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Contact mechanics models based on linearity assumptions, often using the viscoelastic
half space theory and numerically implemented with the boundary element method, are
known to provide accurate results for small mean square slope of the surface roughness.
For large mean square slope, models accounting for finite deformations, often
implemented with the non-linear finite element method, are more accurate but lead to
a prohibitive computational cost. We propose a new hybrid multiscale approach able to
account for the finite deformations arising due to large mean square slope, while keeping a
computational cost similar to that associated to linear approaches. The basic strategy is a
decomposition of the surface roughness power spectrum into a discrete number of waves,
whose spectral range is partitioned into a high mean square slope range and a low mean
square slope range. The contact mechanics in the former is accurately solved with the
kinematically non-linear model and the results averaged out at the larger wavelength scale
in terms of an effective interface interaction law. This law is then applied in the linear
simulation involving the scales within the low mean square slope range. The proposed
approach is a more accurate alternative to fully linear and a computationally faster
alternative to fully non-linear contact mechanics approaches.
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1 INTRODUCTION

The mechanics of contact taking place at the interface of rough soft solids is attracting a wide
scientific interest due to its implications in a number of applications, ranging from biology and
biomedical devices to machine elements (Persson, 2006). As an example, passenger cars
maneuverability, comfort and energy efficiency in the era of autonomous/assisted driving and
novel tires design are strictly related to the ability to adopt advanced physically-based tire friction and
wear models during car engineering (Farroni et al., 2017; Fortunato et al., 2017). Moreover, an
accurate prediction of contact mechanics, combined with an increasingly realistic physical
description of the rubber behavior, plays a key role in term of tire durability, driving safety and
sustainability (Lu, 2010), as well as in the prediction of the driving range in electric vehicles (Farfan-
Cabrera, 2019).

The complexity in the prediction of rubber friction arises from the multiscale nature of the
physical mechanisms taking place at the contact interface (Schallamach, 1953; Grosch, 1963; Persson,
2006). Indeed, almost all man- and nature-made surfaces are covered by roughness wavelengths
spanning over decades of length scales, whereas polymer dynamics typically occurs over a wide range
of relaxation times. Furthermore, rubbers typically exhibit non-linear mechanical behavior as well as
wear-induced graded mechanical properties (Mokhtari and Schipper, 2016). This physical scenario
determines a strong non-linear coupling between length and time scales.
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In the past few decades, the scientific community mostly
developed rubber contact mechanics models based on the
assumption of small displacements and a linear rheological
behavior of the contact interface, which are combined with the
further assumption of small root mean square slope roughness
(so called Reynolds roughness). These contact mechanics models,
stemming from the viscoelastic half-space (VHS) theory and
implemented with the boundary element method (BEM)
(Persson, 2001; Carbone et al., 2009; Persson, 2010; Carbone
and Putignano, 2013; Carbone and Putignano, 2014; Scaraggi and
Persson, 2014; Scaraggi and Persson, 2015), have the ability to
consider all (mean field models (Klüppel and Heinrich, 2000;
Persson, 2001; Le Gal and Klüppel, 2007)) or most
(computational models (Scaraggi and Persson, 2015; Scaraggi
and Persson, 2016)) of the involved roughness length scales at
once with reduced computational cost. On the other hand, the
models based on the formulation of the viscoelastic contact
problem in the finite deformation framework, and
implemented with the finite element method (FEM) (Wriggers
and Reinelt, 1996; De Lorenzis andWriggers, 2013; Wagner et al.,
2015), do not have the linear kinematics limitation, and are able
to predict the friction coefficient by taking into account more
realistic mechanical and rheological models, but at a much higher
computational cost. This induces a strong limitation in the
number of roughness scales that can be involved in the
computation. Moreover, the strong non-linearity resulting
from the contact conditions, the large deformations and the
incompressibility lead to a challenging numerical framework.
Recently, viscoelastic contact models formulated in the finite
deformation framework and implemented with the FEM have
been proposed to tackle the multiscale nature of roughness in
the calculation of rubber friction, without dealing with the
random phase distribution during the roughness
decomposition into sinus waves to save computational cost
(Wriggers and Reinelt, 1996; Nitsche, 2011; Wagner et al.,
2015). However, the random phase distribution is key in the
contact mechanics of random surfaces, being responsible for
specific phenomena such as the linearity of contact area vs load
at small contact areas.

In previous work (Scaraggi et al., 2016; Al-Qudsi, 2020) we
have shown that the square slope of a given roughness
wavelength strongly affects the numerically calculated contact
area and hysteretic friction coefficient corresponding to that
wavelength for given pressure and sliding velocity, and that the
corresponding VHS-based linear and kinematically non-linear
predictions are quantitatively in agreement only up to
roughness root mean square slopes (denoted as m2) less than
a threshold ≈1. Thus, for relatively large values of roughness
root mean square slope (say m2 > 1), the effect of material and
contact non-linearity cannot be safely neglected and
kinematically non-linear approaches should be preferred to
VHS-based linear approaches. Instead, for sufficiently small
values of m2 (say, m2 < 1), the contact mechanics models
based on the linear VHS assumption can provide accurate
results. This consideration is at the basis of the new
approach for contact mechanics of real rough surfaces that
we investigate in this paper.

Here we propose a novel hybrid non-linear FEM/linear
BEM multiscale approach that can account for realistic surface
statistics and for the involved non-linearities while keeping a
computational cost close to that of VHS-based linear
approaches. Our multiscale approach is constructed on the
decomposition of the generic surface roughness power
spectrum into a discrete number of waves, whose spectral
range is partitioned into a low m2 range with large
roughness wavelengths (to be modeled assuming small
deformations), and a high m2 range with small wavelengths
(to be modeled accounting for large deformations). The
contact mechanics in the high m2 range is solved with the
kinematically non-linear model and the results averaged out at
the next larger wavelength scale in terms of an effective
interface interaction law, to be applied to the VHS-based
linear model. Thus, the latter accounts for the low m2

wavelength spectral domain, leading to an overall strongly
reduced computational cost with respect to a full non-linear
FEM model, and to a similar accuracy.

The paper is organized as follows. In Section 2 the hybrid
approach is described, including the roughness partitioning
procedure. The method is then validated for a simplified
contact geometry in Section 3 involving a roughness with
only a few scales. In Section 4 the hybrid approach is then
applied to the case of a smooth rubber block in steady sliding
contact against a real asphalt surface. Conclusions follow in
Section 5.

2 THE HYBRID MULTISCALE CONTACT
APPROACH

2.1 General Procedure
In the schematic of Figure 1 we illustrate the concept of the
proposed hybrid multiscale contact approach. We start from the
typical roughness power spectral density (Figure 1C) as
obtained by three-dimensional profilometry (B) of a real
rough surface, such as a road asphalt surface (A). After
splitting of the roughness spectral content in low (red in (C))
and high (blue in (C)) partitions, the contact mechanics
problem is solved with the kinematically non-linear model
on the high-slope scale range for a range of pressures and
sliding velocities, and the results are averaged in terms of an
effective contact interaction law (D) to be applied to the VHS-
based linear model (E). Since the latter typically includes most of
the roughness spectral content, the overall cost of the numerical
computations is comparable to the cost of the VHS-based model
computations.

More in detail, on the smallest length scales we simulate
frictionless contact using the kinematically non-linear model,
described in Section 2.4, for a number of applied average
pressures, from which the average separation, the normalized
contact area and the viscoelastic shear stress are computed.
The effective contact interaction law giving the average
pressure as a function of the average separation
(Figure 1D) is then applied to the surface profile containing
only the low-slope roughness components (E). A typical
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repulsive law, obtained for the adhesionless case, is shown in
Figure 2 for a (two-dimensional) sinusoidal rigid roughness in
sliding contact against a viscoelastic slab. The kinematically
non-linear model results, reported for two different sliding
speeds, show a monotonic increase of the pressure at
decreasing average interface separations.

We consider now a rough rigid surface in steady sliding
contact against a smooth rubber sample. The rigid surface
is assumed periodically rough, with periodicity L0 in the x- and
y-directions (coordinates in the average contact plane, with
x � (x, y)). The apparent projected interaction area is A0. The
surface roughness zr(x) is decomposed, as described in
Section 2.2, in the low-slope and high-slope scales,
zls(x)and zhs(x), respectively, with zr(x) � zls(x) + zhs(x).
First, the kinematically non-linear simulation (Section 2.4)
is carried out with the surface roughness zhs(x), at varying
sliding speed v0 (directed along the x-direction), leading to the
homogenized solution fields σhs(�u, v0), αhs(�u, v0) and
Δτhs(�u, v0) depending on the sliding speed v0 and on the
average separation �u. Here σhs is the average contact pressure

σhs �u, v0( ) � A−1
0,hs∫

A0,hs

d2x phs x( ), (1)

where phs(x) and A0,hs are respectively the contact pressure field
and the nominal in-plane area at the high-slope roughness scale.
αhs is the normalized projected contact area

αhs �u, v0( ) � A−1
0,hs∫

A0,hs

d2x H phs x( )( ), (2)

where H denotes the Heaviside step function, and Δτhs is the
effective average shear contact stress resulting from the

FIGURE 1 | Schematic showing the basic idea behind the proposed hybrid multiscale contact approach. The typical roughness power spectral density (Figure 1.C) is
obtained by three-dimensional profilometry (B)of a real rough surface, such as a road asphalt surface (A). After splitting of the roughness spectral content in low (red in (C)) andhigh
(blue in (C)) partitions, the contact mechanics problem is solved with the kinematically non-linear model on the high-slope scale for a range of pressures and sliding velocities, and
the results are averaged in terms of an effective contact interaction law (D) to be applied to the linear model (E) based on VHS theory.

FIGURE 2 | Typical average applied pressure vs separation curves
(separation in dimensionless units), obtained in the case of adhesionless
sliding contact between a (two-dimensional) sinusoidal rigid surface and a
viscoelastic slab, for two sliding speeds. Δ is the amplitude of the
sinusoidal rigid surface, however, for a generic randomly rough contact it is
given by the combined root-mean-square-roughness of the interface.

Frontiers in Mechanical Engineering | www.frontiersin.org February 2022 | Volume 8 | Article 8146073

Al-Qudsi et al. Hybrid Multiscale Rubber Contact Mechanics

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


asymmetric deformation of the rubber sample induced by
viscoelasticity

Δτhs �u, v0( ) � A−1
0,hs∫

A0,hs

d2x phs x, �u( ) zzhs
zx

. (3)

The VHS-based frictionless simulation (Section 2.3) is now
carried out on the surface zls(x), at a given externally applied
average pressure σ0 and at sliding speed v0, by making use of the
effective interaction law computed above, σhs(uls(x), v0), where
uls(x) is the local interface separation in the BEM contact
geometry. The VHS-based model provides the contact
pressure σ ls(x) and the interface separation uls(x). The total
viscoelastic friction force FT can thus be calculated as follows

FT ≈ ∫
A0,ls

d2x σ ls x( ) zzls
zx

+ Δτhs uls x( ), v0( )( ), (4)

where A0,ls is the nominal in-plane area of the low-slope scale,
leading to the total viscoelastic friction coefficient

μr � μls + μhs, (5)
with

μhs �
1

σ0A0,ls
∫
A0,ls

d2x Δτhs uls x( ), v0( ) (6)

μls �
1

σ0A0,ls
∫
A0,ls

d2x σ ls x( ) zzls
zx

. (7)
The total projected contact area, from which the adhesive
contribution to friction can be calculated, is

Ac � ∫
A0,ls

d2x H σ ls x( )( )αhs uls x( )( ). (8)

2.2 Surface Roughness Partitioning
It is well established that most surfaces show roughness over a
broad range of wavelengths (Persson, 2006), with few exceptions
belonging to nature-optimized surfaces (showing few-scale
hierarchical topography arrangement). A typical example are
asphalt or concrete road surfaces, which are rough over many
length scales and exhibit fractality (Klüppel and Heinrich, 2000;
Persson, 2001). The characterization of roughness for contact
mechanics applications involves the adoption of at least two-
scales profilometry, e.g. with atomic force microscopy and white
light interferometry to cover the full range of roughness
wavelengths. Once the roughness data are available, the
statistics are fully contained in the surface power spectral
density (PSD) in case of Gaussian roughness (Persson, 2006).
An equivalent alternative to the PSD is the height distance
correlation (HDC) function Rzz(λ), introduced by Heinrich
and Klüppel (Klüppel and Heinrich, 2000). Assuming a
homogeneous roughness 〈zr(x)〉, the HDC is

Rzz λ( ) � 〈 zr x + λ( ) − zr x( )( )2〉
� 2 z2rms − R λ( )( ), (9)

where〈〉 denotes the ensemble average, andwhere the autocorrelation
(AC) function R(λ)(for homogeneous roughness) is given by

R λ( ) � 〈zr x + λ( )zr x( )〉. (10)
The PSD C(q) is given by the Fourier transform of the AC

C q( ) � 2π( )−2 ∫ d2λ R λ( )e−iq·λ. (11)
The simplest procedure to calculate the PSD is from the Fourier
transform of the surface roughness zr(q); in particular we observe
that

〈zr q′( )zr q′′( )〉 � 2π( )−4 ∫∫ d2xd2y 〈zr x( )zr y( )〉eiq′·xeiq′′ ·y
� C q′( )δ q′ + q′′( ).

(12)
The Fourier transform Czz(q) of the HDC function can be easily
linked to the Fourier transform C(q) of the AC function with

Czz q( ) � 2 z2rmsδ q( ) − C q( )( ). (13)
We now approximate the measured surface by a finite number

of sinusoidal waves, following the approach suggested by Reinelt
and Wriggers (Wriggers and Reinelt, 1996) and adopted by other
researchers (Falk et al., 2016). For simplicity, we focus on a two-
dimensional surface roughness, however, the approach can be
equally applied to the more general case of three-dimensional
roughness. In particular, the single sine wave function
(characterized by amplitude Δ and generic wavelength 2π/q),
has the following HDC function

Rzz λ( ) � q

2π
∫

2π/q

0

dx Δ sin q x + λ( )( ) − Δ sin qx( )[ ]2

� 2Δ2 sin2 qλ

2
( ), (14)

which we write in the following more convenient form

Rzz λ> 0( ) � 2Δ2 sin2 qλ

2
( ), λ≤ π/q

2Δ2, elsewhere

⎧⎪⎪⎨⎪⎪⎩ . (15)

We note that the slope in the double logarithmic diagram of
Rzz(λ ≈ 0) is 2 for any wavelength, whereas road profiles usually
have slopes in range of 2.1–2.5 (Schramm, 2003). Thus, as
expected, multiple sine waves with different amplitudes and
wavelengths must be superimposed in order to reproduce the
power law behaviour of real rough surface HDCs. The root mean
square slope is defined as

m2 �
���������
〈∇zr · ∇zr〉

√
, (16)

which for the sinus specializes to m2(q) � qΔ/
�
2

√
.

Finally, the measured track is approximated by a sum over a
discrete number M of wavelengths

zr x( ) � ∑M
i�1

Δi · sin qix + ϕi( ), (17)

with a uniformly distributed random shift angle ϕi, and qi = 2i · q0,
where the periodicity length is 2π/q0.
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2.3 Low-Slope Scale Contact Model
The low-slope scale contact model is based on the adoption of the
VHS assumption. The interaction occurs between a rigid rough
surface (zls) and a smooth VHS, in relative steady sliding. This
contact model has been first reported in (Persson and Scaraggi,
2014), and is summarized in the following with the addition of the
interface contact law contribution coming from the high-slope
scale roughness.

In Figure 3 we show the schematic of the low-slope scale
contact interface. The local interface separation, corresponding to
the local distance between the mating surfaces, measured in a
reference moving with the rigid rough substrate, is

uls x( ) � �u + w x( ) − zls x( ), (18)
where �u is the average interface separation, w(x) the surface
viscoelastic normal displacement, and zls(x) is the low-slope
surface roughness, with 〈w(x)〉 � 〈zls(x)〉 � 0. We define the
following Fourier transforms (q is the transformed variable of x)

w q( ) � 2π( )−2 ∫ d2x w x( )e−iq·x (19)
and

σ ls q( ) � 2π( )−2 ∫ d2x σ ls x( )e−iq·x, (20)

where σ ls(x) is the distribution of contact pressures
(σ0 � 〈σ ls(x)〉 is the average contact pressure). Following the
discussion reported in (Persson and Scaraggi, 2014), w(x) can
be related to σ ls(x) through a simple equation in the Fourier
space

w q( ) � Mzz q( ) σ ls q( ), (21)
whereMzz(q) is the surface response of the VHS in the frequency
domain

Mzz q,ω( ) � 2

q
∣∣∣∣ ∣∣∣∣Er ω( ). (22)

Here, Er(ω) is the frequency-dependent complex reduced
Young’s modulus, given by

Er ω( ) � E ω( )
1 − ]2( ), (23)

with ] as the Poisson’s ratio. The Poisson’s ratio undergoes only a
minor variation with frequency and thus can be assumed to be
constant (Persson, 2001). The linear viscoelastic modulus E(ω)
can be measured using standard techniques, and its real and
imaginary part are typically fitted by a generalizedMaxwell model
(Lorenz et al., 2014; Scaraggi and Persson, 2015). The relation
between separation uls(x) and interaction pressure σls(x) within
the Derjaguin’s approximation (Derjaguin, 1934) can be written
in terms of a generic interaction law (Persson and Scaraggi, 2014)

σ � f u( ). (24)
Derjaguin’s approach allows to describe the force acting between
close elementary portions of interacting surfaces in terms of the
force per unit area acting between two planar semi-infinite walls.
This approximation is typically adopted when i) the solids are
separated by a distance that is much smaller than the local radius
of curvature of the surfaces, and ii) the interaction decays
sufficiently rapidly with distance, so that interactions between
far enough elementary surface portions are negligible.

In this work we integrate the repulsive term of the Lennard-
Jones potential to obtain the traction due to the adhesionless
interaction in (24), whereas the repulsive contribution coming
from the high-slope scale is taken into account by adding to the
integrated Lennard-Jones the high-slope scale traction σhs(�u),
calculated as described in the following.

2.4 High-Slope Scale Contact Model
The kinematically non-linear model considers a deformable body
undergoing adhesionless and frictionless contact with a
superposition of rigid sinusoidal surfaces. The generic
sinusoidal surface is supposed to represent one of the high-
slope wavelengths belonging to the roughness spectrum of the
surface. In order to compute the effective interface properties, a
micromechanical numerical test is conducted, see Figure 4 (for
simplicity we show only one wavelength). Because of the periodic
geometry of the surface, the width of the rubber slab is taken equal
to the largest wavelength of the sinusoidal spectrum; the
specimen is considered as a periodic cell extracted from a long
boundary layer. The specimen must have sufficient height in
order to incorporate the mostly stressed material region, so that
the whole amount of energy dissipation taking place at the micro-
level is accounted for. In (De Lorenzis and Wriggers, 2013), a
ratio H/L0 = 0.75 was found sufficient for all analyzed dragging
velocities. Thus, this ratio is also adopted in this work. From the
numerical standpoint, a sufficiently fine mesh must be used in
order to achieve a satisfactory resolution of the contact area and
hence an accurate estimation of the contact stresses. Again
exploiting results in (De Lorenzis and Wriggers, 2013), we
adopt a discretization with 120 × 90 elements. At the
beginning, the specimen is pressed onto the sinusoidal surface
with a predetermined normal pressure of absolute value �p, which
stays constant during the sliding process. Then, the upper side of
the specimen is moved horizontally with a specified constant
velocity �v. Since the specimen is considered as a periodic cell,

FIGURE 3 | Schematic of the generic cross section of the contact
geometry, used to derive Eq. 18.
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periodic boundary conditions are applied on its lateral surfaces.
The finite linear model for viscoelasticity proposed by Reese and
Govindjee (1998) is used. The model is able to capture the large
deformations arising in the contact zone of the rubber sliding
over a rough surface. The model is still “linear”with respect to the
evolution equation (Lion, 1997a; Lion, 1997b), i.e. it assumes
small deviations from thermodynamic equilibrium. Full details
can be retrieved in (Lion, 1997a) or (Reese and Govindjee, 1998),
see also (De Lorenzis and Wriggers, 2013). In order to extract a
single value for the macroscopic friction coefficient from each
micromechanical test, time averaging is applied (Wriggers and
Reinelt, 1996; De Lorenzis and Wriggers, 2013; Wagner et al.,
2015).

3 NUMERICAL VALIDATION OF THE
HYBRID MULTISCALE APPROACH

In this section, we aim at verifying the proposed hybrid multiscale
method on an artificial surface zr(x) consisting in the
superposition of three sinusoidal waves

zr x( ) � zhs x( ) + zls x( ), (25)
where the high-slope part zhs(x) has m2 > 1

zhs x( ) � 0.01867 sin
2π

0.0625
x (26)

(lengths in mm), and where the low-slope part zls(x) includes the
length scales with m2 < 1

zls x( ) � 0.02648 sin
2π

0.125
x + 0.02939 sin

2π
0.25

x (27)

(lengths in mm). To describe the viscoelastic material response, a
generalized Maxwell model with six relaxation times within the
finite deformation formulation by (Reese and Govindjee, 1998) is
used in this work, with the material parameters in Table 1.

In order to verify the accuracy of the hybrid multiscale
approach, calculations on the artificial (full) surface using the
kinematically non-linear model (resolving all three scales of the

roughness) and the proposed hybrid multiscale method are
compared. To do so, five different realizations of the artificial
surface are taken into account by assuming the phase angle
between the superimposed sine functions as a random variable with
uniform distribution between 0 and 2π. In the limiting case of a large
number of roughness wavelengths, a uniform phase distribution
determines the resulting roughness height (random variable) to be
Gaussian. The friction coefficient is then averaged over the realizations.

Figure 5 shows a comparison between all investigated
approaches, i.e. the VHS-based model, the kinematically non-
linear model that is used as a benchmark, and the hybrid
multiscale approach, for two velocities belonging to the
rubbery region and to the maximum dissipation region
(Figure 5A,B, respectively). The comparison is done in terms
of friction coefficient as a function of the normalized contact area.
The results show a small deviation between the kinematically
non-linear method and the hybrid multiscale approach. The
average relative error in the friction coefficient can be
estimated as follows for the hybrid multiscale method:

e %[ ] � 1
K

∑K
k�1

μFEM,k − μH,k

∣∣∣∣ ∣∣∣∣
μFEM,k

p 100, (28)

where K is the number of considered values, ranging from a
normalized contact area of 0.01–0.1 with a step size of 0.01. μFEM,k

and μH,k are the friction coefficients calculated using the
kinematically non-linear model and the hybrid multiscale method,
respectively. The average relative error calculated from Equation 28 is

FIGURE 4 | Micromechanical testing scheme.

TABLE 1 | Adopted constitutive parameters of a styrene-butadiene rubber (SBR)
material (Wriggers and Reinelt, 1996).

Element E [N/mm2] τ [s]

EQ 4.17 —

MW1 1.72 1.134e-02
MW2 7.36 2.628e-04
MW3 70.98 1.316e-05
MW4 505.87 1.295e-06
MW5 1,125.85 7.708e-08
MW6 1,185.94 4.200e-10
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2.9% for a velocity of 10mm/s and 7.1% for a velocity of 50mm/s. At
relatively small values of contact area, the deviation between the fully
non-linear and the hybridmultiscale approaches is relatively large, and
the hybrid multiscale approach underestimates the friction coefficient
evenmore than theVHS-basedmodel. This can be justified by the fact
that the hybrid multiscale approach depends strongly on the contact
pressure distribution to calculate the friction coefficient, and at small
values of contact areas the number of contact patches is typically
limited by the finite size effect. Thus the numerical simulations are
unable to provide enough statistical content in terms of contact
patches, which results in poor contact pressure statistics. When the
contact area increases, the difference between the approaches
decreases and the agreement between the results in terms of the
rolling friction coefficient is remarkably good. This comparison
confirms that the hybrid multiscale approach delivers very accurate
predictions of the friction coefficient, except for the regime of low
contact areas where inaccurate contact pressure statistics are obtained.

4 APPLICATION TO RANDOMLY ROUGH
SURFACES

4.1 Adopted Roughness
A confocal optical profilometer is used in this work to measure
the surface roughness of asphalt specimens. In order to obtain
representative data, 30 line scans in different regions of the

specimen are performed using the optical profilometer in
different directions. Each line scan has a measurement length
of 16 mm that is consistent with the typical grain size of asphalt.
The lateral resolution of the profilometer (0.05 mm) gives an
acceptable degree of accuracy (within the purpose of this work).
The lower cut-off is selected as 0.0625 mm. The upper cut-off is
selected as the typical largest grain size of asphalt, and ranges
between 5 and 20 mm. The asphalt mixture is AC-8, the
measurement speed is 0.1 mm/s.

The superposed sinusoidal functions are fitted to the averaged
measured surface based on their HDC functions, using the least
square algorithm on a double logarithmic scale, which identifies
the amplitudes Δi and the spatial frequencies qi such that

∑N
j�1

∑M
i�1

log 2Δ2
i sin

2 qiλj
2

( )( ) − log Rzz λj( )( )⎛⎝ ⎞⎠2⎛⎝ ⎞⎠
1
2

→ min λj ≤
π

qi
(29)

∑N
j�1

∑M
i�1

log 2Δ2
i( ) − log Rzz λj( )( )⎛⎝ ⎞⎠2⎛⎝ ⎞⎠

1
2

→ min λj >
π

qi
, (30)

whereN is the number of discrete sample points where the profile
height is measured, and M is the number of superposed sine
waves (each with its amplitude and wavelength) in the
approximation. The approximation is carried out with
different values of M. The slopes of the measured HDC and of
the HDC approximated by more than eight sine waves and their
cut-off-lengths were found to be identical. The HDC functions of
the sine waves and of their superposition are depicted in Figure 6,
where the red curve denotes the averaged measured asphalt road
track. The agreement is very good. Table 2 lists the wavelengths
and amplitudes of the 8 waves along with the corresponding root
mean square slopes. It is important to note that only one scale has
a root mean square slope larger than 1.

4.2 Intermediate Computations at the
High-Slope Scale
As follows, we illustrate the results obtained for the smallest scale
of the approximated rough surface. These results are obtained
applying the kinematically non-linear model of Section 2.4 (and
by comparison the VHS-based model of Section 2.3 to a contact

FIGURE 5 | Friction coefficient as a function of the normalized contact
area for a surface roughness resulting from the superposition of three
sinusoidal waves at a velocity of (A) 10 [mm/s], and (B) 50 [mm/s].

FIGURE 6 | HDC function of asphalt road surface, approximated by the
superposition of 8 sinusoidal waves.
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problem with a sinusoidal surface with a wavelength of
0.0625 mm and an amplitude of 0.01867 mm. The root mean
square slope roughness is 1.3275, see Table 2.

Figure 7A shows the obtained rolling friction coefficient as a
function of the applied pressure for a sliding velocity of 10 mm/s
belonging to the rubbery region. For small applied pressures, the
VHS-based model only slightly underestimates the friction
coefficient compared to the kinematically non-linear model.
This can be justified by the fact that at very small applied
pressures, the contact occurs only at the top of the asperity, so
the geometric non-linearity can be neglected. A decreasing
friction coefficient for high pressure values is observed for
both approaches. One can note that for applied pressures
larger than 2 MPa, the difference between the approaches
becomes larger, as the deformation regime induced by large
root mean square slope roughness significantly deviates from
the small displacement assumption and thus the effect of the
kinematic non-linearity comes into play. Figure 7B gives the

same curve for a sliding velocity of 50 mm/s belonging to the
maximum dissipation region. Similar trends as in Figure 7A are
observed, with a higher maximum friction value. The deviation
between the kinematically non-linear and the linear VHS-based
approaches is very large in this case. These results are in
agreement with the observations in (Scaraggi et al., 2016).

4.3 Results From the Hybrid Multiscale
Approach
The friction coefficient at small-slope scales (wavelength 2–8)
from Table 2 is now calculated using the repulsive law deduced
from the high-slope scale, which is shown in Figure 2. Figure 8
illustrates examples of the contact pressure field as a function of
the dimensionless contact position for one realization of the
rough surface, with dragging velocities of 10 mm/s and
50 mm/s, respectively. It should be noted that according to
these contact pressures, the corresponding friction coefficients
at the contact points are approximated using the results of the
friction coefficients at the smallest scale, which are shown in
Figures 7A,B.

Figure 9 illustrates the friction coefficient predicted using the
VHS-based model and the hybrid multiscale approach, for two
different velocities belonging to the rubbery and the maximum
dissipation regions. The discrepancy in the friction coefficient is
consistent with the results in Figure 7. For a low dragging velocity
of 10 mm/s, the difference between the VHS-based prediction
and the results of the hybrid multiscale approach is relatively
small. This can be justified by the fact that for low sliding

TABLE 2 | Surface approximation for the asphalt specimen using 8 sine waves.

Scale Wavelength [mm] Amplitude [mm] m2

1 0.0625 0.01867 1.3275
2 0.125 0.02648 0.9403
3 0.25 0.02939 0.5223
4 0.5 0.06626 0.5888
5 1 0.06177 0.2744
6 2 0.21635 0.4806
7 4 0.14772 0.1641
8 8 0.48995 0.2721

FIGURE 7 | Friction coefficient as a function of the applied pressure for
the high-slope wavelength, at a velocity of (A) 10 [mm/s], (B) 50 [mm/s].

FIGURE 8 | Contact pressure distribution resulting from the repulsive
law as a function of the dimensioness contact position for a sliding velocity of
(A) 10 [mm/s], (B) 50 [mm/s].

Frontiers in Mechanical Engineering | www.frontiersin.org February 2022 | Volume 8 | Article 8146078

Al-Qudsi et al. Hybrid Multiscale Rubber Contact Mechanics

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


velocities, the local contact pressures are more evenly distributed
and they are small, see Figure 8A. Moreover, for small pressures,
the results of the kinematically non-linear model and of the VHS-
based model are comparable, see Figure 7A. However, for a
dragging velocity of 50 mm/s, the difference is large, which can be
ascribed to the irregular distribution of the contact pressures at
larger dragging velocities and to the resulting large contact
pressures, see Figure 8B. The effect of the non-linearity is
remarkable, see Figure 7B. From comparison of the results in
Figure 5 to those in Figure 9, one can note that in the VHS the
smallest wavelengths of the roughness, ranging from 0.0625 to
0.25 mm, give the largest contribution to the friction coefficient,
which seems unrealistic.

5 CONCLUSION

This paper proposes a hybrid multiscale method for the
prediction of rubber contact mechanics on rough surfaces. The
idea of a hybrid multiscale approach stems from the observation
(Scaraggi et al., 2016; Al-Qudsi, 2020) that linear models based on
the viscoelastic half-space theory are able to predict the friction
coefficient by accounting for all length scales of surface
roughness with a low computational cost, however they are
only accurate for low (less than 1) root mean square slope
values; on the other hand, kinematically non-linear models are
accurate also for large (large than 1) root mean square slopes,
but cannot consider all length scales of roughness due to
prohibitive computational cost.

The hybrid multiscale approach treats the low-slope scales
with the VHS-based model and the limited number of high-slope
scales with the kinematically non-linear model. The contact
mechanics at the high-slope scales, predicted using the
kinematically non-linear model, is transferred to the low-slope
scales as a local repulsive law between the applied pressure and
the average separation. This repulsive law controls the
deformation behavior of the rubber according to the pressure.
Depending on the local contact pressures resulting from the local
repulsive law, the friction coefficient is calculated. Based on the
obtained numerical results, the hybrid multiscale approach is
shown to be a suitable tool to predict the friction coefficient with a
degree of accuracy similar to that of the fully non-linear model, at
a computational cost only marginally larger than that of the
viscoelastic half-space model.

In future work, the accuracy of the approach in
representative test cases should be validated through
comparison with experimental results. The numerical
investigation in this paper is restricted to a limited number
of roughness wavelengths. In typical applications, such as tire
tread vs road contact, the roughness involves several decades of
length scales, whose computation is very cumbersome even
with the VHS-based approach. Such cases can be handled with
mean field models (Klüppel and Heinrich, 2000; Persson, 2001;
Le Gal and Klüppel, 2007), which however have the same
limitations as the VHS-based model in terms of linear
kinematics and linear rheology. An approach similar to the
hybrid multiscale approach developed in this work could help
to enrich mean field contact models as well, and enable them to
approach the accuracy of a fully non-linear model while
handling surfaces with roughness ranging over several
decades of wavelengths.
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