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Abstract
The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports
decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of
uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis
of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This
contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by
agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and
combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in
different dimensional representations.We look at inequivalent knowledge representations in terms ofmultiplicity of inferences,
preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate
non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents
observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies,
with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools
for their assessment.

Keywords Knowledge representation · Uncertainty modeling · Ambiguity · Data-driven strategy · Big data value ·
Explainability

1 Introduction

The ongoing technological evolution enables the genera-
tion, acquisition, storage, and analysis of an ever-increasing
amount of data. In this context, data can be considered raw
resources that need to bemanipulated, transformed, and com-
bined to extract usable information and knowledge (Ackoff
1989; Ylijoki and Porras 2019). In the literature, data, espe-
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cially big data, are described in terms ofVelocity,Variety, and
Volume (Laney 2001) using the original Vs of the big data
(hereafter referred to asVs). Since 2010, this definition of big
data associatedwith amulti-dimensional characterizationhas
been enriched by new Vs (Hussien 2020). However, some of
these features are not intrinsic; namely, they also depend on
factors external to the data. Furthermore, their evaluation can
be affected by a certain degree of subjectivity. The lack of
a context that specifies such characteristics according to the
data-driven strategy has occasionally led to confusing defi-
nitions (Ylijoki and Porras 2016), making it challenging to
identify which Vs to accept (Patgiri and Ahmed 2016). In
particular, Value is not only listed among the Vs but is also
considered a big data feature distinguished from the data
features (Uddin and Gupta 2014; Patgiri and Ahmed 2016),
as it can be defined according to the other Vs (Geerts and
O’Leary 2022) and is more oriented to the way the analyzed
data will be used (Ylijoki and Porras 2019). According to
these definitions, we refer to data-driven strategies as a pro-
cess of data analysis supported by artificial intelligence (AI)
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to create strategic value in terms of reusable knowledge and
decision support (Vitari and Raguseo 2020).

1.1 Motivations

In this context, the focus on big data analysis and the
strategic value generated by data-driven strategies should be
investigated according to the Knowledge View, as formal-
ized in the Data–Information–Knowledge–Wisdom (DIKW)
paradigm (Ackoff 1989). Thismodel has been extended to the
RawData–Data Formats–Information–Knowledge–Wisdom
(RDIKW) paradigm proposed by Wu et al. (2022) and to
the Big Data Value Graph, where the RDIKW model is
integrated with the Data Mesh (Gervasi et al. 2023a). To
support the identification of value generation through data-
driven strategies, specific methods have been defined, both
in terms of conceptual frameworks and measurement tools.
The former encompass value-dimensional frameworks (Elia
et al. 2020), while the latter include instruments to assess
tangible (e.g., technological) and intangible constructs (e.g.,
skills or capabilities) that are essential to extracting the poten-
tial value of data (Wu et al. 2022). In particular, capabilities
associated with agents and technologies can be described
in terms of maturity, depending on the data-driven strategy.
Big data maturity models are widely used by organizations
to assess their readiness for adopting and implementing big
data-driven strategies (Al-Sai et al. 2022; Vesset et al. 2015;
Halper and Krishnan 2013; Corallo et al. 2023.

The extraction of value from big data, often referred to
as potential value, is generally realized as an estimate of the
expected value that an initiative could generate (Ashton2007;
Ishwarappa 2015; Ylijoki and Porras 2016). Specifically, the
potential value hidden in (big) data is transformed in the
transition from one stage of the DIKW model to another
until it becomes visible through the measurement of business
performance in the form of business value. In this paper, we
focus on knowledge and the sources of uncertainty that could
undermine its transition to wisdom.

Actually, most data-driven strategy implementations fail
to deliver the estimated value (Reggio and Astesiano 2020),
and the causal factors that can explain the failure of data-
driven strategies are not contextual and isolated but systemic
(Gervasi et al. 2023b). These failures (misalignment between
the estimated and generated business value) may come from
several factors that characterize data-driven strategies, such
as the randomness of the project life cycle, the role of differ-
ent human or artificial agents, the uncertainty of the results,
the multiple characteristics of (big) data, the obsolescence
of technologies as a function of time, and the new types of
value to be generated (Gervasi et al. 2023b).

This discrepancy between the expected and observed val-
ues suggests a need for a deeper investigation to better
understand the relation between them. In fact, only a few

organizations have implemented a structured value measure-
ment system to rigorously quantify the return on investment
in their data-driven strategy (Grover et al. 2018).

Finally, a key point that characterizes data-driven strate-
gies is the role of AI. The limited interpretability of interme-
diate outcomes during such processes also complicates the
adaptation of decision strategies during the initiative. This
is now opening up new questions regarding Explainable AI
(XAI; see, e.g., Gunning et al. 2019), trustworthy AI (Floridi
2019), as well as human-centered and general-purpose AI.

1.2 Scope of the work

The present work addresses the need for useful representa-
tions of uncertainty about knowledge in data-driven strate-
gies. A major source of uncertainty regards the observability
of data. Specifically, big data are not directly observable;
rather, they require a proxy agent (e.g., automated tools)
for processing. The effects of this lack of observability on
the transition from information to knowledge and wisdom
levels in the DIKW hierarchy become particularly evident
in analyses based on deep learning, as they are character-
ized by black box approaches that limit the interpretability
of extracted information (e.g., selected features). Address-
ing this issue prompts the search for new approaches that
enhance explainability in the adoption of tools relying on AI
(Gunning et al. 2019). In this context, our goal is to provide
a definition of explainability suitable for the type of uncer-
tainty arising in data-driven strategies, as this uncertainty can
undermine the assessment or measurement of the generated
value.

For this purpose, we adopt a structural approach for mod-
eling and representing some of the aforementioned notions.
Our focus is the (in-)equivalence of relational systems that
abstract the notions of accessible knowledge as a resource
supporting decision-making and the possibility to trans-
fer (i.e., explain) such knowledge. The objective does not
limit itself to knowledge mediated by artificial agents nor
to data-driven strategies; in principle, this abstraction level
fosters a wider application of the identified properties to
different scenarios characterized by “non-classical” (i.e.,
non-probabilistic) uncertainty. Indeed, we take advantage
of formal analogies with other scenarios characterized by
ambiguity, such as Ellsberg’s urn models (Ellsberg 1961),
and explore inequivalent descriptions arising from differ-
ent data observation levels in measurement settings, such
as in Wigner’s Friend experiment (Wigner 1995; Frauchiger
and Renner 2018). Starting with a dimensional definition of
value, we identify order-theoretic structures to evaluate the
(lack of) explainability in terms of the update of a knowledge
representation.

The relational structure is expressed by endowing dimen-
sional frameworks with enough structure to recognize incon-
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sistencies and ambiguities. In particular, we pay special
attention to potential obstructions to the update of a knowl-
edge representation in terms of explainability. This can
support organizational processes where new evidence and
intermediate evaluations during the initiative continuously
lead to changing objectives and adopting an agile manage-
ment methodology.

This high-level framework allows us to identify order-
theoretic conditions that enable the description of incon-
sistencies or bounded resources in the update of a knowl-
edge representation. Order-theoretic notions underlie several
decision-makingmethodologies (Tversky 1969; Jamison and
Lau 1973; Greco et al. 2010), which makes the assessment
of such conditions scalable in multiple contexts. In the final
part of this work, we discuss practical implications and
comment on the link with consolidated methodologies to
measure abstract constructs (e.g., structural equation mod-
eling, or SEM). This link can prompt future developments
in the design of appropriate assessment tools and prevent
ambiguities that may undermine a proper assessment of (big)
data-driven strategies (Ylijoki and Porras 2016).

The rest of this paper is organized as follows: in Sect. 2,
we provide a brief description of uncertainty scenarios that
are relevant to our discussion, especially ambiguity, mea-
surements mediated by other agents, and deviations from
classical or rational behaviors in decision-making. We start
presenting the basic notions of our formalism in Sect. 3, then
we pay special attention to the representation of knowl-
edge states as well as their updates and explainability in
Sect. 4. The different layers of knowledge inequivalence
within our framework, from logical to information-theoretic,
are deepened in Sect. 5. In Sect. 6, we formalize the map-
ping between our formalism and the uncertainty scenarios.
In Sect. 7, we discuss our approach in relation to specific
forms of uncertainty in measurement models and inequiva-
lence within multi-dimensional frameworks for data-driven
strategies. Conclusions and future work are summed up in
Sect. 8.

2 Preliminaries on uncertainty scenarios

To better clarify the notion of knowledge within the DIKW
hierarchy, we begin by reporting the interpretation of value
associated with each stage in Table 1 (Zeleny 1987; Lamba
and Dubey 2015).

With reference to this chart, the patterns supporting
decision-making should be interpreted or explained in line
with a dimensional measurement of the value generated
through actions. The occurrence of multiple dimensional
assessmentsmay lead to incompatiblemeasurement settings.
In the following paragraph, we illustrate relevant sources of

indeterminacy that constitute the basis for our model con-
struction.

2.1 Uncertainty types in data-driven strategies

A study by Manyika et al. (2011) predicted that companies
using big data in their product and service innovation pro-
cesses save up to 20−30% on product development costs
and achieve faster time-to-market cycles by 50−60%. Sim-
ilarly, in the public sector, the estimated cost reduction for
administrative activities using big data was 15−20%, result-
ing in a projected generated value of 150–300 billion euros
(Cavanillas et al. 2016).

Despite their potential, there is a high failure rate for big
data projects, reported to be as high as 85% in Reggio and
Astesiano (2020). Montequín et al. (2014) conducted a study
identifying and analyzing 26 failure causes of Information
and Communication Technologies (ICT) projects, as well as
19 success factors, using targeted questionnaires. Among the
former, the most common causes are incorrect or incomplete
definitions of requirements, their continuous change even in
the advanced stages of the project, and inaccurate estimations
of costs and time. On the other hand, a clear vision of the
project objectives and an accurate estimation of feasibility
and costs appear among the major success factors.

Here, we concentrate on two types of uncertainty that
can have a major impact on the assessment of data-driven
strategies. The first type is ambiguity, namely the lack of
a known or estimated probability distribution over the event
space.Ambiguity refers to “unknownunknowns”,whichhave
been extensively studied in decision- and strategy-making
contexts; see, e.g., (Rindova and Courtney 2020). Among
the relevant examples of decision frameworks with ambi-
guity, Ellsberg’s urn models are recognized as a paradigm
where classical approaches based onmaximumexpected util-
ity fail to properly represent the preference patterns that are
empirically observed (Ellsberg 1961; Sozzo 2020). Ambi-
guity relates to data-driven strategies mainly due to the lack
of accurate or realistic estimates of the raw data value, but
also to the mismatch between expected and observed success
rates in data-driven strategies.

The definition itself of value is uncertain, as the notion
of value is an abstract construct; hence, the measurand is
subject to metrological uncertainty. A potential manifesta-
tion of such a type of uncertainty is the inconsistency among
the multi-dimensional frameworks that arose in the scientific
literature to encompass the different realizations of value
(Ylijoki and Porras 2016). To reproduce this metrological
uncertainty in our formalism, we link to the Wigner’s Friend
thought experiment (Wigner 1995), which focuses on the
implications of non-classical (quantum)measurements. Even
though this second scenario originated from the analysis of
physical experimental settings, it provides a general basis to
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Table 1 DIKW model (Ackoff
1989) associated with the
Taxonomy of knowledge (Zeleny
1987, Tab. 1) managerial and
descriptive interpretation, and
the corresponding value
associated with each stage
(Lamba and Dubey 2015, Tab. 2)

Stage Taxonomy of knowledge Value

Data Muddling through Know-Nothing Nothing

Information Efficiency (measurement+search) Know-How Reveals relationships

Knowledge Effectiveness (decision-making) Know-What Reveals pattern

Wisdom Explicability (judgment) Know-Why Reveals action or purpose

illustrate observer dependence in evaluations and measure-
ments, which is the second type of uncertainty we focus on in
data-driven strategies. In fact, an explicit connection between
the Wigner’s Friend experiment and frameworks to reason
about knowledge (Halpern 2017) was identified (Frauchiger
and Renner 2018) and further extended (Nurgalieva and
del Rio 2018). More generally, quantum-inspired methods
proved useful inmodeling the ambiguity inEllsberg’smodels
(Aerts et al. 2018) and representing deviations from classi-
cal behaviors in cognition (Sozzo 2017), decision-making
(Sozzo 2020), logic and operational theories (Abramsky and
Brandenburger 2014; Abramsky et al. 2017), and social sci-
ences (Cervantes and Dzhafarov 2019).

We introduce these scenarios for ambiguity and observer
dependence in evaluations, as we specify the two topics in
our framework jointly in Sect. 6.

2.2 Ambiguity: urnmodels

Urnmodels encompass a large class of measurement designs
that realize various forms of uncertainty, including non-
probabilistic ones. A pivotal example is the three-color urn
model introduced by Ellsberg (1961, pp. 653–654), which
we now briefly describe.

Let us consider an urn containing 90 colored balls, where
30 of them are red and the remaining 60 are yellow or black.
The proportion of yellow and black balls is unknown to the
decision-maker, who faces cost-free betting alternatives:

1. π0,a : get 100 if a red ball is drawn from the urn;
2. π0,b: get 100 if a black ball is drawn from the urn;
3. π1,a : get 100 if a red or a yellow ball is drawn from the

urn;
4. π1,b: get 100 if a black or a yellow ball is drawn from the

urn.

We introduce the symbol≺d to denote the preference relation
of a decision-maker between the above-mentioned alterna-
tives. Notably, findings have revealed preferences

π0,b ≺d π0,a and π1,a ≺d π1,b (1)

which contradicts the subjective expected utility theory
(Ellsberg 1961). Specifically, (1) violates the Sure-Thing
Principle, one of the Savage’s postulates that can be included

in the expected utility theory as a form of monotonicity
between preferences and their expected utility. We refer to
Aerts et al. (2018) for more details on this topic and for
a framework that uses quantum structures to formalize this
form of ambiguity in decision-making.

This model is discussed in the context of the framework
presented in this work in Sect. 6.1.

2.3 Lack of observability:Wigner’s Friend

Wigner’s Friend is a central thought experiment in quantum
physics, originally conceived by Wigner (see, e.g., Wigner
1995) to highlight the crucial role of observers in quantum
measurements.We summarize the key aspects of this thought
experiment that are relevant to our scope, directing readers
to Frauchiger and Renner (2018) and references therein for
a more comprehensive discussion.

We delve into the Wigner’s Friend scenario based on
the formal analogy between the notion of observability of
data in our framework and the role of measurements and
observers in quantum physics, both leading to an update of
states. Wigner’s experiment envisages two laboratories and
two observers. The first observer, known asWigner’s Friend,
is situated in a laboratory along with a measurement setup.
Wigner himself serves as a “super-observer” outside the first
laboratory and can perform measurements on it. Wigner’s
Friend performs the measurement on a physical system (a
spin), whose possible outcomes are denoted as | + 1〉 and
| − 1〉.

Thequestion ariseswhenWigner’s Friend actually observes
the outcome of the measurement, while Wigner only knows
that themeasurement has beenperformedbyhis friend, but he
has not measured it. ForWigner’s Friend, the state is |+1〉 or
|−1〉, depending on the outcome; on the other hand, Wigner
attributes to the combined system in the lab (including the
experimental setting and its friend) a superposition of two
states, each one associated with the composition (product)
of the observed outcome and the state of the friend: the mea-
sured system and the friend are entangled for Wigner. Then,
we have two different perspectives associated with the two
observers, which leads to ambiguity about the system’s state,
namely inconsistency associatedwithmeasurements that can
be experimentally tested.
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2.4 Evidence of non-classical behavior in cognition
and self-assessment

The aforementioned scenarios are practical examples that
highlight the deviation from classically expected behavior.
Similar phenomena are also observed in realistic scenarios,
where assumptions to be tested are stated through logical
expressions that make use of classical disjunction, conjunc-
tion, and negation. These connectives allow for defining
events andmeasuring them using classical approaches rooted
in Kolmogorov probability axioms and Bayesian criteria for
conditioning and updating probabilities. Measurement tools
to assess cognitive constructs, such as questionnaires, enable
the estimation of these probabilities from frequencies and
the study of empirical correlations. Assumptions regarding
abstract constructs and relations among them can be esti-
mated through factor analysis and SEM (Henseler et al. 2015,
2016; Carpita andCiavolino 2017; Ingusci et al. 2023). In our
scope, the constructs of interest are linked to maturity.

Assessing an organization’s maturity in terms of capabil-
ities, attitudes, and resources is a key point in defining and
implementing data-driven strategies (van de Wetering et al.
2019). Corallo et al. (2023) analyzed the main maturity mod-
els according to the three groups of attributes proposed by
Mettler et al. (2010). The first group refers to the general
attributes, which are inherent in the basic information about
models. The second group involves design attributes, which
model the structure in termsof evaluation, scope, dimensions,
maturity levels, design focus, and evaluationmethod. Finally,
there are attributes related to model application, scope of
use (e.g., descriptive, comparative, prescriptive), method of
application (e.g., self-assessment, external assessments), and
potential availability of supporting material.

Although the models developed and adopted by organiza-
tions and analyzed in the literature follow specific standards
(Gökalp et al. 2021; de Bruin et al. 2005), the interpretability
of the results is complex, and maturity models are often only
descriptive or comparative but rarely prescriptive. As high-
lighted in Corallo et al. (2023), maturity models can have
different designs in terms of the number of dimensions and
scoring method. Thus, the measured maturity depends on
these factors, which affect the measurement’s reliability. In
addition, it must be considered that the responses collected
from respondents may be influenced by biases associated
with sample selection. Therefore, the investigation of poten-
tial sources of uncertainty in the design of such assessment
tools is essential for conducting proper analysis and getting
useful insights from the acquired information about capabil-
ities.

Non-classicality arises, for example, when we find a
misalignment between syntactic expressions based on clas-
sical logic, probability axioms, and empirical frequencies.
Incompatibility may correspond to the lack of monotonicity

p(A ∧ B) ≤ min{p(A), p(B)} for events A, B weighted by
the probability p(·). This type of (conjunction) fallacy has
been observed in questionnaires (Tentori et al. 2004) andweb
searches (Sozzo 2017). Even in this case, the explanation of
such phenomena can benefit from the Hilbert space repre-
sentation of quantum mechanics (Sozzo 2020). In Sect. 7,
we discuss the implications of our formalism in light of the
design of measurement tools that can properly account for
non-classical uncertainty in maturity assessment.

Finally, we mention that other deviations from rational
(Bayesian) behavior regard contextuality, namely the depen-
dence on an observed property on the whole experimental
setting, which includes other simultaneously measured prop-
erties. This characterizing aspect of quantum phenomena
(Abramsky and Brandenburger 2014; Abramsky et al. 2017)
extends to psychological measurements (Dzhafarov and
Kujala 2016). Empirical demonstrations of contextuality in
psychological assessments have been conducted based on
the verification (or violations) of conditions implied by a
classical model, namely Bell-type and CHSH inequalities
(Cervantes and Dzhafarov 2019).

3 From dimensional frameworks to
dimensional structures

Building upon the discussion in the previous sections, we
now address the assessment of knowledge value within a
decision process for a data-driven initiative. For this purpose,
we start with a brief summary of dimensional frameworks in
the scientific literature.

3.1 State of the art

Dimensional frameworks are often used to characterize
value, enabling its observation and measurement. Grover
et al. (2018) distinguished between the functional value, e.g.,
market share and financial return, and the symbolic value,
which can be identified in the impact on brand and reputation,
leading to a positive image as a result of big data analyt-
ics (BDA) investment (signaling effect or herding effect).
Günther et al. (2017) conducted a literature review on how
organizations realize value from big data through “paths to
value”. In Günther et al. (2017, Sect. 3.1.2), the authors also
discussed the current debate regarding the relation between
algorithmic and human-based intelligence; we pay attention
to this topic in Sect. 4.2. FossoWamba et al. (2015) analyzed
the five criteria (dimensions) discussed by Manyika et al.
(2011) and interpreted them as a different type of generated
value.

Gregor et al. (2006) conducted a large-scale survey involv-
ing more than a thousand organizations. The collected data
also include information regarding ICTs in the organization,
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the environment, the structure and management practices,
and the perceived business value of the use of specific tech-
nologies. Finally, factor analysis was used to investigate
significant constructs within the high-dimensional survey
response data. This approach is of interest in the assessment
of the goodness of the chosen dimensions, which can provide
insights into possible drivers. The assumptions underlying
the choice of model by Gregor et al. (2006) are based on
subjective assessments by the authors, which they acknowl-
edge as a limitation of this approach. Second, the results of
these analyses contribute to a change in the companies them-
selves: in the Authors’ words, “[a] number of these outcomes
equip the firm for further change in a step-by-step process of
mutual causation”, which shows how the representation of
value can evolve over time according to organizational and
contextual changes, and vice versa.

Elia et al. (2020) carried out a systematic literature review
to investigate the representations of value; furthermore, they
proposed a framework to identify the various types of value,
defining 11 value directions and grouping them into dimen-
sions. For this purpose, the authors started with the four
dimensions of value in Gregor et al. (2006) and considered
22 types of information technology benefits. Although the
framework presented by Elia et al. (2020) takes its cue from
Gregor and co-authors’ framework and shares four common
dimensions, the twomodels are distinct and do not lead to the
same conclusions: changes prompted by internal (e.g., orga-
nizational) or external (e.g., contextual) factors discussed
above may require not only the inclusion of a new value
dimension but also a different value structure for existing
ones.

3.2 Dimensional frameworks as state transitions

We can consider the shift from the model proposed by Gre-
gor et al. (2006) to the one proposed by Elia et al. (2020)
as an update of the dimensional architecture representing
value. Another case where we can recognize the update of
such a dimensional architecture can be found inMaçada et al.
(2012). Starting with the models in Gregor et al. (2006) (4
supra-dimensions) andWeill andBroadbent (1998) (1 supra-
dimension), Maçada et al. (2012) identified a new model
that confirms the four supra-dimensions in Gregor et al.
(2006) but permutes the sub-dimensions. This aspect is worth
considering because it stresses a subjective component in
dimensional definitions, which are representative of a partic-
ular view, not only in terms of granularity but also in terms
of classification.

We start introducing our conceptual formalism to encom-
pass this type of update by specifying the role of dimensional
frameworks within an assessment process. Choosing a set
of evaluation stages within the time span of the process,
referred to as process states, we focus on classes of tran-

sitions between them to highlight the relational aspects of
value. For each pair of states ψ1 and ψ2, we associate a
labeled transition between them and denote it as ψ1

τ→ ψ2.
In this way, given a stateψ1, the class of all the possible tran-
sitions τ originating from ψ1 defines the possible inferences
that an agent can make starting from ψ1.

Now, we include in our model the occurrence of multiple
dimensions that guide the decision process and its eval-
uation. The minimal structure that we assume to support
decision-making criteria is an order relation. So, we provide
the following:

Definition 1 Let V be a set of non-empty partially ordered
sets (posets; see, e.g., Davey and Priestley (2002)). We label
each element of V through a totally ordered set I, so we can
express

V := {(Vi ,�i ) : i ∈ I}, (2)

where�i is a reflexive, antisymmetric, and transitive relation
on Vi for each i ∈ I.

Let J ⊆ I. We consider the categorial product of the
latent dimensions Vi , i ∈ J , which is the well-known Carte-
sian product for the category of sets (Set):

�J :=
∏

j∈J
Vj , (3)

where the order of factors is derived from the order in I.
The corresponding value frame is then defined as the disjoint
union of such products for all non-empty subsets of I:

� :=
∐

∅⊂J⊆I
�J , (4)

where
∐

denotes the disjoint union (or coproduct) of sets.

For the sake of concreteness, we present an example with
relevant dimensions for data-driven strategies by recalling
the framework provided by Elia et al. (2020).

Example 1 The definition of the dimensions in Elia et al.
(2020, Tab. 10) refers to big data. In this example, we report
two selected dimensions V1 = {m1,m2,m3,m4,m5} and
V2 = {b1, b2, b3}, where the interpretation of these labels is
detailed as follows (Elia et al. 2020, Tab. 5):

• V1: Strategic value

1. m1: “New competitive advantage”
2. m2: “Alignment between IT and business strategy”
3. m3: “Quicker response to change”
4. m4: “More effective customer relationships”
5. m5: “Better products and services”
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• V2: Transformational value

1. b1: “Reinforcement of organizational capabilities”
2. b2: “Innovation in business models”
3. b3: “Efficiency in organizational structure and processes”.

The authors drew these dimensions fromGregor et al. (2006),
who used factor analysis to investigate survey responses and
associate 22 benefit items with 4 dimensions. In particular,
“Expanding organizational capabilities” has factor loadings
of 0.49 and 0.44 along the Transformational and Strategic
benefits, respectively.

Starting with dimensions V1, . . . , Vn , we can construct a
new representation by introducing I := ℘({1, . . . , n})\{∅},
the set of non-empty subsets of {1, . . . , n}, and dimensions
WS , ∅ ⊂ S ⊆ {1, . . . , n}. The elements of WS are con-
structed from the values of benefit items in

⋂
j∈S Vj when

this intersection is not empty. This allows distinguishing the
membership of the “Expanding organizational capabilities”
item in different dimensions based on distinct interpretations.

If one relies solely on the magnitude of factor loadings
as a membership criterion to specify the dimensional frame-
work, then the narrow difference between the loadings in the
previous example might suggest an association of the ben-
efit “Expanding organizational capabilities” with both the
Transformational and Strategic and dimensions. This points
out the need to assess the identity of variables among distinct
dimensions. Each individual study can adopt other quan-
titative criteria to confirm the discriminant validity of the
constructs and dimensions in a structural model (Henseler
et al. 2015). However, the combination of multiple studies
should assess whether the measurement models are com-
patible. This fundamental requirement is made explicit for
individual studies involving amulti-group analysis (Henseler
et al. 2016; Ingusci et al. 2023), where the configural invari-
ance is the first step to be checked to make this comparison
meaningful (Henseler et al. 2016, pp. 413–414).

The comparability of distinct frameworks leads to addi-
tional issues regarding the identity of the dimensions inves-
tigated in the individual studies, even in terms of the
interpretation of the indicators within the different mea-
surement settings. Products and disjoint unions in (4) can
represent suchdeviations fromunidimensionality in the sense
of multiple latent dimensions related to a group of indicators.
In data-driven strategies, such a distinction acquiresmore rel-
evance due to the intrinsic ambiguity in the definition of (big)
data-characterizing features (Ylijoki and Porras 2016).

However, value frames in Definition 1 do not take into
proper account the lack of knowledge regarding the whole
class of dimensions and potential interdependencies among
them. Therefore, along with products and disjoint unions,
we should also include meta-reasoning to highlight incon-
sistencies in the comparison of dimensional structures. For

example, we can encode knowledge about the framework
dimensionality through the inclusion of a representative
of the state itself, e.g., a dimension Vdim := ℘(N0) that
addresses the number of potential dimensions of the knowl-
edge state. The choice of κ ∈ �J lets us represent uncertainty
about the dimensionality (dim ∈ J and #κ(dim) > 1, where
#S is the cardinality of a set S), as well as the lack of speci-
fication (dim /∈ J ). Furthermore, inconsistency arises when
#J /∈ κ(dim).

Next, we extend the value frame � by endowing it with
relational structures and conditions to formalize the types of
uncertainty mentioned in Sect. 2.1.

4 Model proposal: operational aspects of
knowledge representations

In this section, we explore the conditions that make knowl-
edge transferable between different representations and,
hence, reusable.

4.1 Comparison, composition, and the role of
observers: inner states

The assumption that each dimension Vi is endowed with
a partial order �i , i.e., a reflexive, symmetric, and tran-
sitive, but not necessarily total relation, is in line with
well-established methods to formalize concept analysis and
knowledge structures (Doignon and Falmagne 2012). A
stronger assumption that can be considered is the existence
of an associative operation ⊕i for each latent dimension Vi
that is idempotent, i.e., x ⊕i x = x for all x ∈ Vi and i ∈ I.
This operation defines an order relation as follows:

∀a, b ∈ Vi : a �i b ⇔ a ⊕i b = b. (5)

Such an operation, which combines the partial order �i

and the notion of composition, is essential for the subse-
quent analysis of knowledge representations in the context
of data-driven strategies. To establish an algebraic structure
for comparing and composing different knowledge states, we
endow the value frame � with an order relation� as follows:
we express the content of each individual element κ ∈ � as
a partial function from I to

∐
i∈I Vi by defining, for a given

J ⊆ I, the map

κ : J −→
⋃

i∈I
Vi , j �→ κ( j) ∈ Vj . (6)

For each H ⊆ J ⊆ I, πH denotes the projection of �J
onto

∏
h∈H Vh , and we explicitly write πJ ,i to refer to the

canonical projection onto Vi for each i ∈ J . Let us denote
the domain of such a partial function as κ . For all κ1, κ2 with
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κ1 = κ2, we consider κ1 � κ2 if

∀i ∈ κ1 : πκ1,i (κ1) �i πκ2,i (κ2). (7)

This definition is in line with the notion of product category,
with particular reference to posetal categories in the present
discussion. Then, we extend this order by taking into account
the domain of the elements of �:

κ1 � κ2 ⇔ κ1 ⊆ κ2 and κ1 � κ2|κ1, (8)

where κ2|κ1 denotes the restriction of κ2 to the domain κ1 of
κ1. We denote the resulting poset (�,�) as ��. Now, we can
state the following:

Definition 2 An inner state κ is an element of the poset ��.
With a slight abuse of notation, we can equivalently express
each individual inner state κ as a partial functionwith domain
κ , in line with (6). In this way, we can compare inner states
by domain extension (8) and componentwise ordering (7).

The statement a �i b can be interpreted as follows: let
us consider any two agents A,B with inner states κA, κB,
respectively, such that i ∈ κA ∩ κB, a = πκA,i (κA), and
b = πκB,i (κB). Then, all the knowledge value recognized
by Agent A along the dimension Vi is also recognized by
Agent B. In our perspective, the order relation represents the
possible inferences that can be drawn by an agent using its
knowledge resources.

Remark 1 The focus on the domain of an inner state is of
major relevance in defining awareness in the present formu-
lation of data-driven strategies. Indeed, the statement i ∈ κ

is interpreted as the assertion that the agent can evaluate its
knowledge along the dimension Vi . If ⊥i is the minimum
element of Vi , assuming it exists, the statement κ(i) =⊥i

means that the agent knows she does not know about the
dimension Vi . On the contrary, i /∈ κ means that the agent is
unaware of the dimension Vi .

This can be read in relation to the operator Ki associated
with Agent i in modal logic; the combination of the notions
that are used to model knowledge structures (in particular,
Kripke structures) in theWigner’s Friend extended scenarios
designed by Frauchiger and Renner (2018) is discussed in
Nurgalieva and del Rio (2018).

The order (8) extends (7) by relaxing a comparability
condition, from κ1 = κ2 to κ1 ⊆ κ2. An analogous distinc-
tion was pointed out in Angelelli (2017, Sect. 3) to examine
inequivalent representations in a statistical physical context.
In the scope of this work, we note the following:

Remark 2 The domain extension (8) establishes a connection
between different dimensional contexts �J . This generates

the order compatibility:

κ1|κ1∩κ2 � κ2|κ1∩κ2 ⇒ κ1|κ1∩κ2 � κ2. (9)

Theorder (8) is a value-based view, as it does not differentiate
between different domains due to (9). Other orders can be
associated with the set �; in particular, we can compare two
elements only if they have the same domain:

κ1 � κ2 ⇔ κ1 = κ2 and ∀i ∈ κ1 : κ1(i) �i κ2(i). (10)

This secondorder is adomain-based view, leveraging the rep-
resentation of inner states as partial functions. In this sense,
the comparability of two partial functions is not based only
on the value of potential input dimensions but also on the fact
that they are functions with the same domain. This defines
a new poset, �� := (�,�). Clearly, �� is an extension of ��

since each pair κ1 � κ2 corresponds to a pair κ1 � κ2 in ��.
The two posets coincide only under the unidimensionality

condition #I = 1. In the multi-dimensional case, we refer to
�� and �� as lower and upper posets, respectively. This ter-
minology adapts the lower and upper probabilities (or belief
and plausibility, respectively) that are used to model impre-
cise probability, e.g., in Dempster–Shafer theory (Halpern
2017, Sect. 2.3–2.4) [also see Cuzzolin (2020) for a geomet-
ric view of these notions].

4.2 Self-reference

The distinguishing role of the domain can be used as a basis
to consider different orders starting from the same class of
posets. In turn, this allows for modeling the partiality of the
composition (5). This objective fits the scope of this work, as
the (lack of) composition of knowledge states can be linked
to the (lack of) explainability. For example, given the knowl-
edge representations κH and κA of a human agent H and an
artificial agent A, respectively, the composition κA ⊕ κH may
not be feasible when the knowledge of A’s inner state κA is
partially accessible to H.

Looking at the scenarios described in Sect. 2, the type of
uncertainty we want to describe primarily arises through
meta-reasoning, which, in our context, involves the com-
position or comparison of inner states. In particular, the
ambiguity in Ellsberg’s urn model is not manifest when con-
sidering individual decision contexts (bets (π0,a, π0,b) and
(π1,a, π1,b)), but it emerges only when both of these con-
texts are taken into account and compared. Similarly, the
Wigner’s Friend phenomenon involves Wigner’s reasoning
about its friend’s state, as elaborated in Frauchiger and Ren-
ner (2018).

Then, we can use the two posets �� and �� defined in
Sect. 4.1 to represent this form of meta-reasoning.
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Definition 3 We extend �� by appending the poset (�,�) as
a new dimension and repeating the construction in (7)–(8).
The corresponding poset

K := (� � � � (� � �),�K) (11)

with the order �K induced by the aforementioned construc-
tion is referred to as the poset of lower meta-states.

In Remark 2, �� is introduced as a lower poset, namely,
the inclusion �⊆� between relations on � holds. In analogy
to lower and upper posets, we can also consider a different
definition of meta-states where �� plays the role of the lower
poset, and we extend the order � in the new dimension. In
particular, we can consider a linear extension ≤ of � using
a monotone function h : �� −→ R:

κ1 � κ2 ⇔ h(κ1) ≤ h(κ2). (12)

We use this representation in the following sections to pro-
vide an information-theoretic view of the state, where the
extension�⊆≤ is derived froman informationmeasure. This
type of meta-reasoning can be expressed in a more general
setting by introducing a second type of meta-states, which
rely on a poset Vexp that expresses knowledge about the rela-
tional structure in ��.

Definition 4 Let us consider a poset Vexp and an order-
preserving mapping ν : �� −→ Vexp. Then, we append
Vexp as a new dimension and obtain the poset

K(ν) := (
� � Vexp � (� � Vexp),�ν

)
, (13)

where �ν in (13) is obtained through the construction in
(7)–(8). The elements of the poset K(ν) are referred to as
ν-meta-states.

4.3 Explainability as compositional existence

Finally, we use the notions introduced above to provide a
formal definition of explainability in our context.

Definition 5 A lower meta-state is called diagonal if it can
be expressed as (κ, κ) ∈ K for some inner state κ ∈ ��. The
update of κ ∈ �� by lower meta-states is the composition
κ ∨ψ with another stateψ ∈ ��, when the supremum exists.
Such an update is said to be explainablewhen (κ, κ)∨(ψ,ψ)

also exists in K and, hence, is diagonal.
Similarly, a ν−meta-state is diagonal if it has the form

(κ, ν(κ)) for some κ ∈ ��. An explainable update by ν-meta-
states is a composition (supremum) of diagonal elements in
K(ν) that is diagonal too.

This definition specifies the possibility of extending an
inner state and distinguishing extensions that change the

knowledge base and, hence, are inconsistent with respect
to the current dimensional setting. Note that the focus of
explainability in this context is on knowledge updates, in
agreement with the attention paid to (non-)reusable knowl-
edge in data-driven strategies. When a combination K ∨ κA
is not feasible or is not compatible with the explainability
accessible to K , the two inner states cannot be combined
into a new state of knowledge. In turn, this may impede the
reuse of the knowledge resource carried by another inner state
in other contexts. An obstruction to the existence of such a
state is the presence of multiple, non-equivalent value repre-
sentations that an agent cannot directly discern. This is the
situation we want to explore to describe interactions between
agents in structural terms.

Remark 3 Theprevious definition stresses the role of explain-
ability in relation to accessible knowledge through the
projections πκ,i (see Definition 2). According to Remark 2,
the role of the domain of inner states in the definition of K,
e.g., through the lower poset �� in (10), relates the existence
of an explanation for a lower meta-state to the existence of
the same set of projections πJ ,J ⊆ κ , for both κ and κ ∨ψ .

In the following sections, we analyze the definitions pro-
vided above through inconsistencies that cannot be resolved
through an explainable update of an inner state.Within a data-
driven initiative, this allows assessing whether data and other
agents that can observe them generate reusable knowledge
(an explainable update) or not.

5 Uncertainty and inequivalence in
knowledge representations

The labeling induced by the disjoint product (4) in this
framework is analogous to indexation-by-conditions in the
contextuality-by-default approach in cognitive sciences,where
variables are indexed by the context they are part of Dzha-
farov and Kujala (2016). To remove the dependence of such
context, we can represent each element of κ ∈ �� as a
tuple of pairs (i, κ(i)); then, we consider the equivalence
relation defined by the projection onto the second coordi-
nate, so (i, κ(i)) is identified with ( j, κ( j)) if and only if
κ(i) = κ( j).

Such labelings generate a connection between different
posets, as elements of Vi ∩ Vj , i, j,∈ κ , act as a linkage
between the underlying posets Vi and Vj . We can formalize
this linkage by extending the focus from equal to corre-
sponding elements through order-preserving mappings. This
extension lets us consider the extent of order compatibility
between different dimensions, since order-preserving map-
pings may not preserve compositions (suprema). Given the
interpretation of explainable updates based on compositions
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(Definition 5), these order-preserved mappings can be used
to realize inequivalent knowledge representations.

Next, we present three instances of knowledge inequiv-
alence from the logical, order-theoretic, and information-
theoretic perspectives, respectively.

5.1 Non-classicality frommultiple potential
implications

The DIKW hierarchy mentioned in the Introduction dis-
tinguishes access to data from the decision-making stages,
which can be summarized as a set of inferences to draw con-
clusions about the effect of actions based on evidence and
empirical premises.

The first layer where the inequivalence of knowledge
representations can be addressed is the logical one, where
inference is expressed as material implication. Specifically,
uncertainty emerges as the occurrence of multiple inequiv-
alent implications, which can be obtained in our context
through the following construction.

Example 2 Let us consider a set-theoretic representation of a
finite distributive lattice as an appropriate subset of the power
set ℘(S), which is always possible due to Birkhoff’s repre-
sentation theorem (Davey and Priestley 2002, Sect. 5.12).
It is well known that the implication A → · defined by
A → Y := Y ∪ (A)C is the upper adjoint of the conjunction
A ∩ ·; namely they are monotonic functions satisfying the
relation

A ∩ Y ⊆ Z ⇔ Y ⊆ A → Z , A,Y , Z ,⊆ S, (14)

where C denotes the set-theoretic complement with respect
to S. The implication is a fundamental logical connective
to describe inference, and the adjointness condition is the
basis for generalizing classical logic to Heyting algebras
and extended-order algebras in the context of fuzzy oper-
ators (see, e.g., Della Stella and Guido 2012 and references
therein).

However, this construction presumes the knowledge of
the whole set S to evaluate the complement C. In particu-
lar, we can model partial knowledge on S by considering a
class {Su, u ∈ {1, . . . , n}} of n potential spaces that define
as many implications →u , u ∈ {1, . . . , n}.
Remark 4 From the previous argument, we can see that the
uncertainty about the base set S entails a deviation from
classicality. Indeed,we have two alternatives for a finite poset
K. When K is a distributive lattice, the previous example
shows that the lack of knowledge of the full set of dimensions
generates multiple implications. Otherwise, the poset is not
distributive, which is a main deviation from classical logic
that is used to characterize quantum logics (in particular, by
replacing distributivity with modularity; see, e.g., Harding

1996) and their extensions. In both alternatives, we infer a
non-classical behavior from bounded knowledge resources.

From the logical layer,we canmove our focus to the acces-
sibility of potential inferences that can be drawn. In turn, this
interpretation exploits the order structure of the dimensions
and entails a second layer of inequivalence in knowledge
representations.

5.2 Inequivalent representations from accessibility
boundary

Inequivalent descriptions of a statistical system are often
a hint of its non-trivial characteristics. For instance, in
Angelelli (2017, Sect. 3), a limiting procedure changes the
compositional structure of the statistical model, returning an
instance of (5) with connections to fuzzy sets. Such a limit
accounts for a parameter configuration suited to exponential
degenerations of energy levels. In view of our formalization
of the Wigner’s Friend scenario, we investigate this aspect in
our setting through the following example.

Example 3 Let us take a class of dimensions V and a distin-
guished dimension Vi where the order relation �i is partial.
Furthermore, suppose that the supremum a∨i b exists for all
a, b ∈ Vi , which is an instance of (5). Another way to encode
the relation �i is to introduce

x ∈ Vi �→ ιi (x) := {y ≺i x : y ∈ Vi },
(V �

i ,��
i ) := ({ιi (x) : x ∈ Vi } ,⊆) , (15)

where a ≺i b means a �i b and a �= b. This representation
of value is not based on a single valuation x ∈ Vi but on the
inferences that can be drawn through non-trivial processing
of the available information encoded in x .

The statement a �i b implies that ιi (a) ⊆ ιi (b), so ι is a
strictly monotone mapping; in this sense, the order relation
between compatible elements is preserved passing from Vi to
V �
i (i.e., an order morphism). However, these two representa-

tions differ when the composition structure (5) is considered:
we can consider ∨ (the supremum operation) and ∪ as two
operations satisfying (5) for Vi and V �

i , respectively. Accord-
ing to Angelelli (2017, Prop. 5.1), we know that (Vi ,∨) is
homomorphic to (V �

i ,∪) only if (Vi ,�i ) is totally ordered.
Since the order relation attributed to Vi is not total, these
different definitions of the dimension produce inequivalent
results under composition.

The final layer is the quantitative one, which relies on
measures to evaluate the amount of knowledge encoded in a
given representation. In the following subsection, we adapt
the notion of information measure to our knowledge-based
view.
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5.3 Uncertainty in informationmeasures

The lack of knowledge about the entire dimensional space (S
in Sect. 5.1, unique maximal elements of ι(x) in Sect. 5.2)
affects the quantification of the information content in knowl-
edge representations. This lets us establish the analogy
with the role of normalization of subsystems discussed in
Angelelli (2017, Sect. 7). Consider a state κ and the ordered
set of non-negative reals (R≥0,≤). Associate each dimen-
sion Vi , i ∈ κ , with a weight wκ(i) for a given function
wκ : κ → R≥0. In particular, we can take a monotone
function ν : �� −→ R≥0, which was also mentioned for
the construction of ν-meta-states in (13), and obtain wκ

via wκ(i) := ν
(
κ|{i}

)
. In this way, we take into account

both the domain and the values of κ; by focusing on the
dimension �� introduced in (10), we can also associate each
κ ∈ �� with a weight wκ(��) ≥ 0, so that κ1 � κ2
implies wκ1(��) ≤ wκ2(��). On the other hand, the attri-
bution Wκ(i) := ν

(∨
Vi

)
only depends on the supremum∨

Vi of Vi and provides us with a definition of normalization
suited to our context, which only relies on the domain κ .

Then, to identify uncertainty within information mea-
sures, we can use a representation where each Vi ∈ V is
isomorphic to (R≥0,≤). In this setup, each κ ∈ � induces,
after normalization, a probability distribution whose support
is κ . We consider as an information measure h : � −→ R≥0

the normalized Shannon entropy (Halpern 2017, Sect. 3.11)

h(κ) := H(κ)

Hmax(κ)

= − 1

ln
(
#(κ)

) ·
∑

t∈κ

wt∑
u∈κ wu

· ln
(

wt∑
u∈κ wu

)
.

(16)

This function is widely adopted to quantify the uncertainty
(or, dually, the information and complexity) within a given
distribution. The inclusion of the normalization ln

(
#(κ)

)−1

derived from the maximum entropy achievable for a dis-
tribution with support κ takes into account the potential
probability assignments to the available dimensions. Such
a dependence makes the normalized entropy undefined, and,
when available, partial information about the support κ in
terms of lower or upper approximations induces bounds for
ln(#(κ))−1.

In this setting, each poset �� and �� entails order condi-
tions between probability distributions. This kind of com-
parison also arises in information theory when one considers
the Kullback–Leibler divergence (Halpern 2017, Ch. 3) to
quantify the differences from the update of a probability
distribution. Denoting as p(κ1) and p(κ2) the probabil-
ity distributions associated with κ1 and κ2, respectively,
the Kullback–Leibler divergence DKL(p(κ2)||p(κ1)) from

p(κ1) to p(κ2) can be evaluated only if p(κ2) = 0 when-
ever p(κ1) = 0. This assumption of absolute continuity
formalizes the constraint that the support of the distributions
(interpreted as the set of elements with positive probability
weight) does not increase. In our framework, we include the
possibility to extend the support κ1 with new dimensions; on
the other hand, this extension is evaluated differently in the
two posets �� and ��, which gives a criterion to discriminate
explainable updates.

6 Modeling in data–agent interactions

Now,we examine the uncertainty scenarios described in Sect.
2 within the proposed framework.

6.1 Ambiguity and data–agent interactions

6.1.1 Preliminary discussion

Before defining the connection between Ellsberg’s three-
color urn model and our formalism in Sect. 6.1.2, we
identify some preliminary analogies to contextualize the
decision-making problem in the scope of this work. The
decision-maker is represented by a human agent H, who has
access to information regarding the value of the “Red”dimen-
sion; specifically,H can assess the risk associatedwith “Red”,
e.g., knowing its impact and probability. On the contrary, the
information possessed by H about the remaining two col-
ors, “Black–Yellow”, only acknowledges their existence and
their cumulative probability weight ( 23 ).

A second agent, which we can associate with artificial
intelligence (AI) with an inner state denoted as κA, can get
access to data to recognize the value of the “Black–Yellow”
information dimension to a greater extent with respect to H.
In particular, there may be a latent factor in the data that lets
A distinguish two “Black” and “Yellow” information dimen-
sions. The human agent knows that A is able to recognize
new value in the “Black–Yellow” dimension.

Ellsberg’s paradox corresponds to the misalignment
between these informationdimensions andknowledgedimen-
sions, namely, the two decision contexts corresponding to the
two lotteries (π0,a, π0,b) and (π1,a, π1,b). The existence of
A allows the extraction of value from the “Black-Yellow”
information dimension, but this cannot prompt a change of
knowledge state for H that is able to discern the value of the
“Black” and the “Yellow” evaluations.

We provide a diagrammatic depiction of this phenomenon
in Fig. 1.
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Red Black Yellow

{Black, Yellow}

KH

κA

Fig. 1 Diagrammatic representation of Ellsberg’s three-color model
compared to the relation of human and artificial agents with data

6.1.2 Ambiguity and explainability of knowledge updates

Now, we provide a formal correspondence between Ells-
berg’s three-color model and the present framework. We
introduce the notation B(n) for the Boolean algebra(
℘({1, . . . , n}),∪,∩, ·C, {1, . . . , n},∅)

of the power set
℘({1, . . . , n}). Consider two dimensions, B0 and B1, iso-
morphic to B(1). These two objects abstract the two different
observation/measurement settings, i.e., the two lotteries
(π0,a, π0,b) and (π1,a, π1,b) in Ellsberg’s model. The set K
is in bijection with

℘({�(0)}) � ℘({�(1)}) � ℘({�(0),�(1)}), (17)

where we use the labelings (0) and (1) to distinguish the
two lotteries as a result of the disjoint union. Then we focus
on the explainability of the composition {�(0)} ∨ {�(1)} of
{�(0)} ∈ B0 and {�(1)} ∈ B1, which represents an update
where an agent becomes aware of a second decision scenario
(lottery). We obtain

{�(0)} ∨ {�(1)} =
(
{�(0)}, {�(1)}

)
in ��. (18)

On the other hand, this composition is not defined in ��.
An analogous result is obtained using ν-meta-states as

in Definition 5. Here, we consider ν : �� −→ B(1) with
ν(κ) = {1} at κ = {1, 2}, and ν(κ) = ∅ otherwise. From
(18), we find

ν({�(0)}) = ν({�(1)}) = ∅ ⊂ {1} = ν
(
{�(0)} ∨ {�(1)}

)
,

(19)

so the composition of the two lotteries is not explainable. In
Fig. 2a, b, we provide a graphical representation of the previ-
ous argument based on Hasse diagrams (Davey and Priestley
2002, Sect. 1.15), denoting �0 := {�(0)} and �1 := {�(1)} to
stress the link to the two lotteries in Ellsberg’s model.

We point out that a different view on an analogous phe-
nomenon was given in Angelelli (2017, Sect. 7), where
different orders for quantities characterizing physical sub-
systems emerge as a consequence of different choices of
normalizations. In fact, (1) follows from a different attri-
bution of the “ground energy”, or minimal value, here
interpreted as the intersection of the alternatives in each sce-
nario, i.e., ∅ for the set of alternatives {π0,a, π0,b} and {Y}
for the set {π1,a, π1,b}. These two different choices represent
unrelated normalizations, which open the way to incom-
patibility of preferences (opposite orders) between the two
scenarios. We can better specify this observation by linking
the decision contexts that generate the poset in Fig. 2a, i.e.,
the maximal elements of ��, to Boolean algebras. Specifi-
cally, we map the Boolean algebra B(2) to lotteries �u , for
both u ∈ {0, 1}, and the Boolean algebra B(3) to their com-
bination �0 ∨ �1:

�0 �→ B1 := (℘{R,B},∪,∩, · → ∅, {R,B},∅) ,

�1 �→ B2 :=
(

{{Y}, {R,Y}, {B,Y}, {R,Y,B}} ,∪,∩, ·

→ {Y}, {R,Y,B}, {Y}
)

,

�0 ∨ �1 �→ B1,2 := (℘{R,Y,B},∪,∩, · → ∅, {R,Y,B},∅) ,

(20)

where we have used the expression · → ∅ for the comple-
ment ·C. The ambiguity in Ellsberg’s model entails the lack
of a combination of the two Boolean algebras B1 and B2 to
get B1,2. This combination would be feasible if we could
distinguish the two algebras and associate them with sub-
structures of B1,2. However, meta-reasoning (lower poset ��

in Fig. 2a, ν-meta-states in Fig. 2b) does not allow for such a
distinction. In this way, we get another instance of multiple
implications (here, · → ∅ and · → {Y}) already considered
in Example 2, as well as the non-trivial effect of a “ground
energy” labeling subsystems (here, ∅ and {Y} in the afore-
mentioned implications) as in Angelelli (2017).

6.2 Wigner’s model and data observability

While the labeling of contexts refers to lotteries in Ellsberg’s
model, in the Wigner’s Friend scenario, it represents the two
potential changes in the friend’s state implied by the mea-
surement, which are unknown to Wigner. As in the case of
data-driven strategies, an agent is able to observe data (out-
comeofmeasurement in the first case, (big) data in the second
one) that a super-observer (Wigner in the first case, a human
agent in the second one) cannot.

Even for the Wigner’s Friend scenario, before defining
the formal correspondence with our framework (Sect. 6.2.2),
we briefly discuss the source of uncertainty about features
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Fig. 2 Representations of
ambiguity in Ellsberg’s
three-color model using the two
types of meta-states. Dashed
lines (left figure) distinguish
pairs in the poset �� that do not
belong to the poset ��. Dotted
lines (right figure) depict the
map ν linking �� to the Boolean
algebra Vexp := B(1)

extracted from non-explainable approaches using artificial
agents.

6.2.1 Preliminary discussion

Let us consider an order relation onf(A) := {f,f0,f1} given
by the inclusion of the indices. Specifically, we have f �data

f0 and f �data f1. The label f refers to the word “factor”
(or feature), namely a relevant attribute defining the decision
context based on the observed data. The conditionf �data f0
means that f does not identify a decision context, while f0
does and, hence, is less ambiguous. Note the analogy with
the urn model described in the previous subsection: f0 and
f1 could represent two distinct decision contexts �0 and �1,
resulting in two opposite orders.

The set f(A) refers to the direct observation of data car-
ried out by the artificial agent. So, we move to a second
representation F(H) := {

F{0},F{1},F{∅},F∅
}
to assess the

knowledge possessed by the human agent about the AI’s
decisions. Specifically, the element F{∅} recognizes that the
trained AI algorithm is in a defined but unknown decision
context, and we consider the relations F∅ �AI F{∅} �AI F{u}
for both u ∈ {0, 1}, where F{∅} is interpreted as “the human
agent knows that the AI knows the decision context”, while
F∅ is interpreted as “the human agent knows that the AI does
not know the decision context”. The subscript �AI clarifies
that the comparison refers to the AI’s knowledge state.

As a consequence of the training with data, the AI updates
its initial state to alignwith them. This update leads to the def-
inition of a meta-state for the human agent, which reflects the
changes in the AI’s knowledge. Specifically, the knowledge
of the AI’s training prompts the human agent’s knowledge to
change from F∅ to F{∅}. This update acknowledges the align-
ment of the AI’s outcomes with a feature in the (big) data,
but the human agent remains unaware of the specific latent
feature.

The relational structure defined by F(H) can be encoded
using the function ι introduced in (15) to provide an instance

Fig. 3 Diagrammatic representation of a Wigner’s friend scenario
describing a high-level interaction of human and artificial agents in
a data-driven scenario

of inequivalent knowledge representations. Specifically, we
observe that

ι (∅) = ∅, ι({0})= ι({1}) = {∅}, ι({0, 1})={∅, {0}, {1}}.
(21)

Then, the update from f to fu for some u ∈ {0, 1} prompts
the update from Fι(∅) to Fι({u}). We can describe the human
agent’s inability to explain the AI’s outcome through the set
difference � := ι({0, 1})\ι({u}) as a means to represent the
divergence between the full access to knowledge about the
AI’s decision contexts {0} ∨ {1} = {0, 1} (in (℘ ({0, 1},⊆))
and the actual knowledge {u}. In this interpretation, from
� �= ∅, we can say that the states FU with U ∈ � are not
accessible to the human agent.

This argument, which is graphically depicted in Fig. 3, is
a basis for the specification of the formalism designed in this
work for the Wigner’s Friend scenario, as presented in the
following subsection.
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6.2.2 Representing uncertainty about data observability

For the dimension Vdata, we choose a base set ℘({�}) to
align with the originalWigner’s Friend scenario. This encod-
ing captures the effect of the spin measurement by Wigner’s
Friend as a transition from the two-dimensional space with
basis {s+1, s−1} of C2 to one of the one-dimensional spaces
(with basis {s+1} or {s−1}, respectively). Therefore,we define
Vdata := (℘ ({�}),⊆) to represent the knowledge (observa-
tion or measurement) of a relevant feature (polarization) that
allows value extraction from data (measured spin). Other
definitions of Vdata can be considered too, but it is worth
noting that this choice also connects to the representation
of Ellsberg’s model in the previous subsection through the
association of � with the knowledge of the ground energy,
which distinguishes the inferences made in the two lotteries.

Data are observable for the AI (Wigner’s Friend) but not
for the human agent (Wigner); only the knowledge of the
existence of an outcome observed by the AI (e.g., the con-
clusion of the training phase) is available to the human agent.
Assuming that no other knowledge source besides data is
needed to define the state of theAI,we set�A := Vdata.While
the acknowledgement of data value is given by πdata(κH),
the acknowledgement of the value of the AI in κH is rep-
resented by the component πAI(κH) along the dimension
VAI := (℘ (�A),⊆). This abstracts the queries (measure-
ments) ℘(κA) that the human agent (Wigner) can ask the AI
(Wigner’s Friend) with state κA.

As a consequence of the actual observation of the out-
come in the data-driven scenario, the states κA and κH are
updated to encompass the existence of�. The AI gains com-
plete information about the relevant data dimension, leading
to a change from πdata(κA) = ∅ to a new state κ ′

A with
πdata(κ

′
A) = {�}. We can express this update in accordance

with Definition 5 by introducing ψA := ({�}data) and using
the composition

κA = (∅data) �→ κ ′
A := κA ∨ ψA = ({�}data) . (22)

On the other hand, the realization of the training of the AI
algorithm prompts a change in the knowledge state of the
human agent; consistently with the transition κA �→ κ ′

A, we
describe

κH = (∅data, ℘ (∅)AI) �→ κ ′
H := (∅data, ℘ ({�})AI) , (23)

which means that the human agent knows that the AI is
aligned with the data provided for the training but is unable
to directly query them. To formulate this limitation, we
can express the transition from κH to κ ′

H by introducing
ψH := (∅data, {{�}}AI) and looking at the explainability
of the update κH ∨ ψH by ν-meta-states. As discussed in
Sect. 6.2.1, we can use ι to generate ν-meta-states; an equiv-

alent choice to analyze this scenario, where the update from
κH to κ ′

H does not affect the data dimension, is ν(κH) :=
ι ◦ πAI(κH) where AI ∈ κH, and ∅ otherwise. We find

(κH, ι(κH)) ∨ (ψH, ι(ψH)) = (κH ∨ ψH, ι(κH) ∨ ι(ψH))

= ((∅data, ℘ ({�})AI) , {∅})
�= ((∅data, ℘ ({�})AI) , {∅, {∅}, {{�}}})
= (κH ∨ ψH, ι(κH ∨ ψH)). (24)

So, the update leading to κ ′
H is not explainable based on the

previous definitions.

7 Discussion on implications for the
assessment of data-driven strategies

As mentioned in the Introduction and Sect. 2, business per-
formance, as an indicator of the value associated with a
big data-driven strategy, can be seen as a consequence of
actions implemented in linewith the strategic value generated
through big data analysis. This stage, which can be defined
as big data exploitation, is itself a consequence of a pre-
process aimed at interpreting and capitalizing information
extracted from data, which is referred to as big data capi-
talization (Ylijoki and Porras 2019; Wu et al. 2022). Based
on findings in the literature, the dimensional definition of
value is limited to the final phase of big data exploitation,
as its principal purpose is to specialize the different types
of value associated with big data in the measurement of the
generated value. This measurement is realized by comparing
the observed and estimated value indicators, which provides
a criterion to determine the success or failure of the imple-
mented data-driven strategy.

The proposed framework acts as an additional layer that
embeds value dimensions within a formal knowledge struc-
ture and, hence, encompasses specific types of uncertainty
(Sect. 2.1) within the capitalization phase. In practice, these
types of uncertainty undermine the data-driven strategy from
the beginning due to the lack of proper assessments of use-
ful information when data are in their raw state. This aspect
is critical since the definition of data-driven strategies often
takes place before raw data acquisition, when a priori eval-
uations of information or strategic value are not available
(Manyika et al. 2011). On the contrary, the structures to
represent knowledge, in particular inner states, could be
implemented within the whole value transformation process
to highlight potential inconsistencies, redundancies, or a lack
of representative indicators. In this way, the present model
could be adapted for strategy assessment over the different
stages of data capitalization and exploitation. In addition,
it could enhance the applicability of in-use big data frame-
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works by promoting their proper adoption and integration
within specific phases of the value creation processes.

The analysis conducted by Ashton (2007) points out the
need to understand and consider casual linkages in these indi-
cators, as they may create redundancies and distortions in
aggregate measures such as the value creation index (VCI).
The VCI introduces new categories of information (e.g.,
innovation, alliances, and technology), which are combined
and weighted along with firm performance (Ashton 2007).
In this regard, the integration of inner state representations
within the Big Data Value Chain is a means to formalize and,
if needed, update the knowledge about the processes that
lead to value creation. Specifically, the cyclical assessment
of potential inconsistencies that require updating a knowl-
edge representation may return evidence about the resource
usage and skills needed at the different assessment stages,
which is a premise for the study of (causal) relations among
them.

The focus on the explainability of inner states’ updates
alsomatches the need to adapt the assessmentmethodologies
from the capitalization to the exploitation phases. Indeed,
value measurement in terms of business performance can
benefit from both classical forecasting models and advanced
analytic methods (Negro 2022), which allow for the estima-
tion of probability laws to obtain informative statistics and
indices. However, this focus may overlook the quantification
of non-financial and organizational indicators. This requires
the introduction of complementary methods to assess these
value attributes. Our proposal fits into the design of such
methods that, startingwith knowledge representations, assess
their compatibility and the need to update the dimensional
structure. In line with current research streams that explore
the measurement of non-classical forms of uncertainty in
socio-economic and psychometric settings (Sect. 2.4), such
methods formalize a type of configural invariance between
different frameworks and studies (in the sense discussed in
Sect. 3.2).

The conditions expressed in Sect. 4 are grounded in the
theory of extended orders, which go beyond the classical
Boolean structures underlying probabilistic models. In this
way, we strengthen a common foundational basis for fuzzy
logic (Della Stella and Guido 2012) and for the study of
inequivalent representations of statistical systems (Angelelli
2017), as discussed in Sect. 5. In fact, the attention paid to
element- and set-based representations is part of a broader
investigation that explores reduction to or deviation from
classical set membership through geometric models. Specif-
ically, a geometric realization of the operational structure
introduced in Sect. 4.1 arises froma limiting procedure for set
functions, where a set-element correspondence derives from
combinatorial (Angelelli and Konopelchenko 2018, Sect. 6–
7) or algebraic constraints (Angelelli 2019). Other types of
uncertainty can be explored from a geometric standpoint,

including imprecise probabilities (Cuzzolin 2020, Sect. 2.2)
and factor indeterminacy in multivariate methods (Rigdon
et al. 2019, pp. 430–431). The latter shares a feature with
the type of metrological uncertainty discussed in this work,
namely, the multiplicity of models compatible with the same
accessible or observed information. Indeed, although differ-
ent in nature, both types of indeterminacy rely on families
of model transformations that preserve a given structure. In
(Rigdon et al. 2019), they generate different solutions consis-
tent with the same covariance structure, while in our setting,
we deal with order-preserving mappings with different oper-
ational structures (5).

In conclusion, this formalism lends itself to the genera-
tion of qualitative and quantitative criteria formeta-reasoning
about knowledge, which may support reliable maturity
assessments (Sect. 2.4). Further study should be devoted to
the specification of our approach for the design of adaptive
maturity models in line with the dynamics of capabilities and
technological adoption.

8 Conclusion and future work

This work has laid the basis for a deeper investigation of
knowledge uncertainty in data-driven strategies, which are
becoming a dominant component of technological inno-
vation with significant effects on socio-economic systems
(Ndou et al. 2019). The contribution started by identify-
ing different manifestations of uncertainty that may affect
data-driven strategies, which have to be included in the inter-
mediate and final evaluations of innovation initiatives for
their proper analysis.

Here, we focused on the explainability of knowledge
updates; future work will explore the structures to express
and investigate the explainability of knowledge states.
The relation between structural (logical and algebraic)
and information-theoretic notions should be explored in
more depth to exploit both qualitative and quantitative
approaches for assessing uncertainty in epistemic repre-
sentations. Specifically, normalization’s role in represent-
ing information-theoretic inequivalence (Sect. 5.3) and the
Ellsberg model (Sect. 6.1.2) can be translated into an
information-geometric setting (Angelelli andKonopelchenko
2021, Sect. 5), prompting dedicated analyses within other
entropy-based statistical models (Carpita and Ciavolino
2017) and fuzzy techniques (Ciavolino et al. 2014; Ciavolino
and Calcagnì 2016).

In this way, we envisage practical advantages in the design
of measurement tools to assess business maturity in the con-
text of big data.Maturity has naturally been linked to business
value through the assumption that an organizationwith a high
level of maturity has a greater chance of turning potential
value into created value. At the same time, maturity models
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and dimensional value models share many of the aspects that
have been explored in this discussion. Future applications
will define assessment questionnaires suited to the analysis
of interactions between human agents and technologies for
data-driven initiatives. Along with a chosen methodological
architecture in terms of dimensions, these assessment tools
should envisage the occurrence ofmultiple representations of
the same latent construct with incompatible behaviors (e.g.,
different qualitative features of relations within the structural
model).

Afinal aspect to consider, beyond the scopeof this paper, is
the critical analysis of the non-monotonic relation between
data features and the value that can be generated. Having
more data (higher volume) is not always synonymous with
getting a higher value. From a perspective in which data are
resources, we should look at the extent to which data, infor-
mation, and knowledge representations could faithfully be
represented as resources, or, instead, they require a multi-
actor view. In this direction, Gervasi et al. (2023b) discussed
how big data value chain models can be combined with new
data governance models, such as the Data Mesh Dehghani
(2022). The presented framework is likely to fit into this
multi-actor scheme, where AI is an agent and is part of the
tools that can be used by a Technology Mesh to combine
data from different domains (Gervasi et al. 2023b). In this
way, data-driven strategies should be considered on a dif-
ferent ground with respect to classical paradigms in software
engineering. The variety of effects that could be generated by
data-driven strategies and the use ofAI tools, aswediscussed,
should be incorporated within management processes, as
they need to support organizations in increasing their aware-
ness of data-driven strategies and the reliability of generated
value measurements.
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