This article is devoted to investigate the stability of different types of Single Walled Carbon Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler elastic foundations exposing to both the low and high temperature environments. Also, the Surface effects which include surface energy and surface residual stresses, are taken into consideration in this study. It may be noted that the surface energy aids in the increase of the flexural rigidity whereas the surface residual stresses act as distributed transverse load. Further, the proposed model is developed by considering a novel refined beam theory namely one variable first order shear deformation beam theory along with the Hamilton’s principle. Navier’s method has been implemented to find out the critical buckling loads for Hinged-Hinged (H-H) boundary condition for zigzag, chiral, and armchair types of SWCNTs. A parametric study is also conducted to report the influence of various scaling parameters like small scale parameters, change in temperature, Winkler stiffness, and length to diameter ratio on critical buckling loads. Also, the present model is validated by comparing the results with other published work.

Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory

Tornabene F.
2021-01-01

Abstract

This article is devoted to investigate the stability of different types of Single Walled Carbon Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler elastic foundations exposing to both the low and high temperature environments. Also, the Surface effects which include surface energy and surface residual stresses, are taken into consideration in this study. It may be noted that the surface energy aids in the increase of the flexural rigidity whereas the surface residual stresses act as distributed transverse load. Further, the proposed model is developed by considering a novel refined beam theory namely one variable first order shear deformation beam theory along with the Hamilton’s principle. Navier’s method has been implemented to find out the critical buckling loads for Hinged-Hinged (H-H) boundary condition for zigzag, chiral, and armchair types of SWCNTs. A parametric study is also conducted to report the influence of various scaling parameters like small scale parameters, change in temperature, Winkler stiffness, and length to diameter ratio on critical buckling loads. Also, the present model is validated by comparing the results with other published work.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/455560
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 50
social impact