This manuscript deals with a novel approach aimed at identifying multiple damaged sites in structural components through finite frequency changes. Natural frequencies, meant as a privileged set of modal data, are adopted along with a numerical model of the system. The adoption of finite changes efficiently allows challenging characteristic problems encountered in damage detection techniques such as unexpected comparison of possible shifted modes and the significance of modal data changes very often affected by experimental/environmental noise. The new procedure extends MDLAC and exploits parallel computing on modern multicore processors. Smart filters, aimed at reducing the potential damaged sites, are implemented in order to reduce the computational effort. Several use cases are presented in order to illustrate the potentiality of the new damage detection procedure.

Parallel damage detection through finite frequency changes on multicore processors

MESSINA, Arcangelo;CAFARO, Massimo
2017-01-01

Abstract

This manuscript deals with a novel approach aimed at identifying multiple damaged sites in structural components through finite frequency changes. Natural frequencies, meant as a privileged set of modal data, are adopted along with a numerical model of the system. The adoption of finite changes efficiently allows challenging characteristic problems encountered in damage detection techniques such as unexpected comparison of possible shifted modes and the significance of modal data changes very often affected by experimental/environmental noise. The new procedure extends MDLAC and exploits parallel computing on modern multicore processors. Smart filters, aimed at reducing the potential damaged sites, are implemented in order to reduce the computational effort. Several use cases are presented in order to illustrate the potentiality of the new damage detection procedure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/413211
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact