An open reading flame encoding a putative acylphosphatase was found in Drosophila melanogaster. The corresponding gene product shows 40% identity and 22 additional amino acid residues at the C-terminus as compared to muscle- and common-type human acylphosphatases. Moreover, all the residues involved in the catalytic mechanism of vertebrate enzymes are conserved in the D. melanogaster acylphosphatase. The D. melanogaster protein and a deletion mutant, similar in length to vertebrate acylphosphatases, were produced by cloning the corresponding cDNA in Escherichia coli. The wild-type enzyme is a protein with a well-established three-dimensional fold and a markedly reduced conformational stability as compared to vertebrate isoenzymes. The specific activity of the enzyme is significantly lower than that found in vertebrate enzymes though the substrate binding capability is basically unaltered. The deletion of 22 residues does not cause a significant change in k~t, while affecting the apparent binding parameters. This work suggests that the genes encoding the vertebrate enzymes originate from an ancestor gene by duplication and subsequent evolution.

Drosophila melanogaster acylphosphatase: a common ancestor for acylphosphatase isoenzymes of vertebrate species

BOZZETTI, Maria Giuseppina;
1998-01-01

Abstract

An open reading flame encoding a putative acylphosphatase was found in Drosophila melanogaster. The corresponding gene product shows 40% identity and 22 additional amino acid residues at the C-terminus as compared to muscle- and common-type human acylphosphatases. Moreover, all the residues involved in the catalytic mechanism of vertebrate enzymes are conserved in the D. melanogaster acylphosphatase. The D. melanogaster protein and a deletion mutant, similar in length to vertebrate acylphosphatases, were produced by cloning the corresponding cDNA in Escherichia coli. The wild-type enzyme is a protein with a well-established three-dimensional fold and a markedly reduced conformational stability as compared to vertebrate isoenzymes. The specific activity of the enzyme is significantly lower than that found in vertebrate enzymes though the substrate binding capability is basically unaltered. The deletion of 22 residues does not cause a significant change in k~t, while affecting the apparent binding parameters. This work suggests that the genes encoding the vertebrate enzymes originate from an ancestor gene by duplication and subsequent evolution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/104426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact