In the last few years, several studies have been carried out on concentrating solar thermal and thermochemical applications. These studies can be further enhanced by means of high-flux solar simulators (HFSS), since they allow the development of experimental tests under controlled irradiance conditions, regardless of sunshine. In this work, a new high-flux solar simulator, capable of reaching levels of irradiance higher than 100 W/cm2 (1000 suns), has been designed, built and characterized. This simulator is composed of 8 ellipsoidal specular reflectors, arranged face-down on a horizontal plane, in order to irradiate from the upper side any system requiring the simulation of concentrated solar radiation; differently from the HFSSs described in the scientific literature, this configuration allows the avoidance of any distortion of fluid-dynamic or convective phenomena within the system under investigation. As a first step, a numerical analysis of the HFSS has been carried out, simulating each real light source (Xe-arc), having a length of 6.5 mm, as a line of 5 sub-sources. Therefore, the HFSS has been built and characterized, measuring a maximum irradiance of 120 W/cm2 and a maximum temperature of 1007 °C; these values will be enough to develop experimental tests on lab-scale thermal and thermochemical solar applications.

Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications

Milanese, Marco
;
Colangelo, Gianpiero;de Risi, Arturo
2021-01-01

Abstract

In the last few years, several studies have been carried out on concentrating solar thermal and thermochemical applications. These studies can be further enhanced by means of high-flux solar simulators (HFSS), since they allow the development of experimental tests under controlled irradiance conditions, regardless of sunshine. In this work, a new high-flux solar simulator, capable of reaching levels of irradiance higher than 100 W/cm2 (1000 suns), has been designed, built and characterized. This simulator is composed of 8 ellipsoidal specular reflectors, arranged face-down on a horizontal plane, in order to irradiate from the upper side any system requiring the simulation of concentrated solar radiation; differently from the HFSSs described in the scientific literature, this configuration allows the avoidance of any distortion of fluid-dynamic or convective phenomena within the system under investigation. As a first step, a numerical analysis of the HFSS has been carried out, simulating each real light source (Xe-arc), having a length of 6.5 mm, as a line of 5 sub-sources. Therefore, the HFSS has been built and characterized, measuring a maximum irradiance of 120 W/cm2 and a maximum temperature of 1007 °C; these values will be enough to develop experimental tests on lab-scale thermal and thermochemical solar applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/453603
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact