Harbours are essential infrastructures for economic activity that are susceptible to impacts from climate change driven processes, like sea level rise (SLR), or alterations in wave patterns. In this paper, the impact of climate change on wave agitation in ports (oscillations due to wind waves) and, therefore, on port operability is analyzed. This is carried out through a numerical model suite, considering the RCP8.5 scenario to project changes in wave fields, and three values of SLR. The study is particularized for the port of Barcelona (NW Mediterranean), but the used methodology can be applied to other harbours. Results suggest that changes due only to waves will be minimal and with a general trend to slightly decrease wave agitation. On the contrary, the effect of SLR and the associated increase of water depth will favor the penetration of waves within the harbour, leading to a certain reduction of port operability, the magnitude of which will depend on the SLR value. However, the complexity of wave patterns within the harbours, due to multiple reflections of waves on port structures, implies that the reduction of operability strongly varies according to the position and orientation of the berthing zones inside the

Modelling the impact of climate change on harbour operability: The Barcelona port case study

LIONELLO, Piero;MARZO, Luigi
2017-01-01

Abstract

Harbours are essential infrastructures for economic activity that are susceptible to impacts from climate change driven processes, like sea level rise (SLR), or alterations in wave patterns. In this paper, the impact of climate change on wave agitation in ports (oscillations due to wind waves) and, therefore, on port operability is analyzed. This is carried out through a numerical model suite, considering the RCP8.5 scenario to project changes in wave fields, and three values of SLR. The study is particularized for the port of Barcelona (NW Mediterranean), but the used methodology can be applied to other harbours. Results suggest that changes due only to waves will be minimal and with a general trend to slightly decrease wave agitation. On the contrary, the effect of SLR and the associated increase of water depth will favor the penetration of waves within the harbour, leading to a certain reduction of port operability, the magnitude of which will depend on the SLR value. However, the complexity of wave patterns within the harbours, due to multiple reflections of waves on port structures, implies that the reduction of operability strongly varies according to the position and orientation of the berthing zones inside the
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/417382
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact