In this work, the possibility of directly prototyping antennas by exploiting additive manufacturing 3D-printing technology is investigated. In particular, the availability of printable filaments with interesting conductive properties allows for printing of even the antenna conductive elements. Three samples of a 2.45 GHz microstrip patch antenna have been 3D-printed by using different approaches and materials, and their performance evaluated and compared. In particular, the same dielectric substrate printed in polylactic acid (PLA) has been adopted in all cases, whilst copper tape and two different conductive filaments have been used to realize the conductive parts of the three antenna samples, respectively. Even if an expected radiation efficiency reduction has been observed for the conductive filament case, the comparative analysis clearly demonstrates that 3D-printing technology can be exploited to design working fully-printed antennas, including the conductive parts.

Electromagnetic Analysis and Performance Comparison of Fully 3D-printed Antennas

Colella R.
Membro del Collaboration Group
;
Chietera F.
Membro del Collaboration Group
;
Catarinucci L.
Membro del Collaboration Group
;
2019-01-01

Abstract

In this work, the possibility of directly prototyping antennas by exploiting additive manufacturing 3D-printing technology is investigated. In particular, the availability of printable filaments with interesting conductive properties allows for printing of even the antenna conductive elements. Three samples of a 2.45 GHz microstrip patch antenna have been 3D-printed by using different approaches and materials, and their performance evaluated and compared. In particular, the same dielectric substrate printed in polylactic acid (PLA) has been adopted in all cases, whilst copper tape and two different conductive filaments have been used to realize the conductive parts of the three antenna samples, respectively. Even if an expected radiation efficiency reduction has been observed for the conductive filament case, the comparative analysis clearly demonstrates that 3D-printing technology can be exploited to design working fully-printed antennas, including the conductive parts.
2019
978-1-7281-3403-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/441711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact