In this work the possibility of using hydrogels as body water retainers for a therapeutic aid in pathologies such as oedemas of various origins was explored. For such a purpose, the material requires a good compatibility and a controlled swelling capacity without altering the body electrolyte homeostasis. The hydrogel was designed to meet the swelling requirements with the physiological constraints and its biocompatibility was assessed either in vitro or in vivo. Absorption tests were performed in order to define the swelling behavior by varying the pH and ion content of the external solution. The hydrogel swelling capacity was assessed in the presence of various solvents, in order to evaluate its absorption capacity in solutions similar to biological fluids. In addition, the capacity of the gel to modify electrolyte homeostasis by adsorbing ions such as calcium, potassium and sodium was tested. In order to assess the gel biocompatibility after contact of the hydrogel with intestinal cells, arachidonic acid relase was determined. No significant intracellular increase of free arachidonic acid was found in the cells after up to 2h of contact with the gel. The results suggest that, as far as brief periods are concerned, the gel does not cause an inflammatory response in intestinal cells.

Cellulose based hydrogels as body water retainers

SANNINO, Alessandro;
2000-01-01

Abstract

In this work the possibility of using hydrogels as body water retainers for a therapeutic aid in pathologies such as oedemas of various origins was explored. For such a purpose, the material requires a good compatibility and a controlled swelling capacity without altering the body electrolyte homeostasis. The hydrogel was designed to meet the swelling requirements with the physiological constraints and its biocompatibility was assessed either in vitro or in vivo. Absorption tests were performed in order to define the swelling behavior by varying the pH and ion content of the external solution. The hydrogel swelling capacity was assessed in the presence of various solvents, in order to evaluate its absorption capacity in solutions similar to biological fluids. In addition, the capacity of the gel to modify electrolyte homeostasis by adsorbing ions such as calcium, potassium and sodium was tested. In order to assess the gel biocompatibility after contact of the hydrogel with intestinal cells, arachidonic acid relase was determined. No significant intracellular increase of free arachidonic acid was found in the cells after up to 2h of contact with the gel. The results suggest that, as far as brief periods are concerned, the gel does not cause an inflammatory response in intestinal cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/101612
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact