have different roles in cancer progression. 
In leukemia cells, an upregulation of nuclear-encoded subunits of 
complex IV has been observed via increased oxidative phosphorylation 
and ROS production (Chen and Pervaiz, 2010). Instead, mutations in 
mitochondrial-encoded subunits of complex IV determined a decrease in 
oxidative phosphorylation and higher ROS production in prostate and 

Fig. 4. Schematic representation of the human mitochondrial DNA (mtDNA), mtDNA mutations, common deletion, and associated disorders. Abbreviations: ATP, 
ATP synthase subunit; CO, cytochrome c oxidase subunit; CYB, cytochrome b; D-Loop, displacement loop; HSP, promoter of the heavy strand; LSP, promoter of the 
light strand; MELAS, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes; LHON, Leber’s hereditary optic neuropathy; MERFF, myoclonus epi-
lepsy with ragged-red fibers; MT, mitochondrial; ND, NADH-ubiquinone oxidoreductase chain; OH, replication origin of the heavy strand; OL, replication origin of 
the light strand; RNR, ribonucleotide reductase. 
Adapted from “Human mtDNA Sequence Map”, by Kim (2021) BioRender. 
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ovarian cancers, respectively (Petros et al., 2005). Therefore, an onco-
genic role has been proposed for the nuclear-encoded complex IV sub-
units, while cancer growth suppressor has been ascribed to the activity 
of mtDNA-encoded complex IV subunit (Gaude and Frezza, 2014). 
Mutations in complex V, which carries out the final step of the oxidative 
phosphorylation process and participates in the formation of perme-
ability transition pore for calcium efflux and apoptosis, are associated 
with apoptosis resistance of cancer cells (Shidara et al., 2005). 

Experiments in cytoplasmic hybrid (cybrid) with different degree of 
heteroplasmy of m.8993 T >G mutation in the MT-ATP6 gene showed 
that high levels of heteroplasmy for this mutation were associated with 
glycolytic switch, increased cell proliferation, and migration (Gaude 
et al., 2018). Therefore, high levels of heteroplasmic mtDNA mutations 
can promote an oncogenic metabolic phenotype. Instead, a switch to-
wards an oncogenic behavior was lost when the mutation was present at 
a low heteroplasmy level (Gaude et al., 2018). Along with tumor growth 
and proliferation, mitochondrial activity is also required for the multi- 
step process of metastatic disease progression (Guerra et al., 2017b). 
During epithelial to mesenchymal transition, a process through which 
cancer cells acquire the ability to metastasize, mitochondrial biogenesis 
and metabolism, oxidative phosphorylation, and dynamics (Caino et al., 
2016; Lebleu et al., 2014; Sciacovelli et al., 2016) support the invasive 
potential of cancer cells. Mitochondrial ROS bursts and related signaling 
have been associated with the promotion of metastatic dissemination 
(Porporato et al., 2014). Conversely, higher glucose flux through the 
pentose phosphate pathway leads to antioxidant production, thus pro-
tecting cancer cells against ROS and promoting survival (Schafer et al., 
2009). However, beyond a certain threshold, ROS levels may also inhibit 
metastasis (Piskounova et al., 2015). A recent study indicated that 
dissemination of metastatic cancer cells was enhanced by reduced 
mitochondrial capacity and reliance on glycolysis for ATP production. 
Thus, if this is prevented, it may be possible to boost ROS production and 
trigger cancer cell death to inhibit metastatic spread (Labuschagne et al., 
2019). 

A comparison of mtDNA sequences of cancer samples from 31 
different types of cancers and matched controls led to the identification 
of 1907 somatic base substitutions, the vast majority of which being 
transitions (Ju et al., 2014). It was then demonstrated that mtDNA 
mutations can be due to replication errors caused by oxidative inacti-
vation of the proofreading exonuclease activity of PolgA (Anderson 
et al., 2020). The genetic inactivation of the exonuclease (PolgAD257A/ 
D257A) increases the incidence of mtDNA substitutions and deletions 
(Kujoth et al., 2005; Trifunovic et al., 2004). 

Interestingly, 58% of analyzed cancers harbor at least one somatic 
mitochondrial mutation and 31% are characterized by multiple muta-
tions (Ju et al., 2014). Of 1907 substitutions, 1153 (60.5%) were in the 
13 protein-coding genes. These include 63 nonsense mutations, 4 loss of 
stop codon, 878 missense, 110 insertion-deletion (indel) mutations, and 
208 silent substitutions (Ju et al., 2014). Presumably numerous low- 
heteroplasmy mutants, initially phenotypically masked, are generated 
in cancer cells with subsequent drift into higher heteroplasmy levels 
conferring these cells the ability to survive in specific environments 
(Wallace, 2018, 2015). 

In another study 1916 tumors and matched control tissues across 24 
different cancer types were analyzed and displayed mtDNA mutations 
(Grandhi et al., 2017). In this study, 2350 cancer-specific somatic 
mtDNA mutations were found in 64% of patients compared to normal 
cells in which heteroplasmic variants were identified in 40% of in-
dividuals. In particular, heteroplasmic variants of normal cells occurred 
within the non-coding D-loop region, while cancer-specific somatic 
mutations were distributed across both coding and non-coding mtDNA 
regions. Interestingly, according to the adaptive roles of mtDNA for 
disseminating cancer cells, mutations in the mitochondrial coding re-
gion are more abundant than those in D-loop regions in metastatic and 
recurrent cancers (Grandhi et al., 2017). Furthermore, differences in the 
frequency of functional mtDNA variants were observed between cancer 

types. For instance, a high number of somatic mtDNA mutations was 
described in chromophobe renal cell carcinoma and thyroid cancers 
(Yuan et al., 2020). Specifically, it was observed that these mutations 
occurred with heteroplasmic allele frequencies in positive correlation 
with the severity of the mutation class, indicating a positive selection 
(Yuan et al., 2020). Moreover, it was demonstrated that normal tissues 
were characterized by non-synonymous heteroplasmic mutations at low 
frequency which increased in cancer tissues. Grandhi et al. (2017) have 
demonstrated that, in patients with thyroid and kidney cancer, it is 
frequent to observe a shift of frameshift mutations from a low degree of 
heteroplasmy in normal tissue to quasi homoplasmy in the tumors. 
These findings suggest that disruptive mutations of mtDNA are at a low 
level in normal cells but undergo a positive selection in cancer tissues. 
This observation confirms the critical role of mtDNA in tumorigenesis. 

Several studies have analyzed mtDNA mutations in specific cancers 
(Bartoletti-Stella et al., 2011; Brandon et al., 2006; Chinnery et al., 2002; 
Copeland et al., 2002; Gasparre et al., 2008; Pereira et al., 2012; Wal-
lace, 2012). In prostate cancer, the occurrence of mtDNA mutations was 
associated with an increase of tumorigenic potential (Kalsbeek et al., 
2016), and, because they coexist with nuclear somatic driver events 
(Hopkins et al., 2017), it was emphasized their role as co-initiators of 
cancer (Hopkins et al., 2017; Kalsbeek et al., 2016; Xiao et al., 2018). 
Indeed, it was suggested that for thyroid Hüthle cell carcinoma (Gopal 
et al., 2018), breast cancer (Jiménez-Morales et al., 2018; Weerts et al., 
2018), pancreatic cancer (Hardie, 2007), gynecological malignancies 
(Musicco et al., 2018; Perrone et al., 2018), lung adenocarcinoma me-
tastases (Li et al., 2018; Yuan et al., 2015), and acute myeloid leukemia 
(Kim et al., 2018; Tyagi et al., 2018) mtDNA may act as a tumor initiator. 

The role of mtDNA mutations has been well characterized especially 
in prostate cancer (Kalsbeek et al., 2017). Interestingly, several nDNA 
gene loci that show mutational events and epigenomic modulation are 
related to genes that influence mitochondrial functions. Furthermore, a 
significant number of somatic mtDNA mutations were described in the 
non-coding control region and gene-coding regions of mtDNA (Hopkins 
et al., 2017; Kalsbeek et al., 2017, 2016; Petros et al., 2005). In a work by 
Arnold et al. (2015), the recurrence of the adaptative MT-ND3 m. 10398 
A>G in bone metastasis of prostate cancer has been reported. Further-
more, it has been demonstrated that prostate cancer tissue is enriched in 
several types of de novo mtDNA mutations. For instance, Petros et al. 
(2005) identified a de novo MT-COI mutation (5949G>A) responsible 
for impairment of complex IV assembly existing in homoplasmic degree 
in cancer tissue and not in the surrounding healthy tissue (Petros et al., 
2005). This finding indicates a positive selection of cancer cells towards 
mtDNA complex IV deficiency (Petros et al., 2005). In the same work, 
the authors demonstrated that the transfer of mtDNA mutation MT- 
ATP6 variant m.8993T>G into PC3 prostate cancer cells as trans-
mitochondrial cybrids induced the growth of seven-fold larger tumor 
masses and increased ROS production compared with PC3 cybrids ob-
tained with wild-type allele. 

Similarly, 143B mtDNA deficient (ρ0) cell line, variant MT-COI 
m.6124T>C was transferred in osteosarcoma cells to generate parallel 
homoplasmic mutants and wild-type clones. Arnold et al. (2013) 
described a partial defect of complex IV, increased ROS production, 
enhanced growth rate, and tumor growth in nude mice in mutant 
cybrids. After the transfer of mtDNA mutation in PC3 cells, the ability of 
mutant cybrids to induce the formation of larger tumors and increased 
resistance to apoptosis after statin treatment were described compared 
with normal cybrids (Howell and Sager, 1978). Similar experiments 
were conducted in other cancer cell types, reinforcing the hypothesis of 
a tumorigenic role of mtDNA mutations (Ishikawa et al., 2008; Sablina 
et al., 2005; Shidara et al., 2005) and the importance of ROS production 
(Gasparre et al., 2007; Nieborowska-Skorska et al., 2012). 

The role of mtDNA mutations is oncocytoma offers further insights 
on the subject (Xiao et al., 2018). Oncocytoma is characterized by 
mitochondrial hyperplasia and a benign behavior (Gasparre et al., 
2008). Several studies revealed numerous mtDNA mutations at high 
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heteroplasmic degree particularly in mitochondrial genes encoding 
subunits of complex I (Gasparre et al., 2007; Guerra et al., 2012), 
allowing to conclude that these mutations are markers of this type of 
cancer (Gasparre et al., 2007). A study described the occurrence of 
multiple mtDNA mutations at high heteroplasmy level in nine oncocy-
toma patients (Gasparre et al., 2008). Most mutations were in complex I 
genes causing complex deficiency and cell’s inability to grow on oblig-
atory oxidative metabolites (Gasparre et al., 2008). In all cases, mtDNA 
mutations were classified as somatic, and only in one case were mater-
nally inherited. This last mutation occurred also in normal tissue at a low 
heteroplasmy level and shifted to homoplasmy in the cancer tissue of the 
patient, indicating tumor selection for this mitochondrial variant (Gas-
parre et al., 2009). 

The study of oncocytoma was extremely useful to describe a dual role 
of mtDNA mutations in cancer. Accordingly, beyond a specific 
threshold, mtDNA mutations may acquire an anti-tumoral function and 
induce benign cancer behavior (Gasparre et al., 2011). The term of 
oncojanus genes was proposed to refer to the degree of heteroplasmy of 
certain mtDNA mutations able to contribute either oncogenic or sup-
pressive functions in the setting of mitochondrial-driven tumorigenesis 
(Gasparre et al., 2011). Oncojanus functions have also been described ex 
vivo in ovarian cancer tissue from patients treated with cisplatin, 
demonstrating a role for mtDNA variants in chemoresistance (Guerra 
et al., 2017a, 2012). 

Besides mtDNA mutations, alterations in mtDNA copy number have 
also been found in cancer cells. In particular, lower levels of mtDNA 
copy number were found in seven tumor types (bladder, breast, oeso-
phageal, head and neck squamous cell, clear cell and papillary kidney, 
and liver) compared with surrounding non-cancer tissue (Brandon et al., 
2006). Conversely, an increase in mtDNA copy number was shown in 
lung adenocarcinoma (Reznik et al., 2016), but also in low-grade gli-
omas harboring phosphatase and tensin homolog or isocitrate dehy-
drogenase 1 mutations, and in endometrial carcinomas with tumor 
protein 53 mutations compared with wild-type samples (Reznik et al., 
2016). 

Transcriptional profile analyses also indicated that mtDNA copy 
number correlated with the transcript levels of enzymes of the tricar-
boxylic acid cycle, fatty acid β-oxidation, branched-chain amino acid 
catabolism pathways, and ETC complexes. Instead, in prostate cancer, 
mtDNA content was inversely correlated with the expression of mito-
chondrial genes. The reason for such a variability in copy number 
changes is unknown, but the hypothesis is that the directionality of the 
change may result from the type of mutations as well as the tumor type. 
For instance, in thyroid and kidney tumors harboring mtDNA variants 
inactivating mtDNA genes, a marked increase in mtDNA copy number 
occurs in cancer cells compared with adjacent normal tissue cells 
(Grandhi et al., 2017). In endometrial cancer, a high mtDNA copy 
number has been reported as a compensatory effect to mtDNA mutations 
(Cormio et al., 2009; Guerra et al., 2011). In certain tumor types, al-
terations in mtDNA abundance can also represent an adaptive response 
and a secondary effect of a mutation that confers proliferation advan-
tage. Cancer severity is also correlated with changes in mtDNA copy 
number. Indeed, it was observed that breast cancer at stage IV charac-
terized by at least one metastatic site had the lowest mtDNA copy 
number (Guha et al., 2018). In tumor samples of triple-negative breast 
cancer, a significantly lower mtDNA copy number was detected 
compared with non-tumor tissue (Guha et al., 2018). In line with this 
observation, triple-negative breast cancer cell lines had markedly 
reduced mitochondrial respiration and increased glycolysis (Guha et al., 
2018). 

3.3. Mitochondrial DNA mutations in aging and neurodegeneration 

Mitochondrial dysfunction is a feature of the aging process 
(Schmauck-Medina et al., 2022). Among other alterations, somatic 
mtDNA mutations, including large mtDNA deletions and point 

mutations, have been identified in several tissues from old people 
(Corral-Debrinski et al., 1992; Larsson, 2010; Yen et al., 1991). Causality 
between the presence of these mutations and an aging phenotype has 
also been inferred. Mice bearing a proofreading-deficient PolgA accu-
mulate mtDNA mutations to a large extent and age prematurely with a 
phenotype characterized by reduced fertility and cell stemness, anemia, 
hair greying and loss, and hearing impairment (Kujoth et al., 2005; 
Trifunovic et al., 2004). In a second mutator mouse model obtained by 
inducing double-strand breaks ubiquitously in the mtDNA, an acceler-
ated ROS-dependent aging phenotype, preferentially affecting prolifer-
ating tissues, was also observed (Pinto et al., 2017). 

In the early ’90s, a mosaic pattern of COX deficiency was reported for 
the first time in human heart and muscle (Müller-Höcker, 1990, 1989). 
An accrual of clonally expanded mtDNA point mutations and deletions 
was also identified in COX-deficient fibers, which was hypothesized to 
cause focal mitochondrial dysfunction (Fayet et al., 2002). mtDNA de-
letions have also been detected in post-mortem brain samples of older 
adults (Corral-Debrinski et al., 1992). The mtDNA deletion of 4977 bp 
(mtDNA4977), so-called common deletion, removes mtDNA between the 
nucleotide positions 8470 to 8482 and 13,447 to 13,459 encompassing 
five tRNA genes and seven genes encoding subunits of ETC complex (i.e., 
subunits of cytochrome c oxidase, complex I and ATPases) (Cortopassi 
et al., 1992). This large mtDNA mutation was identified among the 
germline mtDNA deletions responsible for Kearns–Sayre syndrome 
(Schon et al., 1989), with tRNA depletion and consequent impaired 
mtDNA translation (Nakase et al., 1990). However, this can only occur 
when heteroplasmy is beyond ~80% (Moraes et al., 1992) due to a 
compensatory effect of wild-type mtDNA. A “biochemical threshold ef-
fect” exists whereby mtDNA mutations need to reach a critical threshold 
before mitochondrial bioenergetics are impacted (Rossignol et al., 
1999). 

The role of mtDNA copy number variations in aging and associated 
diseases is still unclear. mtDNA content in tissues of old individuals has 
been widely investigated and most studies reported a decrease in mtDNA 
content with age (Ding et al., 2015) with more dramatic declines in older 
people (Knez et al., 2016; Mengel-From et al., 2014) and loss of small 
percentages of mtDNA copies per decade of age (Zhang et al., 2017). In 
older people, a lower mtDNA copy number was associated with mor-
tality and decline in cognition and physical performance (Mengel-From 
et al., 2014). However, the relationship between low mtDNA content 
and longevity is not yet completely clear. Indeed, mtDNA quantification 
in nonagenarians and centenarians have shown contradictory results 
with lower (Van Leeuwen et al., 2014) or higher (He et al., 2014) mtDNA 
content compared with middle-aged controls. 

Genetic mtDNA variants and somatic mtDNA mutations have also 
been related to age-associated neurodegenerative conditions and indi-
cated as pathophysiological contributors (Keogh and Chinnery, 2015). 
More specifically, population variants that allow identifying geograph-
ical clusters of mtDNA in humans called “haplogroups” (Torroni et al., 
2000), have been associated with a higher risk of developing neuro-
degeneration (e.g., AD, PD) (Hudson et al., 2013; Maruszak et al., 2009). 
Experiments in cybrids have also shown that some mtDNA variants (i.e., 
m.A10398G (MT-ND3 p.T114A) and m.G8584A (MT-ATP6 p.A20T)) of 
the B5 haplogroup protect against PD (Liou et al., 2016). Cybrids 
bearing “protective” mtDNA variants were found to be more resistant to 
rotenone and less susceptible to apoptosis and autophagy-induced 
degradation compared with those carrying wild-type B4 mitochondrial 
genome (Liou et al., 2016). In line with this finding, a study by Strobbe 
et al. (2018) indicated that the haplogroup K1 provided a protective 
background to cybrids exposed to rotenone by enhancing mitochondrial 
biogenesis and supporting ATP production through glycolysis. Cybrids 
have also been used to investigate the possible role of mitochondrial 
dysfunction in familial PD. For instance, cell lines generated from in-
dividuals with familial autosomal dominant PD bearing mutations in the 
synuclein gene (SNCA) do not show complex I deficiency relative to 
those derived from patients with idiopathic PD (Swerdlow et al., 2001). 
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However, mitochondrial-related oxidative stress was still documented in 
SNCA-mutated cells (Swerdlow et al., 2001). 

Data on rare mtDNA polymorphisms also indicate an association 
with neurodegenerative disorders (Hudson et al., 2014). Early evidence 
of a causal role of inherited mtDNA variants in PD was reported in a 
family with maternally inherited parkinsonism (Swerdlow et al., 1998). 
A lower activity of complex I, higher ROS levels, and dysmorphic 
mitochondria were observed in cybrids containing mitochondria of 
maternal descendants, but not in those generated with paternal de-
scendants (Swerdlow et al., 1998). A pathogenic role of mtDNA variants 
in parkinsonism was further shown in a young patient carrying high 
levels of a frameshift mutation in the mitochondrial cytochrome b gene 
(MT-CYB) (Rana et al., 2000). This mutation induced metabolic and 
mitochondrial respiratory deficiency in cybrids (Rana et al., 2000). In-
heritance of the heteroplasmic mtDNA variant m.T1095C of the mito-
chondrial encoded 12S ribosomal RNA gene (MT-RNR1) was also 
reported in a family with neuropathy, deafness, and maternally inheri-
ted parkinsonism (Thyagarajan et al., 2000). Cybrid lines generated 
from a member of this family and treated with the aminoglycoside 
antibiotic gentamicin showed selective depletion of mitochondrial 
glutathione, ETC complexes II and III, and enhanced apoptosis (Muy-
derman et al., 2012). Finally, an association with PD was identified for 
the A4336G mtDNA variant of the tRNAGlu mitochondrial gene (Tan 
et al., 2000). Collectively, these findings suggest that specific mtDNA 
variants might contribute to the pathogenesis of PD by impinging on 
mitochondrial function and cell viability. However, the available evi-
dence does not allow a primary role for mtDNA mutations in PD to be 
conclusively established (Area-Gomez et al., 2019). 

An early study by Lin et al. (1992) identified point mutations in the 
NADH dehydrogenase 2 (ND2) subunit of complex I in the brain of 19 
patients with AD. However, subsequent studies seeking associations 
between specific mtDNA variants and AD reported inconclusive results 
(Coskun et al., 2004; Onyango et al., 2006). Furthermore, no evidence of 
maternal inherited mitochondrial defects was found in familial AD 
(Payami and Hoffbuhr, 1993). However, findings in AD cybrids cell lines 
still point to mitochondrial dysfunction as a crucial pathogenic factor in 
AD (Swerdlow et al., 2017). AD cybrid cell lines show reduced mito-
chondrial membrane potential, ATP production, dynamics, calcium 
internalization, and ability of buffering calcium-mediated signaling 
compared with controls (Cassarino et al., 1998; Silva et al., 2013a, 
2013b; Thiffault and Bennett, 2005). Cybrid cell lines generated from 
individuals with mild cognitive impairment (MCI), a possible precursor 
of AD, show changes in metabolic parameters that are distinct from AD 
and control cybrids (Gan et al., 2014; Silva et al., 2013a, 2013b). Taken 
as whole, existing findings strongly suggest a role for mitochondrial 
abnormalities in AD. However, causation between specific mtDNA var-
iants and neurodegeneration still needs to be determined. 

Among mtDNA mutations, the accrual of mtDNA deletions has been 
identified in the brain of older adults with a preferential accumulation in 
regions that are more susceptible to neurodegeneration (Bender et al., 
2006; Ross et al., 2013). Conversely, the presence of point mutations or 
insertion-deletion mutations is controversial (Chinnery et al., 2001; Lin 
et al., 2012). Finally, cell-free mtDNA in the cerebrospinal fluid (CSF) 
and/or mtDNA copy number variations in the brain of people with 
neurodegenerative diseases have been documented and proposed as 
biomarkers of neurodegeneration (Pyle et al., 2016, 2015). Studies in PD 
showed a selective reduction in mtDNA levels in neurons of the sub-
stantia nigra, but not in the caudate nucleus or frontal and cerebellar 
cortex (Dölle et al., 2016; Frahm et al., 2005). In particular, the reduc-
tion of wild-type mtDNA molecules despite an increase in mtDNA de-
letions in dopaminergic neurons of the substantia nigra may be the 
mechanism driving the bioenergetic deficit observed in PD patients 
(Dölle et al., 2016). The quantification of mtDNA copy number in brains 
of patients with AD has led to more coherent results showing a 30 to 50% 
reduction in mtDNA levels in neurons of the frontal cortex compared 
with controls (Coskun et al., 2004). mtDNA depletion and altered 

mitochondrial biogenesis signaling was also identified in the pyramidal 
neurons of the hippocampus (Rice et al., 2014). 

To conclusively establish whether an association between mtDNA 
variants and the development and progression of neurodegenerative 
diseases exists, and to investigate the dynamics of mtDNA mutations and 
copy number variations in brain aging, whole mitochondrial exome 
sequencing was carried out in 1,363 post-mortem brains from people 
with AD, PD, amyotrophic-frontotemporal dementia, dementia with 
Lewy bodies, and Creutzfeldt-Jakob disease (CJD), and compared with 
age-matched controls (Wei et al., 2017). The authors did not find any 
evidence of rare inherited polymorphisms or degrees of mtDNA heter-
oplasmy associated with disease pathogenesis (Wei et al., 2017). How-
ever, in keeping with previous reports, a significant reduction in mtDNA 
copy number was identified in AD and CJD brains (Coskun et al., 2004; 
Wei et al., 2017). Although requiring additional investigations, findings 
of altered mtDNA copy number in age-related neurodegeneration may 
help gain insights into disease mechanisms. The quantification of 
mtDNA copy number, mtDNA deletion of 4.8-kb, and TFAM protein 
levels in several tissues of young and old rats, including the frontal 
cortex, allowed proposing possible mechanisms of regulation of mtDNA 
variations during aging (Picca et al., 2014, 2013b, 2013a). In particular, 
higher protein levels of TFAM and 4.8-kb deletion, and a decrease in 
mtDNA content was found in the frontal cortex of old rats compared 
with young controls (Picca et al., 2013a). Furthermore, results from 
immunoprecipitation assay of TFAM binding to mtDNA indicated that 
two sub-regions of mtDNA involved in replication had less TFAM-bound 
mtDNA in old than young rats (Picca et al., 2013a). This decrease in 
TFAM binding may explain, at least partly, the mtDNA decline observed 
during aging despite a compensatory increase in TFAM expression 
(Picca et al., 2013a). 

Taken as a whole, these findings support the hypothesis of a role of 
mtDNA copy number variations in the pathogenesis of neuro-
degeneration. However, it is difficult to generalize these results to brain 
aging, because these abnormalities may be restricted to specific brain 
regions. Also, an altered mtDNA copy number may be a consequence of 
PD rather than the cause. Indeed, the variations observed in PD may 
represent an indirect effect of changes in the proportion of cell types 
composing the tissue homogenate consequent to neurodegeneration. 
However, the association of mtDNA copy number variations with age in 
post-mortem brains of people with CJD still supports the hypothesis of a 
causal role for changes in mtDNA content in neurodegeneration and 
requires further investigation. 

The urge of diagnostic and prognostic biomarkers of neuro-
degeneration has ignited a great deal of research. Among other candi-
date molecules, the level of mtDNA in peripheral blood and CSF as a 
marker of brain metabolism and disease pathology and progression has 
been widely characterized. Encouraging results towards the reliability of 
cell-free mtDNA as biomarker for the early detection of age-related 
neurodegenerative conditions have been reported, but further investi-
gation is needed. 

4. Conclusions 

Polymorphic mtDNA variants have been identified in sporadic and 
inherited disorders of the nervous system as well as in cancer, neuro-
degenerative diseases, and “normal” aging. The role of mtDNA quality 
control pathways in human health is actively investigated for the pos-
sibility of identifying diagnostic and prognostic biomarkers and targeted 
therapeutics for a wide range of conditions. Among other candidate 
molecules, mtDNA in CSF and peripheral blood, which mirrors tissue/ 
organ metabolism and disease progression, is increasingly investigated. 
Encouraging results on cell-free mtDNA levels and associated mutations 
as a biomarker of early detection for cancer and age-related conditions 
have been reported. However, results are preliminary and further 
investigation is warranted. 
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