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Abstract
We look for minimizers of the buckling load problem with perimeter constraint in
any dimension. In dimension 2, we show that the minimizing plates are convex; in
higher dimension, by passing through a weaker formulation of the problem, we show
that any optimal set is open and connected. For the higher eigenvalues, we prove that
minimizers exist among convex sets with prescribed perimeter.
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1 Introduction

Let d ∈ N, d ≥ 2 and let � ⊂ R
d a bounded Lipschitz domain. We say that �(�)

is an eigenvalue of the buckling load problem (briefly, a buckling eigenvalue) if there
exists u ∈ H2

0 (�) \ {0} such that

{
−�2u = �(�)�u in �,

u = ∂u
∂ν

= 0 on ∂�.
(1.1)
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The buckling eigenvalues form an increasing sequence

0 < �1(�) ≤ �2(�) ≤ · · · ↗ +∞

and, for any h ∈ N, they can be characterized variationally by the min-max formula
involving the Rayleigh quotient

�h(�) = min
V⊂H2

0 (�), dim V=h
max

u∈V \{0}

∫
�

(�u)2 dx∫
�

|∇u|2 dx
.

In this paper we mainly focus on the first eigenvalue, i.e.

�1(�) = min
u∈H2

0 (�)\{0}

∫
�

(�u)2 dx∫
�

|∇u|2 dx
. (1.2)

The minimum above is achieved only on the solutions of Problem (1.1).
Our aim is to show an existence result for a shape optimization problem involving

�1(�), whose formulation is appropriated in view of the physical interpretation of
the PDE. Indeed, in a 2-dimensional setting, � can be thought as a thin elastic plate
that is clamped along its boundary ∂� and subject to compressive forces (the so
called “buckling forces”) across ∂�; these forces lie on the same plane as �, that may
deflect out of its plane when these forces reach a certain magnitude. �1(�) is said the
“buckling load” of � and can be interpreted as the energy associated to the plate � in
this phenomenon (Fig. 1).

There are some works in literature treating this problem by constraining the volume
of the admissible sets and there is a few information about the minimizers. Some of the
earlier variational results for similar problems can be found, for instance, in [24, 25] or
[21], where the minimality of the disk is proved under some regularity assumptions on
the admissible domains or on the eigenfunctions (see, for instance, Chap. 11 in [17] or
Chap. 3 in [16] for further references). A more recent result in which variational meth-
ods appear is [4], where the authors prove that the problem in R2 admits a quasi open
minimizer without prescribing any bounded design region; moreover, supposing that a
minimizer � is a sufficiently smooth domain with sufficiently smooth eigenfunctions,
the authors show that � has to be a disk of maximal area. The conjecture that balls
are minimizers among sets of given volume is supported by some results showing that
balls are critical for the buckling eigenvalues of any order (namely the eigenvalues of
(−�)mu = �(�)(−�)pu, with m, p ∈ N0, m > p, with homogeneous boundary
conditions), see [12]; moreover, those results can be naturally extended to the case of
perimeter constraint, see Sect. 6 in [11].

Several years after [4], in [22] it is proved an existence result in dimension 2 and 3
with a different technique based on the eigenfunctions, but introducing a (big) bounded
design region to assure extra compactness. Recently, Stollenwerk [23] provided an
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Fig. 1 A clamped plate subject
to the buckling forces in
dimension d = 2; the deflection
can be both upward and
downward

existence result for minimizers in the whole of Rd based on a mixed strategy: a
concentration-compactness argument inspired by [4] to get a limit function u and a
regularity argument for u to build the optimal open set using the superlevel sets of
continuous functions; moreover, the author shows that the open minimizers are also
connected, but nothing is proved about the regularity of the boundary. On the other
hand, it seems that there are no available existence results in literature for the higher
eigenvalues, even if the admissible shapes satisfy some topological constraint.

Nevertheless, in view of the physical interpretation of the buckling eigenvalues, it
seems reasonable to replace the volume constraint with the perimeter constraint; in
this work, given p > 0, we focus on the following problem

min
{
�1(�) : � ⊂ R

d open, |�| < ∞, P(�) ≤ p
}

. (1.3)

An appropriate interpretation in R2 can be the following: given a deformable support
(with prescribed length p) wherein the admissible plates can be clamped, we want to
find if there exists a plate that minimizes the buckling load due to the buckling forces
acting across the support itself; in other words, we look for the optimal plate that can
be clamped in the given support. The main result of the paper is the following.

Theorem 1.1 Problem (1.3) admits a solution. Every minimizer is an open connected
set. In R2 any optimal set is open, bounded and convex.

We also prove the following existence result for the higher eigenvalues in the frame-
work of convex sets.

Theorem 1.2 Problem

min
{
�h(�) : � ⊂ R

d open and convex,Hd−1(∂�) ≤ p
}

, (1.4)

admits a solution.

We finally point out that spectral shape optimization problems governed by higher
order PDEs are, in general, harder to handle than the second order counterparts and
non existence results often appear. To get acquainted on the non existence of optimal
shapes for higher order problems, see several results in [16] (and the reference therein).
We just mention, for instance, [16, Theorem 3.24], which gives an example of non
existence of optimal shapes for a Steklov-type spectral functional neither with volume
nor with perimeter constraint; we point out that a minimizer among convex sets exists,
see [3] or [8] and that, if d = 2, pentagons are better than disks, even if balls are
always critical, see [10].
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The paper is structured as follows. In Sect. 2 we give some preliminary results and
we fix the notation. In Sect. 3 we treat separately the existence case in dimension 2
(it is almost straightforward, but we insert the proof for the reader’s convenience). In
Sect. 4 we deal with the existence in any dimension in a weak framework and we show
that the optimal shapes for the weak problem are in fact minimizers for the original
problem, completing the proof of Theorem 1.1. In Sect. 5 we prove Theorem 1.2. We
finally set some open problems and perspectives in Sect. 6.

2 Notation and Preliminary Results

In this section we fix the notation and recall some results used throughout the paper.
For x ∈ R

d and r > 0, Br (x) will denote the open ball of radius r centered in x ;
when x is omitted, we consider the ball centered in the origin. For every measurable
set E ⊆ R

d , we will use the symbols χE for the characteristic function of E , Ec for
its complement and t E for the rescaled set {t x : x ∈ E}. As usual, |E | and Hs(E)

(s > 0) stand respectively for the Lebesgue measure and the Hausdorff s-dimensional
measure of E ; if E is a piecewise regular hypersurface, Hd−1(E) coincides with its
area measure. We will denote by H − dim(E) the Hausdorff dimension of the set
E ; for sufficiently regular sets, it coincides with the topological dimension of the set
E , e.g. if E is an open set of Rd , H − dim(E) = d (for further details see Chap.
2, Sect. 8 in [2]). For every open set � ⊂ R

d , we will denote by L p(�) the usual
Lebesgue space of (classes of) p-summable functions, byWk,p(�) the Sobolev space
of functions whose (weak) derivatives are p-summable up to order k and by Hk(�) the
(Hilbert) spaceWk,2(�); whenever f ∈ L p(K ) or f ∈ Wk,p(K ) for any compact set
K ⊂ �, we say that f ∈ L p

loc(�) or f ∈ Wk,p
loc (�) respectively. For the convenience

of the reader, whenever A, B are open sets, A ⊆ B and u ∈ Wk,p
0 (A), we will denote

still by u its zero extension to the whole B.
Moreover, for any open set � and any test function u ∈ H2

0 (�), we denote the
Rayleigh quotient in (1.2) by R�(u).

Definition 2.1 (sets of finite perimeter) Let E ⊆ R
d be measurable and let � ⊆ R

d

be open. We define the perimeter of E in � as

P(E,�) := sup

{∫
E
div(ϕ) dx : ϕ ∈ C1

c (�;Rd), ‖ϕ‖∞ ≤ 1

}

and we say that E is of finite perimeter in� if P(E,�) < +∞. If� = R
d we simply

say that E is of finite perimeter and denote its perimeter by P(E).

Let us recall that, if E is sufficiently regular (e.g. if E is either a bounded Lipschitz
domain or a convex set), it holds P(E,�) = Hd−1(∂E ∩ �).

In order to minimize Problem (1.3) and its weak version, Problem (4.3), using
the direct methods of the Calculus of Variation (or some concentration-compactness
argument), we need lower semicontinuity of the buckling eigenvalues with respect to
the some suitable topology on the class of sets of Rd where the problem is set. As we
will see, two good choices for our purposes are the Hausdorff topology of open sets
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(in the 2-dimensional setting, where the perimeter constraint and the monotonicity of
the functional imply the convexity of the optimizers) and the L1-topology (in higher
dimension, where a weak formulation in the class of measurable sets is needed).

Definition 2.2 (convergence in measure) We say that a sequence of measurable sets
(�n)n converges in measure to a measurable set� if |�n��| → 0, namely if χ�n →
χ� in L1(Rd).

We say that (�n)n locally converges in measure to � if χ�n → χ� in L1
loc(R

d).

This kind of convergence turns out to be suitable to our purposes to have compact-
ness of minimizing sequences of sets of finite perimeter.

Proposition 2.3 (compactness for the convergence in measure and lower semiconti-
nuity of the perimeter, [2],Theorem 3.39) Let A ⊂ R

d be an open bounded set and let
(En)n be a sequence of subsets of A with finite perimeter such that

sup
n

P(En, A) < +∞.

Then, there exists E ⊆ A with finite perimeter in A such that, up to subsequences,

χEn → χE in L1(Rd)

and

P(E, A) ≤ lim inf
n→∞ P(En, A).

In general, one of the main disadvantages of the convergence in measure is that no
topological properties of converging sequences can be deduced for the limit set in this
framework. To this aim, we introduce the Hausdorff convergences.

Definition 2.4 (Hausdorff topology on closed sets) Let A, B ⊆ R
d be closed. We

define the Hausdorff distance between A and B by

dH (A, B) := max

{
sup
x∈A

dist(x, B), sup
x∈B

dist(x, A)

}
.

The topology induced by this distance is called Hausdorff topology (or simply
H -topology) on closed sets.

The counterpart of the Hausdorff topology for open sets is defined below.

Definition 2.5 (Hausdorff topology on open sets) Let A, B ⊆ R
d be open. We define

the Hausdorff-complementary distance between A and B by

dHc (A, B) := dH (Ac, Bc).

The topology induced by this distance is called Hausdorff-complementary topology
(or simply Hc-topology) on open sets.
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This topology guarantees the compactness of sequences of open convex sets under
suitable hypotheses. The following proposition contains some results proved in [6,
Sect. 2.4], and shows us that Hausdorff convergences preserve convexity and assure
continuity for Lebesgue measure and perimeters of convex sets.

Proposition 2.6 The following results hold for convex sets:

(i) If A ⊆ B, then Hd−1(∂A) ≤ Hd−1(∂B);
(ii) If An, A are closed (respectively open) and convex and An → A with respect to

the H-topology (respectively Hc-topology), then χAn → χA in L1; moreover,
if for every n ∈ N it holds H − dim(A) = H − dim(An), then Hd−1(∂An) →
Hd−1(∂A).

(iii) |A| ≤ ρHd−1(∂A), where ρ is the radius of the biggest ball contained in A.
(iv) If a sequence (An)n of closed convex sets H-converges to a closed set A, then

A is a closed convex set; if a sequence (Bn)n of open convex sets Hc-converges
to an open set B, then B is an open convex set.

(v) Let D ⊂ R
d a fixed compact set. Then, the class of the closed convex sets

contained in D is compact in the H-topology and the class of the open convex
sets contained in D is compact in the Hc-topology.

We recall an important result due to John (see [18]), involving convex sets.

Theorem 2.7 (John’s ellipsoid Theorem) Let K ⊂ R
d a compact convex set with

non-empty interior. Then, there exists an ellipsoid E ⊂ R
d centered in x0 ∈ E such

that

E ⊆ K ⊆ x0 + d(E − x0)

(where the ellipsoid x0 + d(E − x0) is obtained by a dilation of E by a factor d and
with center x0).

The following properties of the buckling eigenvalues will be useful throughout the
paper.

Proposition 2.8 (properties of the buckling eigenvalues)

(i) Let �1,�2 ⊂ R
d be open sets such that �1 ⊂ �2; then, for any h ∈ N,

�h(�2) ≤ �h(�1).

(ii) For every set of finite perimeter � ⊂ R
d and t > 0

�h(t�) = t−2�h(�).

Proof The proof of item (i) is straightforward since H2
0 (�1) ⊆ H2

0 (�2). Item (ii) can
be proved via the natural change of variables t�  x �→ y = x

t ∈ � in the Rayleigh
quotient and the one-to-one correspondence betweenu ∈ H2

0 (t�) andu(t ·) ∈ H2
0 (�).

��
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Remark 2.9 (equivalent formulations) In viewof the scaling properties of the perimeter
and of the buckling eigenvalues, Problem (1.3) is equivalent to the scale invariant
problem

min
{
P(�)

2
d−1 �1(�) : � ⊂ R

d open, |�| < ∞,
}

. (2.1)

Indeed, for any t > 0 one has

P(t�)
2

d−1 �1(t�) = (td−1)
2

d−1 P(�)
2

d−1 t−2�1(�) = P(�)
2

d−1 �1(�)

Moreover, Problem (1.3) is also equivalent to the penalized problem

min
{
�1(�) + βP(�) : � ⊂ R

d open, |�| < ∞,
}

(2.2)

for some β > 0. More precisely, if �̂ is a solution of Problem (1.3), there exists β > 0
such that �̂ is a solution of Problem (2.2) and, viceversa, if �̂ is a solution of Problem
(2.2), then it solves Problem (1.3) with bound on the perimeters given by p = P(�̂).

The second implication is straightforward. To prove the equivalence, then, it is
sufficient to consider a solution �̂ of Problem (1.3), define the function on R+

F(t) := �1(t�̂) + βP(t�̂)

and show that it attains itsminimum in t = 1. By the scaling properties of the perimeter
and of the eigenvalues we have

F(t) = t−2�1(�̂) + βtd−1P(�̂).

To conclude, we choose β > 0 in such a way that the derivative

F ′(t) = −2t−3�1(�̂) + β(d − 1)td−2P(�̂)

vanishes in t = 1, i.e.

β = 2�1(�̂)

(d − 1)P(�̂)
.

We close this section recalling two useful results involving some properties of the
Sobolev spaces.

Proposition 2.10 (see [15, Theorem 4.4.(iv)]) Let 1 ≤ p < ∞ and let f ∈ W 1,p(Rd).
Then ∇ f = 0 a.e. on { f = 0}.
Proposition 2.11 (see [1, Theorem 9.1.3]) Let m be a positive integer, let 1 < p < ∞
and let f ∈ Wm,p(Rd). Let � ⊂ R

d be an open set. Then the following statements
are equivalent:

(a) Dα f = 0 everywhere in �c for all multiindices α such that 0 ≤ |α| ≤ m − 1;
(b) f ∈ Wm,p

0 (�).
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3 Existence of Optimal Shapes for the First Buckling Eigenvalue: The
Planar Case

We are able to prove the existence result in dimension two, where the perimeter
constraint assures compactness.

Proposition 3.1 Problem (1.3) admits a bounded, open, convex minimizer � ⊂ R
2

with maximal boundary length.

Proof We first notice some simplifications that can be done.

• Since � �→ �1(�) is invariant under translations of the connected components,
we can suppose that they lie at zero distance each other; for the same reason, we
can suppose that all the admissible shapes � are contained in the same bounded
design region. Indeed, for any open set � ⊂ R

2 the condition P(�) ≤ p implies
diam(�) < p/2 and then all the admissible domains can be translated in a bounded
design region D ⊂⊂ R

2.
• For any admissible �, its convex hull �̃ is still an admissible set, since it is open
and H1(∂�̃) ≤ H1(∂�). In view of the decreasing monotonicity of the map
� �→ �1(�) with respect to the set inclusion, since � ⊂ �̃, we have

�1(�̃) ≤ �1(�).

Then, we can reduce ourselves to the class of open convex sets with boundary
length less than or equal to p.

• In view of the scaling property of �1 and the monotonicity with respect to inclu-
sions, we have that the admissible sets can be assumed to have exactly boundary
length equal to p (the perimeter constraint is saturated).

In other words, in R2, without loss of generality we can study

min
{
�1(�) : � ⊂ D,� open and convex,H1(∂�) = p

}
. (3.1)

From now on, we denote Ap := {� ⊂ D,� open and convex,H1(∂�) = p}. Let
now (�n)n be aminimizing sequence for (3.1) and, for any n ∈ N, let un ∈ H2

0 (�n) an
eigenfunction for�1(�n)with ‖∇un‖2 = 1. In view of the properties of theHausdorff
convergence (Proposition 2.6), there exist a subsequence (�nk )k and an open convex
set � ⊂ D such that

�nk → � in the sense of Hausdorff;

notice that the convergence is also in measure and that � �= ∅. Otherwise, in view of
the convergence in measure, we would have |�nk | → 0 and from the Payne inequality
(see, for instance, inequality (3.26) in [16]), we would obtain

�1(�nk ) ≥ λ2(�nk ) → +∞,
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where λ2 is the second eigenvalue of the Dirichlet-Laplacian. This would contradict
the minimality of the sequence (�n)n . Then, � is an open convex set of positive
measure and, in addition, it holds

∂�nk → ∂� in the sense of Hausdorff

and

H1(∂�) = lim
k→+∞H1(∂�nk ) = p,

so � is an admissible set for Problem (3.1). Now, the corresponding subsequence of
eigenfunctions (unk )k is bounded in H2

0 (D); indeed

‖unk‖H2
0 (D) = ‖unk‖H2

0 (�nk ) =
∫

�nk

(�unk )
2 dx = �1(�nk ) ≤ C .

Then, there exist a further subsequence (still denoted with the same index) and a
function u ∈ H2

0 (D) such that unk⇀u weakly in H2
0 (D); this implies that unk → u

strongly in H1
0 (D). Moreover, since �nk converges to � in measure, we deduce that

u ∈ H2
0 (�) is an admissible test function for �1(�).

In view of the lower semicontinuity of the H2
0 -norm with respect to the weak

convergence in H2
0 (D) it finally holds

�1(�) ≤
∫

�

(�u)2 dx ≤ lim inf
k→+∞

∫
�nk

(�unk )
2 dx = lim inf

k→+∞ �1(�nk ) = inf
�∈Ap

�1(�),

proving the thesis. ��

4 Existence of Optimal Shapes for the First Buckling Eigenvalue: The
Case of Higher Dimension

In general, the perimeter constraint does not imply the boundedness and the convexity
of optimal shapes in higher dimension (this is a peculiarity of the 2-dimensional case).
To prove the existence of optimal shapes in higher dimension, we follow a different
strategy. By following the approach of [4] (later used in [23]), we look for minimizers
for Problem (1.3) with neither topological constraint nor bounded design region via
a concentration-compactness argument. The main difference is that in the previous
works the authors dealt with a measure constraint, whereas we have to preserve a
perimeter constraint. Proposition 2.3 suggests a good tool to this aim, since the result
guarantees the lower semicontinuity of the perimeter and the compactness with respect
to the convergence in measure for a sequence of measurable sets; in view of this, the
original framework of open sets does not seem to be the most appropriate to prove an
existence result for Problem (1.3).

A good strategy in this sense is provided in [14], where the authors use a suitable
weak formulation of the Dirichlet-Laplacian eigenvalues in the framework of sets of
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finite perimeter. More precisely, in order to set the problem in the class of measurable
sets instead of working only with open sets, for every set of finite perimeter � ⊂ R

d

they introduce the Sobolev-like spaces

H̃1
0 (�) :=

{
u ∈ H1(Rd) : u = 0 a.e. in �c

}

and they prove the existence of optimal shapes for a weaker version of the functional
with perimeter constraint. After proving the existence, they are able to come back to
the original problem, showing that weak minimizers are, in fact, open sets.

Definition 4.1 (weak eigenvalues) Let � ⊂ R
d be a set of finite perimeter. We define

the Sobolev-like space H̃2
0 (�) ⊂ H2(Rd) as

H̃2
0 (�) :=

{
u ∈ H2(Rd) : u = 0 a.e. in �c

}
. (4.1)

We define the h-th weak buckling eigenvalue by

�̃h(�) = inf
V⊂H̃2

0 (�),dim V=h
max

u∈V \{0}

∫
�

(�u)2 dx∫
�

|∇u|2 dx
.

In particular, the first weak buckling eigenvalue of � is given by

�̃1(�) = inf
u∈H̃2

0 (�)\{0}

∫
�

(�u)2 dx∫
�

|∇u|2 dx
, (4.2)

Once given the weaker version of the functional, we look for a right class of admis-
sible sets; our choice is the following:

Ãp :=
{
� ⊂ R

d measurable, |�| < ∞, P(�) ≤ p
}

.

The new problem to consider is thus

min
{
�̃1(�) : � ∈ Ãp

}
. (4.3)

The choice of this weaker framework has been made in order to ensure the complete-
ness of the class of admissible sets with respect to the local convergence in measure: in
other words, a converging sequence of admissible sets converges (locally in measure)
to an admissible set. Notice that, in the original statement (1.3), this request fails: the
limit set of a sequence of open sets converging in measure is not open, in general.
For that reason, it has been necessary to choose also the functional in a weaker sense,
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keeping into account the new functional space for the test functions. Only the inclu-
sion H̃2

0 (�) ⊇ H2
0 (�) is valid in general, even for open sets. Nevertheless, if the set

� is open and sufficiently regular, the equality H̃2
0 (�) = H2

0 (�) holds; the equality
fails whenever � has inner cracks, e.g. if � ⊂ R

3 is a ball with an equatorial cut that
removes a maximal half-disk, namely

� = B1(0) \ {x3 = 0, x1 ≥ 0}.

Then, in general, for any open set � it holds

�̃h(�) ≤ �h(�).

Notice that also in Problem (4.3) we avoid the apriori prescription of a bounded
design region where the admissible sets are contained. A similar assumption would
lead straightforwardly to the compactness of a minimizing sequence of admissible
sets, see [2, Theorem 3.39].

We now state some useful properties of the weak eigenvalues.

Proposition 4.2 (properties of the weak eigenvalues).

(i) Let �1,�2 ⊂ R
d be sets of finite perimeter such that |�1��2| = 0; then, for any

k ∈ N,

�̃h(�1) = �̃h(�2).

(ii) Let�1,�2 ⊂ R
d be sets of finite perimeter such that |�2 \�1| = 0 (i.e.�1 ⊂ �2

up to a Ld -negligible set); then, for any h ∈ N,

�̃h(�2) ≤ �̃h(�1).

(iii) For every set of finite perimeter � ⊂ R
d and t > 0

�̃h(t�) = t−2�̃h(�).

Proof Item (i) follows by observing that |�1��2| = 0 implies H̃2
0 (�1) = H̃2

0 (�2).
Items (ii) and (iii) are proven in the same way as in the classical framework. ��
Remark 4.3 (equivalent formulations) As we proved for Problem (1.3), also Problem
(4.3) has two equivalent formulations; more precisely it is equivalent to the scale
invariant problem

min
{
P(�)

2
d−1 �̃1(�) : � ⊂ R

d measurable, |�| < ∞,
}

. (4.4)

and to the penalized problem

min
{
�̃1(�) + βP(�) : � ⊂ R

d measurable, |�| < ∞,
}

(4.5)
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for some β > 0. The proof is the same as in Remark 2.9.

Remark 4.4 (ε-eigenfunctions) We point out that the infimum in (4.2) is not attained,
in general. For that reason, we introduce the term ‘ε-eigenfunction’ to denote a test
function uε ∈ H̃2

0 (�) that satisfies

�̃1(�) ≤

∫
�

(�uε)2 dx∫
�

|∇uε|2 dx
< �̃1(�) + ε. (4.6)

for some ε > 0.

The following result is a version of [9, Lemma 3.3] adapted to our Sobolev-like
spaces.

Lemma 4.5 Let (wn)n be a bounded sequence in H1(Rd) such that ‖wn‖L2(Rd ) = 1
and wn = 0 a.e. in �c

n with |�n| ≤ C. There exists a sequence of vectors (yn)n ⊂ R
d

such that the sequence (wn(·+yn))n does not possess aweakly convergent subsequence
in H1(Rd).

We use the previous result to get the contradiction in the vanishing case in Theo-
rem 4.6 as follows: we find a sequence (wn)n in H1(Rd) satisfying (after a possible
rescaling) ‖wn‖L2(Rd ) = 1, wn = 0 a.e. in �c

n with |�n| ≤ C and such that any
possible translation of wn weakly converges; in view of Lemma 4.5 (wn)n can not be
bounded in H1(Rd) and in particular gradients must be unbounded in L2(Rd).

Now, to prove the existence of minimizers for Problem (4.3), we follow a strategy
based on the concentration-compactness principle by Lions (see [19]) and inspired by
[4] (a similar argument has been reprised in [23]). We only have to be careful with
the choice of suitable ε-eigenfunctions and to preserve the perimeter constraint. For
another result of spectral shape optimization under perimeter constraint by using a
concentration-compactness argument see [7], where the same technique applies in the
minimization of the second Dirichlet-Laplace eigenvalue.

The main result of this section is the following.

Theorem 4.6 Problem (4.3) admits a measurable solution �̂ ⊂ R
d with P(�̂) = p.

Proof First of all, we show that every solution �̂ ⊂ R
d has maximal perimeter.

Otherwise, if P(�̂) < p, the dilated set

�̂′ :=
(

p

P(�̂)

) 1
d−1

�̂

satisfies P(�̂′) = p and, in view of the decreasing monotonicity and the scaling prop-
erty of �̃1, it holds �̃1(�̂

′) < �̃1(�̂), leading to a contradiction with the minimality
of �̂.
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Now we prove the existence of a minimizer for Problem (4.3). Let (�n)n ⊂ Ãp

be a minimizing sequence for Problem (4.3) and let un ∈ H̃2
0 (�n) a corresponding

sequence of normalized weak 1/n-eigenfunctions, namely we have

∫
Rd

|∇un|2 dx = 1,

�̃1(�n) ≤
∫
Rd

(�un)
2 dx < �̃1(�n) + 1

n
,

inf
�∈Ãp

�̃1(�) = lim
n→+∞ �̃1(�n) = lim

n→+∞

∫
Rd

(�un)
2 dx . (4.7)

We infer

‖un‖L2(Rd ) = ‖un‖L2(�n)
≤ |�n| 2

∗−2
2∗·2 ‖un‖L2∗ (�n)

≤ C‖un‖L2∗ (Rd ) ≤ C ′‖∇un‖L2(Rd )

= C ′‖∇un‖L2(�n)
= C ′,

where we used first the inclusion L2∗
(�n) ⊂ L2(�n) and then the Sobolev-Gagliardo-

Nirenberg inequality since d > 2; all the constants are independent of n since they
depend only on the dimension d and on |�n|, that is uniformly bounded. We remark
that we do not use directly the Poincaré inequality to show the uniform bound on
‖un‖L2(�n)

since �n can possibly be unbounded in any direction and, even if �n is
bounded, the function un could be outside H1

0 (�n). Moreover, an integration by parts
yields

1 =
∫
Rd

|∇un|2 dx = −
∫
Rd

un�un dx ≤ C ′
(∫

Rd
(�un)

2 dx

)1/2
,

so
∫
Rd (�un)2 dx is also bounded from below away from zero; this implies that the

infimum of Problem (4.3) is strictly positive. Analogously, also ‖un‖L2(Rd ) is larger
than a positive constant and this avoids the degeneracy of the eigenfunctions un in
L2(Rd).

As already highlighted, due to the lack of a bounded design region D ⊂⊂ R
d ,

we apply the concentration-compactness Lemma [19, Lemma I.1] to the sequence
(|∇un|2)n :
There exists a subsequence (unk )k ⊂ H2(Rd) such that one of the three following
situations occurs.

(i) Compactness There exists a sequence of points (yk)k ⊂ R
d such that

∀ε > 0 ∃R > 0 s.t.
∫
BR(yk )

|∇unk |2 dx ≥ 1 − ε. (4.8)
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(ii) Vanishing For every R > 0

lim
k→+∞

(
sup
y∈Rd

∫
BR(y)

|∇unk |2 dx
)

= 0. (4.9)

(iii) Dichotomy There exists α ∈]0, 1[ such that, for every ε > 0, there exist two
bounded sequences (u1k)k, (u

2
k)k ⊂ H2(Rd) such that

lim
k→+∞ dist(supp(u1k), supp(u

2
k)) = +∞, (4.10)

lim
k→+∞

∫
Rd

|∇u1k |2 dx = α, lim
k→+∞

∫
Rd

|∇u2k |2 dx = 1 − α, (4.11)

lim
k→+∞

∫
Rd

[
|∇unk |2 − (|∇u1k |2 + |∇u2k |2)

]
dx ≤ ε, (4.12)

lim inf
k→+∞

∫
Rd

[
(�unk )

2 − ((�u1k)
2 + (�u2k)

2)
]
dx ≥ 0. (4.13)

Let us show that only compactness does occur.

• Vanishing does not occur Let us assume that vanishing occurs. Then every possible

translation of any partial derivative
∂unk
∂x j

weakly converges to 0 in L2(Rd). Indeed,

in view of (4.9), for any φ ∈ C∞
c (Rd), with supp(φ) contained in some closed

ball BR(y), we have

∣∣∣∣
∫
Rd

∂unk
∂x j

φ dx

∣∣∣∣ ≤
(∫

BR(y)
|∇unk |2 dx

)1/2 (∫
BR(y)

φ2 dx

)1/2
→ 0.

Now, since
∫
Rd |∇unk |2 dx = 1, there exists (up to permutations) l ∈ {1, . . . , d}

such that

∫
Rd

(
∂unk
∂xl

)2
dx ≥ 1

d
.

Since unk belongs to H2(Rd), by two integration by parts we get, for any i, h ∈
{1, . . . , d},

∫
Rd

∂2unk
∂2xi

∂2unk
∂2xh

dx =
∫
Rd

(
∂2unk
∂xi∂xh

)2
dx .
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Then

∫
Rd

(�unk )
2 dx =

d∑
i,h=1

∫
Rd

(
∂2unk
∂xi∂xh

)2
dx

≥
d∑

i=1

∫
Rd

(
∂2unk
∂xi∂xl

)2
dx =
∫
Rd

∣∣∣∣∇
(

∂unk
∂xl

)∣∣∣∣
2

dx .

We thus obtain, by recalling (4.7)

�̃1(�nk ) >

∫
Rd

(�unk )
2 dx − 1

nk
≥ 1

d

∫
Rd

∣∣∣∣∇
(

∂unk
∂xl

)∣∣∣∣
2

dx

∫
Rd

(
∂unk
∂xl

)2
dx

− 1

nk
. (4.14)

We now apply Lemma 4.5 to the sequence
(

∂unk
∂xl

)
k
. Any translation of

∂unk
∂xl

weakly

converges to 0 in L2(Rd) and in H1(Rd) aswell (every translationofunk is bounded

in H2(Rd), so every translation
∂unk
∂xl

is weakly convergent in H1(Rd)). In view of

Lemma 4.5,
(

∂unk
∂xl

)
k
can not be bounded in H1(Rd) and we get

∫
Rd

∣∣∣∣∇
(

∂unk
∂xl

)∣∣∣∣
2

dx → +∞,

that is in contradiction with (4.14), since (�̃1(�nk ))k is a minimizing sequence
for Problem (4.3).

• Dichotomy does not occur Let us suppose that dichotomy occurs. Let α ∈]0, 1[
as in the statement of the dichotomy case (iii) and let ε > 0. The sequences
(u1k)k, (u

2
k)k ∈ H2(Rd) can be chosen as follows, see [4] and [19, I.1]. Let

φ ∈ C∞
c (Rd; [0, 1]) such that φ ≡ 1 in B1(0) and φ ≡ 0 in R

d \ B2(0). Let
(rk)k, (ρk)k ⊂ R+ two diverging sequences and define for any x ∈ R

d

u1k(x) := φ

(
x

rk

)
unk (x), u2k(x) :=

(
1 − φ

(
x

ρkrk

))
unk (x).

Notice that

supp(u1k) ⊆ �nk ∩ B2rk (0), supp(u2k) ⊆ �nk \ Bρkrk (0)

(so, that choice satisfies (4.10)).
In view of the previous choice, by using (4.11), (4.12), (4.13) and the inequality

a1 + a2
b1 + b2

≥ min

{
a1
b1

,
a2
b2

}
∀a1, a2, b1, b2 > 0, (4.15)
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we have (possibly switching u1k and u2k)

inf
�∈Ãp

�̃1(�) = lim
k→+∞

∫
Rd

(�unk )
2 dx∫

Rd
|∇unk |2 dx

≥ lim sup
k→+∞

∫
Rd

[
(�u1k)

2 + (�u2k)
2
]
dx

ε +
∫
Rd

(
|∇u1k |2 + |∇u2k |2

)
dx

≥ lim sup
k→+∞

∫
Rd

(�u1k)
2 dx

ε +
∫
Rd

|∇u1k |2 dx

= lim sup
k→+∞

∫
Rd

(�u1k)
2 dx∫

Rd
|∇u1k |2 dx

·

∫
Rd

|∇u1k |2 dx

ε +
∫
Rd

|∇u1k |2 dx

= α

ε + α
lim sup
k→+∞

∫
Rd

(�u1k)
2 dx∫

Rd
|∇u1k |2 dx

≥ α

ε + α
lim sup
k→+∞

�̃1(�nk ∩ B2rk (0)). (4.16)

Now, let us define

tk :=
(

P(�nk )

P(�nk ∩ B2rk (0))

) 1
d−1

.

Clearly, tk ≥ 1; by using the scaling property of the perimeter we have

P
(
tk(�nk ∩ B2rk (0))

) = td−1
k P(�nk ∩ B2rk (0))

= P(�nk )

P(�nk ∩ B2rk (0))
P(�nk ∩ B2rk (0)) = P(�nk ) ≤ p,

i.e. the dilated set tk(�nk ∩ B2rk (0)) is admissible for Problem (4.3).
Moreover, in view of the scaling property of the weak eigenvalues, it holds

�̃1(�nk ∩ B2rk (0)) = t2k �̃1(tk(�nk ∩ B2rk (0))).
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By using this equality in (4.16) we get

inf
�∈Ãp

�̃1(�) ≥ α

ε + α
lim sup
k→+∞

t2k �̃1(tk(�nk ∩ B2rk (0)))

≥ α

ε + α
inf

�∈Ãp

�̃1(�) lim sup
k→+∞

t2k . (4.17)

We claim that
lim sup
k→+∞

t2k = δ > 1. (4.18)

We argue by contradiction. Let us suppose that lim sup
k→+∞

t2k = 1 and let us denote

by (tk j ) j a subsequence of (tk)k such that

lim
j→+∞ t2k j = lim sup

k→+∞
t2k = 1.

We thus have

lim
j→+∞ P(�nk j

) = lim
j→+∞ P(�nk j

∩ B2rk j
(0)).

This implies, in view of (4.10), that

lim
j→+∞ P(�nk j

\ Bρkrk j
(0)) = 0

and so |�nk j
\ Bρkrk j

(0)| → 0. But this is a contradiction, since it would imply

�̃1(�nk j
\ Bρkrk j

(0)) → +∞, that is impossible in view of the estimate

lim sup
k→+∞

�̃1(�nk \ Bρkrk (0)) ≤ lim sup
k→+∞

∫
Rd

(�u2k)
2 dx∫

Rd
|∇u2k |2 dx

≤ C

1 − α
,

where we applied the second limit in (4.11) and the fact that
∫
Rd

(�u2k)
2 dx is

uniformly bounded by a positive constant in view of (4.13).
We conclude that (4.18) is true.
By (4.17) we obtain

inf
�∈Ãp

�̃1(�) ≥ α

ε + α
δ inf

�∈Ãp

�̃1(�)
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and then, in view of the arbitrariness of ε > 0, we infer

inf
�∈Ãp

�̃1(�) ≥ δ inf
�∈Ãp

�̃1(�) > inf
�∈Ãp

�̃1(�),

a contradiction.

Since neither vanishing nor dichotomy occurs, we conclude that compactness takes
place.

Then, there exists a sequence (yk)k ⊂ R
d such that, up to subsequences,

‖unk (· + yk)‖H2(Rd ) ≤ C

and there exists u ∈ H2(Rd)

unk (· + yk)⇀u weakly in H2(Rd), ‖∇u‖L2(Rd ) = 1.

The equality ‖∇u‖L2(Rd ) = 1 comes from (4.8), the arbitrariness of ε > 0 and the
weak lower semicontinuity of the L2-norm of the gradient:

1 − ε ≤ ‖∇u‖L2(Rd ) ≤ lim inf
k→+∞ ‖∇unk (· + yk)‖L2(Rd ) = lim inf

k→+∞ ‖∇unk‖L2(Rd ) = 1,

Then, since unk (· + yk) → u strongly in L2(Rd) and

lim
k→+∞ ‖∇unk (· + yk)‖L2(Rd ) = 1 = ‖∇u‖L2(Rd ),

we deduce that unk (· + yk) → u strongly in H1(Rd).
We now prove that there exists a measurable set �̂ ⊂ R

d such that

|�̂| < ∞, P(�̂) ≤ p, u = 0 a.e. in �̂c,

in order to use u ∈ H̃2
0 (�̂) as a test function for �̃1(�̂).

For any j ∈ N, let us define the set �̂( j) as the limit in measure of the sequence
(�nk − yk)k in Bj (0). Notice that

P(�̂( j); Bj (0)) ≤ lim inf
k→+∞ P(�nk − yk; Bj (0)) ≤ p.

Let us define

�̂ :=
⋃
j∈N

�̂( j).

We remark that the above union is increasing and that

P(�̂; Bj (0)) = P(�̂( j); Bj (0)) ∀ j ∈ N;
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then

P(�̂) = lim
j→+∞ P(�̂; Bj (0)) = lim

j→+∞ P(�̂( j); Bj (0)) ≤ p

and |�̂| < ∞, i.e. �̂ ∈ Ãp is an admissible set for Problem (4.3).
It remains to prove that u = 0 a.e. in �̂c.
Let us fix ε > 0. Since unk (· + yk) → u strongly in L2(Rd) and, for any j ∈ N,∣∣∣(�nk − yk ∩ Bj (0)

) \ �̂( j)
∣∣∣→ 0, then, for k ∈ N sufficiently large, it holds

∫
(�nk−yk∩Bj (0))\�̂( j)

u2nk (· + yk) dx < ε.

Therefore∫
Bj (0)\�̂

u2 dx =
∫
Bj (0)\�̂( j)

u2 dx ≤ lim inf
k→+∞

∫
Bj (0)\�̂( j)

u2nk (· + yk) dx

= lim inf
k→+∞

∫
(�nk−yk∩Bj (0))\�̂( j)

u2nk (· + yk) dx ≤ ε.

We thus conclude that ∫
Bj (0)\�̂

u2 dx = 0 ∀ j ∈ N

and then, by taking the supremum over j ∈ N,

∫
Rd\�̂

u2 dx = 0,

which proves that u = 0 a.e. in �̂c.
Then, since unk (· + yk) → u strongly in H1(Rd) as proved above, recalling (4.7)

we finally have

�̃1(�̂) ≤

∫
Rd

(�u)2 dx∫
Rd

|∇u|2 dx
≤

lim inf
k→+∞

∫
Rd

(�unk )
2 dx

lim
k→+∞

∫
Rd

|∇unk |2 dx

= lim inf
k→+∞

∫
Rd

(�unk )
2 dx∫

Rd
|∇unk |2 dx

= inf
�∈Ãp

�̃1(�),

concluding the theorem. ��
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The choice of theweaker frameworkofmeasurable sets leads us to choose a different
approach to the connectedness of the admissible sets: indeed, given� ∈ Ãp, for every
‘cracked version’ �′ of � one has �̃1(�

′) = �̃1(�); in particular, the same equality
holds if we consider cracks splitting the set in two connected components lying at zero
distance, e.g. if � ⊂ R

3 is a ball and �′ is obtained by removing from � a maximal
disk. In other words, it does not make sense to talk about connected components in the
canonical sense, even for open sets. We point out that the only connected components
that can be treated in a classical way are those lying at positive distance (since �̃1(�) is
not invariant under relative translations of connected components, unless they remain
at positive distance). In view of that, we need to introduce the following definition.

Definition 4.7 (well separated sets) Let A, B ⊆ R
d . We say that A and B are well

separated if there exist twoopen sets EA, EB and twonegligible sets NA ⊂ A, NB ⊂ B
such that

(A \ NA) ⊆ EA, (B \ NB) ⊆ EB, dist(EA, EB) > 0.

As we expected from the concentration-compactness argument in Theorem 4.6, it
can not happen that the optimal set is split in two or more well separated set of positive
measure (dichotomy does not occur). We now show that every optimal set for Problem
(4.3) is ‘connected’ in a generalized sense. The proof follows a standard argument for
counting the connected components in shape optimization, with the only difference
that in our framework �̃1 is an infimum and not a minimum, in general.

Proposition 4.8 (generalized connectedness of the minimizers) Every solution � of
Problem (4.3) is ‘connected’ in the sense of Definition 4.7, i.e. if � is union of well
separated sets, only one has positive Lebesgue measure.

Proof Let us suppose that � = �1 ∪ �2, where �1 and �2 are well separated sets of
positive measure. Let ε > 0 and let uε ∈ H̃2

0 (�) an ε-eigenfunction for �̃1(�). Let
us define

uε
1 :=
{
uε in �1

0 in �c
1

, uε
2 :=
{
uε in �2

0 in �c
2

.

Since �1 and �2 lie at positive distance, then uε
1 ∈ H̃2

0 (�1) and uε
2 ∈ H̃2

0 (�2) and
so they can be used as test functions for �̃1(�1) and �̃1(�2) respectively. In view of
the choice of uε, by (4.6) we have
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�̃1(�) + ε >

∫
�1

(�uε
1)

2 dx +
∫

�2

(�uε
2)

2 dx∫
�1

|∇uε
1|2 dx +

∫
�2

|∇uε
2|2 dx

≥ min

⎧⎪⎪⎨
⎪⎪⎩

∫
�1

(�uε
1)

2 dx∫
�1

|∇uε
1|2 dx

,

∫
�2

(�uε
2)

2 dx∫
�2

|∇uε
2|2 dx

⎫⎪⎪⎬
⎪⎪⎭ ≥ min

{
�̃1(�1), �̃1(�2)

}

wherewe used inequality (4.15). In view of the arbitrariness of ε > 0, either �̃1(�1) ≤
�̃1(�) or �̃1(�2) ≤ �̃1(�). Let us suppose the first case; then, dilating�1 by a factor
t > 1 in such a way that P(t�1) = p, we get �̃1(t�2) < �̃1(�) contradicting the
minimality of �. ��

The previous result about the generalized connectedness of the optimal measurable
sets can be proven identically even if we replace the perimeter constraint with the
measure constraint.

Once we have assured the existence of optimal shapes in this weak setting, we
would like to show that weak solutions are in fact open solutions. To this aim, we
follow an approach proposed in [14], introducing the following definition.

Definition 4.9 (perimeter supersolution) Let � ⊂ R
d a set of finite perimeter. We

say that � is a perimeter supersolution if |�| < +∞ and, for every �̃ ⊃ � of finite
perimeter, we have P(�̃) ≥ P(�).

The following result is immediate.

Proposition 4.10 If � ⊂ R
d is a solution for Problem (4.3), then � is a perimeter

supersolution.

Proof Let �̃ ⊂ R
d be a set of finite perimeter such that �̃ ⊃ �. In view of the

decreasing monotonicity of �̃1(·), it holds �̃1(�̃) ≤ �̃1(�). On the other hand, by
using the equivalent penalized version of Problem (4.3), i.e. Problem (4.5), in view of
the optimality of � for some β > 0 we obtain

�̃1(�) + βP(�) ≤ �̃1(�̃) + βP(�̃) ≤ �̃1(�) + βP(�̃),

i.e. P(�) ≤ P(�̃). ��
Perimeter supersolutions enjoy good properties for our purposes; one of those is

the following density estimate.

Definition 4.11 (exterior density estimate) Let � ⊂ R
d a set of finite perimeter. We

say that � satisfies an exterior density estimate if there exists a positive dimensional
constant c = c(d) such that, for every x ∈ R

d , one of the following situations occurs:

(i) there exists r > 0 such that Br (x) ⊂ � a.e.;
(ii) for every r > 0, it holds |Br (x) ∩ �c| ≥ c|Br (x)|.
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Thenext results link the previous density estimatewith the perimeter supersolutions,
ensuring that there exist open optimal shapes for Problem (4.3) and that such an open
solution is, in fact, a solution for Problem (1.3). The proof of the following proposition
is omitted, as it can be found in [14, Lemma 4.4].

Proposition 4.12 Let � ⊂ R
d be a perimeter supersolution. Then, � satisfies an

exterior density estimate. In particular, if � ⊂ R
d is a solution of (4.3), then �

satisfies an exterior density estimate.

The following crucial result states that themeasure theoretic interior�1 of a perime-
ter supersolution� is an open set and that the test space H̃2

0 (�) is, in fact, the classical
Sobolev space H2

0 (�1). The proof is based on [14, Proposition 4.7], where the authors
show the equality between the spaces H̃1

0 (�) and H1
0 (�1).

Proposition 4.13 Let � ⊂ R
d a set of finite perimeter satisfying an exterior density

estimate. Then, the set of the points of density 1 for �

�1 =
{
x ∈ R

d : ∃ lim
r→0+

|� ∩ Br (x)|
|Br (x)| = 1

}

is open. In particular, for every perimeter supersolution �, �1 is open.
Moreover, it holds H̃2

0 (�) = H2
0 (�1) and, in particular, �̃1(�) = �̃1(�1) =

�1(�1).

Proof The fact that �1 is open follows from the exterior density estimate.
To show the equality H̃2

0 (�) = H2
0 (�1) it is sufficient to prove that H̃2

0 (�) ⊆
H2
0 (�1). Moreover, since |���1| = 0, the equality H̃2

0 (�) = H̃2
0 (�1) holds and so

we prove the inclusion H̃2
0 (�1) ⊆ H2

0 (�1).
Let u ∈ H̃2

0 (�1), so, in particular u ∈ H1(Rd), u = 0 a.e. in �c
1 and thus u ∈

H̃1
0 (�1). By [14, Proposition 4.7], since � is a perimeter supersolution, we have

that H1
0 (�1) = H̃1

0 (�1) and so u ∈ H1
0 (�1). Then, by Proposition 2.11, we have

u = 0 everywhere in �c
1 and so, in view of Proposition 2.10, we get ∇u = 0 a.e.

in �c
1. Moreover, Dju ∈ H1(Rd) for any j = 1, . . . , d, but this implies that Dju ∈

H̃1
0 (�1) = H1

0 (�1) and so that ∇u = 0 everywhere in �c
1. By Proposition 2.11 we

get that u ∈ H2
0 (�1). ��

Nowwe are ready to show that weak minimizers are equivalent to minimizing open
sets for Problem (1.3).

Theorem 4.14 (existence of an open solution and equivalence with the original prob-
lem) Problem (4.3) admits an open solution. In particular, every solution of Problem
(4.3) is equivalent to a solution of Problem (1.3), in the sense that if � ⊂ R

d is an
open set solving Problem (1.3), then it solves also Problem (4.3) and, on the other
hand, if � ⊂ R

d is a set of finite perimeter solving Problem (4.3), then �1 is an open
set solving Problem (1.3).

Proof The existence of an open solution for Problem (1.3) is assured by the fact that,
for any solution� ⊂ R

d of Problem (4.3), the set�1 ⊂ R
d is open (Proposition 4.13)
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and admissible for (4.3). Indeed P(�1) = P(�) since |���1| = 0; moreover,
H̃2
0 (�1) = H̃2

0 (�), so �̃1(�1) = �̃1(�) = inf
�∈Ãp

�̃1(�).
Let us show now the equivalence between Problem (1.3) and Problem (4.3). Let

� ⊂ R
d be a minimizer for Problem (1.3). If it was not a minimizer for Problem (4.3),

there would exist a solution A ∈ Ãp for Problem (4.3) such that

�̃1(A) < �̃1(�).

On the other hand, since A is also a perimeter supersolution, A1 is an open set admis-
sible for Problem (1.3) and so

�̃1(�) ≤ �1(�) ≤ �1(A1) = �̃1(A),

a contradiction.
On the other hand, if � ∈ Ãp is a solution for Problem (4.3), then for any open set

A ∈ Ap one has

�1(�1) = �̃1(�) ≤ �̃1(A) ≤ �1(A),

getting the minimality of �1 for Problem (1.3). ��
Proof of Theorem 1.1 It is a straightforward consequence of Proposition 3.1, Theo-
rem 4.6, Proposition 4.8 and Theorem 4.14. ��

5 Existence of Optimal Shapes for the Higher Buckling Eigenvalues:
The Case of Convex Sets

The existence of optimal shapes for the higher eigenvalues needs a more careful inves-
tigation in the framework of sets of finite perimeter. It seems necessary an analysis of
the boundedness of minimizers in order to apply an inductive concentration compact-
ness argument as applied for instance in [14]. At the moment we are not able to get
the required boundedness of the optimal sets since for these fourth order problems the
common tools of surgery introduced in the H1-setting fail (to get an overview for the
Dirichlet-Laplace eigenvalues see, for instance, [14] for the problem with perimeter
constraint or [20] for the problem with volume constraint).

Nevertheless, Theorem1.2 ensures the existence ofminimizers for the higher eigen-
values in the framework of convex sets. The variational argument used to prove this
result is based on a standard application of the direct methods which is inspired by
previous works in which higher eigenvalues for the Laplace operator are minimized
among convex sets (see, for instance, [13] for the case of Robin eigenvalues or [6] for
the Dirichlet case).

In order to apply the direct methods of the Calculus of variations we show that �h

is lower semicontinuous with respect to the Hausdorff convergence.

Proposition 5.1 (Lower semicontinuity of �h among convex sets) Let (�n)n be a
sequence of open convex sets converging to an open, non empty, convex set � in the
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Hausdorff topology and let �n,� be contained in a compact set D ⊂ R
d . Then, for

every k ∈ N,

�h(�) ≤ lim inf
n→+∞ �h(�n).

Proof Without loss of generality, we can assume supn∈N �h(�n) < +∞.
Let V n ⊂ H2

0 (�n) be an admissible h-dimensional space for the computation of
�h(�n) such that

�h(�n) = max
V n

R�n .

Let
{
un1, . . . , u

n
h

} ⊂ H2
0 (�n) a H1

0 (�n)-orthonormal basis for V n ; for every i =
1, . . . , h it holds∫

�n

(�uni )
2 dx = R�n (u

n
i ) ≤ max

V n
R�n = �h(�n) < C .

Then, supn ‖uni ‖H2
0 (�n)

= supn ‖uni ‖H2
0 (D) < +∞ for every i = 1, . . . , h. So, for

every i = 1, . . . , h, there exists ui ∈ H2
0 (D) such that uni ⇀ui in H2

0 (D). Moreover,
uni → ui in H1(D) and �n → � also in measure, so u1, . . . , uh ∈ H1(�).

Notice that u1, . . . , uh are linearly independent in H2
0 (�), since �n converges to

� also in measure; hence, the linear space V := span {u1, . . . , uh} is a competitor for
the computation of �h(�). Let w =∑αi ui realizing the maximum of the Rayleigh
quotient R�(·) on V and let wn := ∑αi uni ∈ V n . Let us observe that the Dirichlet
integral at the denominator converges and the numerator is lower semicontinuous and
so theRayleigh quotient is lower semicontinuous aswell. Sincewn ∈ V n , we conclude
that

�h(�) ≤ max
V

R� = R�(w) ≤ lim inf
n→+∞ R�n (wn) ≤ lim inf

n→+∞ max
V n

R�n

= lim inf
n→+∞ �h(�n),

obtaining the required lower semicontinuity of the buckling eigenvalues. ��
Now we are able to prove Theorem 1.2. In order to apply the direct methods of the

Calculus of Variations, we need a compactness property for a minimizing sequence
(�n)n . To this aim, we just need a careful analysis about the non degeneracy and the
uniform boundedness of the sequence (�n)n .

Proof of Theorem 1.2 Let (�n)n be a minimizing sequence of admissible open convex
sets for Problem (1.4) such thatHd−1(∂�n) = p. Let us show that, up to subsequences,
�n converges in the sense ofHausdorff (and then inmeasure) to a nonempty admissible
open convex set � withHd−1(∂�) = p. Without loss of generality, up to translations
and rotations, we can assume that

diam(�n) = H1(�n ∩ {x2 = · · · = xd = 0})
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and that

min
i=2,...,d

(
max
�n

xi − min
�n

xi

)
= max

�n
xd − min

�n
xd

i.e. the length of the one dimensional projection of �n on the axis x1 is equal to the
diameter of �n and the projection on the axis xd has minimal length. We claim that
supn diam(�n) < +∞ and that, up to subsequences,

lim
n

(
max
�n

xd − min
�n

xd

)
> 0. (5.1)

We prove (5.1) arguing by contradiction. Let us suppose that the limit in (5.1) is zero;
in view of John’s Ellipsoid Theorem 2.7, there exists an ellipsoid En such that, up to
rotations and translations

En ⊆ �n ⊆ dEn .

Then, since also the width of En vanishes, we have

�h(�n) ≥ �h(dEn) = 1

d2
�h(En) ≥ 1

d2
�1(En) ≥ 1

d2
λ2(En) → +∞,

against the minimality of �n . Then (5.1) holds.
To prove that the diameters of the �n sets are uniformly bounded, we argue again

by contradiction. Let us suppose that the sequence of the diameters is unbounded.
Since the sets �n are convex and uniformly bounded in measure, the product

d∏
j=1

(
max
�n

x j − min
�n

x j

)

has to be uniformly bounded. In view of our assumptions, as the diameter of �n tends
to infinity, necessarily the first term of the product diverges. We deduce that at least
the smallest term among the remaining d − 1 terms has to vanish. In other words, we
have

lim
n

(
max
�n

xd − min
�n

xd

)
= 0,

in contradiction with (5.1).
Then (�n)n is an equibounded sequence of convex sets. In view of Proposi-

tion 2.6(v), (�n)n converges (up to subsequences) in the sense of Hausdorff to a
bounded convex set �; moreover, by Proposition 2.6(ii), the convergence is also in
measure. In addition, thanks to (5.1), the limit set � is not degenerate (i.e. it has
positive measure) and

Hd−1(∂�) = lim
n→+∞Hd−1(∂�n) = p.
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In view of Proposition 5.1 � is the required minimizer. ��
We point out that in dimension d = 2 Theorem 1.2 proves the existence of open

minimizers for �h in the whole of Rd . Indeed, the problem

min
{
�h(�) : � ⊂ R

2 open, |�| < ∞, P(�) ≤ p
}

reduces to the minimization problem among convex sets with prescribed boundary
length p.

Moreover, if the perimeter constraint in Problem (1.4) is replaced by a volume
constraint, the existence of optimal shapes for problem

min
{
�h(�) : � ⊂ R

d open and convex, |�| ≤ m
}

,

can be proved by using the same arguments in this section.

6 Further Remarks and Open Problems

Once we prove the existence of minimizers, some interesting questions arise about
the regularity or the precise shape of the minimizers. For the first eigenvalue the two
questions are related, as highlighted in [4] for the planar case with measure constraint:
provided that an optimal shape is regular enough, it must coincide with the disk of
given measure. We point out that, if the conjecture of the minimality of the ball is true
for the problem with the volume constraint, then the ball is minimal also among sets
with prescribed perimeter. Indeed, for any admissible set � ⊂ R

d for Problem (1.3),
denoting by B and B ′ the balls having, respectively, the same perimeter and the same
volume of �, it holds P(B ′) ≤ P(B) and so, in view of the decreasing monotonicity
under dilations, we have

�1(B) ≤ �1(B
′)

conj .≤ �1(�).

In our framework, at least in R2, we start from a better situation, since optimal planar
sets are necessarily convex. In this case (and, more generally, in the case of Problem
(1.4)) it seems necessary at least to remove the possible corners to get more regularity
of the boundary. Unfortunately, at the moment the cutting techniques that are known in
the H1-setting (see, for instance, [5] for the Dirichlet-Laplace eigenvalues, or [13] for
the Robin-Laplace eigenvalues) do not seem to apply since they are based on surgery
arguments that are not available in the H2-setting.

Another issuewhich isworth to analyze is the regularity of the optimal sets in higher
dimension. Due to the choice of the perimeter constraint, it would be interesting to
understand if it was possible to see minimizers for Problem (1.3) as quasi-minimizers
of the perimeter in the sense ofDeGiorgi, as done in [14], in order to obtain that optimal
open sets have C1,α boundary up to a singular set whose dimension is less then or
equal to d − 7. To this aim, it seems necessary to prove that optimal sets are bounded.
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Unfortunately, as highlighted at the beginning of Sect. 5, up to our knowledge, there
are no available techniques to reach this goal at the moment.

We conclude giving the following list of some open problems.

Open Problem 6.1 Are optimal shapes for Problem (1.3) smooth? Is it possible to
remove the corners from the boundary of the convex minimizers, at least in the planar
case?

Open Problem 6.2 Provided that an optimal shape for Problem (1.3) is smooth enough,
can we prove that it is a ball, at least in the planar case?

Open Problem 6.3 Are optimal shapes for Problem (1.3) bounded also in higher
dimension?

Open Problem 6.4 Do minimizers for �h exist among open sets with prescribed
perimeter in higher dimension without topological constraints? Are they bounded?
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