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Abstract: Risk analysis in control problems is a critical but often overlooked issue in this research
area. The main goal of this analysis is to assess the reliability of designed controllers and their impact
on applied systems. The chaotic behavior of fractional-order economical systems has been extensively
investigated in previous studies, leading to advancements in such systems. However, this chaotic
behavior poses unpredictable risks to the economic system. This paper specifically investigates
the reliability and risk analysis of chaotic fractional-order systems synchronization. Furthermore,
we present a technique as a new mechanism to evaluate controller performance in the presence of
obvious effects. Through a series of simulation studies, the reliability and risk associated with the
proposed controllers are illustrated. Ultimately, we show that the suggested technique effectively
reduces the risks associated with designed controllers.

Keywords: reliability; risk; synchronization; fractional-order; economical system

1. Introduction

Reliability is defined as the ability of an item to start and continue a predefined process
under certain operating conditions, whereas risk refers to the potential loss that arises from
exposure to a hazard. As it is shown in [1–4], the risk value can be computed based on the
reliability value.

In engineering applications, specifically in control engineering, conducting a reliability
analysis of the controller is crucial for designing a reliable controller. For instance, in [5],
the second-order reliability method is proposed, which computes probabilistic reliability
measures to assess controlled structures. Additionally, a novel stability analysis based
on reliability is introduced for the controlled structures in [6]. The reliability analysis is
conducted for various system dynamics, including fractional-order systems [7]. It is worth
noting that the reliability analysis can also be performed for controller systems [8,9].

In addition to reliability analysis, risk analysis and management are two important
subjects with numerous applications in systems engineering [10–12]. The operational
risk of a controller for a system can be defined in various ways depending on its specific
application. In this paper, the risk of the controller is presented as a time-based function,
which is defined as the likelihood of failure in each time sequence, meaning that the
controlled system does not converge to the origin [13]. The risk analysis of the controller is
a crucial aspect in control systems design. However, it has not received as much attention
in engineering compared to other fields such as economics and management.

To address the reliability and risk analysis of economic systems, the first step is
to model such systems. Fractional order models have been successfully employed to
accurately represent economic systems, as demonstrated in [14–16]. Moreover, it has been
well-studied that certain economic systems exhibit chaotic behavior [17–21]. While these
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behaviors can be captured using integer-order models, empirical studies have indicated
that the observed dynamics in economic systems can be more accurately represented by
fractional-order models [22,23].

Economic models have traditionally employed classical systematic analyses. The signifi-
cance of business cycle synchronization between countries is now commonly utilized [24].

The results of synchronization are influenced by various conditions. Therefore, in
order to mitigate the negative effects in this field, it is necessary to find a way to identify
these influences. The objective of synchronizing two economic systems is to have the
second system, known as the slave system, behave similarly to the first system, referred to
as the master system. The synchronization of fractional-order chaotic systems is extensively
investigated in [25–29].

However, the main challenge of such studies is to handle the external disturbance.
To address this challenge, multiple methods are presented to synchronize fractional-order
chaotic systems in the presence of external disturbances [30,31]. Recently, these methods
gained attention in real-world applications. For instance, ref. [32] has demonstrated the
utilization of synchronization of fractional-order chaotic systems with disturbance for
speech-secure communication. Designing a robust controller that can perform well in
the presence of external disturbance is a complex problem. Additionally, these methods
are employed for system controllers to endure external disturbances [33,34]. All of these
methods rely on the state space model of the system, and identifying the accurate model of
the system is an important task that may not always be feasible.

In this paper, a new analytical method is proposed based on the risk analysis of the
controller system to assess its performance in the presence of external disturbances with
addressing the drawbacks of the existing methods. Additionally, we present a method
to reduce the effects of external disturbances and reduce the chance of controller failure,
resulting in a more reliable controller. Furthermore, we aim to propose a strategy to
minimize this risk. In order to reduce the risk of controllers in the presence of external
perturbations, controllers are optimized under stability conditions for fractional order
systems. Risk analysis has emerged as a new area of discussion in assessing the performance
of controllers. Various common factors can significantly influence the performance of
controllers in real-world applications [35,36]. The analysis of these controllers is primarily
grounded in the theoretical stability of the system. However, it is crucial to acknowledge
that in real-world applications, there are various additional factors that demand attention.
Mitigating the risk associated with a controller is a pivotal aspect to consider. To mitigate
the risk associated with controllers, various optimization algorithms can be employed,
such as those mentioned in [37,38]. Many of these algorithms draw inspiration from
nature. When selecting an optimization method for this particular problem, it is essential
to consider different parameters. Additionally, certain parts of the algorithm may need to
be revised to align with the specific optimization problem at hand. In our case, we utilize a
novel type of evolutionary algorithm known as the Biography-based Optimization (BBO)
algorithm [39]. This algorithm demonstrates superior performance compared to traditional
approaches. Furthermore, we have made modifications to this algorithm to achieve even
better results in our optimization process.

The main contributions of this paper can be listed as follows.

• A new method is proposed to compare the performance of different controllers.
• A new method is introduced to synchronize the fractional-order economic systems in the

presence of external disturbances without traditional mathematical analysis of a system.
• The reliability and risk of the proposed method are analyzed.
• A new method is used to reduce the risk of the designed controller.

The structure of this paper is organized as follows: Section 2 provides an introduc-
tion to the basic concept of fractional calculation. Section 3 presents the fractional-order
modeling of economic problems from a system engineering perspective. In Section 4, a
synchronization method for two economic systems is defined, and an appropriate controller
is designed. This section also takes into account the system’s response to external distur-
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bances. Section 5 offers a quantitative formulation of the suggested controller’s reliability
and risk analysis. Section 6 outlines two different optimization methods aimed at reducing
risks in the proposed controllers. Simulation results are presented in Section 7. Section 8
consists of a discussion about the obtained results. Finally, in Section 9, the paper concludes
by analyzing the simulation results.

2. Fractional Calculation

Fractional-order transformer functions describe systems with fractional orders. In
previous studies, the fractional-order operator has been defined in various ways. The
Caputo definition stands out as one of the most popular and useful definitions for fractional-
order operators [40]:

Dα f (t) =
1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ (1)

where, m is an integer number such that n− 1 < α < m, and Γ(.) is the Gamma function. For
the case that α = 1, this operator behaves like an ordinary first-order differential operator. In
the whole of this paper, we use this definition to describe the fractional-order operators.

Stabilityof Fractional Order Systems

Like any other system, stability analysis of fractional-order systems is an important
issue. The distinct properties of fractional-order systems, in comparison to integer systems,
indicate that their stability regions differ. Consider the following fractional-order system
with state variables x ∈ Rn, and orders α = [α1, α2, . . . , αi, . . . , αn]T , (0 < αi ≤ 1)

Dαx = f (x) (2)

We have the following stability conditions [41] :

(1) For a commensurate system, the stability region is defined as

|arg(λ)| > απ/2

(2) For an in-commensurate system, the stability region is

|arg(λ)| > π/2M

where, αi ∈ [0, 1]. Also, we consider

αi =
vi
ui

, rem(ui, vi) = 1

where ui, vi ∈ N, for i = 1, 2, ..., n and Mi is the minimum of common multiple of the
denominators ui of αis. Also, λis are the roots of

det(diag(M1, M2, ..., Mn)A) = 0.

3. System Description

Economic systems involve interactions between enterprise units and markets, con-
tributing to economic growth through commercial investments and demands. A dynamic
model of the economic system has been recently introduced, utilizing the following set of
ordinary differential equations [42,43].

ẋ = z + (y− a)x
ẏ = 1− by− x2

ż = −x− cz

(3)
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Three system states are used in this model to explain the fundamental components of an
economic system. Interest rates are shown by x, investor demand is shown by y, and prices
are shown by z.

Typically, changes in the interest rate can be attributed to two primary factors:

1 Deviations in the investment market, such as an imbalance where investments exceed savings.
2 Structural modification on beneficial conditions.

The rate of investment exhibits a direct correlation with the interest rate, while an
inverse relationship exists between the rate of investment and the interest rate. Additionally,
changes in the price index can be influenced by the imbalance between supply and demand
in commercial marketplaces, as well as fluctuations in inflation rates.

In the given dynamical model, the parameters a, b, and c are positive constants. Specif-
ically: The parameter a represents the amount of savings. The parameter b denotes the
per-investment cost. The parameter c represents the elasticity of demand for commer-
cials. These constants play crucial roles in determining the dynamics and behavior of the
economic system.

3.1. Factional-Order Economic System

The fractional version of the system can be expressed as follows [22]:
Dα1 x = z + (y− a)x
Dα2 y = 1− by− x2

Dα3 z = −x− cz

(4)

where α1, α2, α3 are fractional orders of systems. The system can be classified as commen-
surate or incommensurate based on these definitions: When α1 = α2 = α3, the system
is considered commensurate. If the fractional orders differ (α1 6= α2 6= α3), the system
is classified as incommensurate. It has been observed that the commensurate version of
the fractional-order economic system exhibits chaotic behavior when the fractional orders
satisfy αi > 0.85 (i = 1, 2, 3) [22]. Figure 1 shows the chaotic behavior of system (4) for
a = 1, b = 0.1, c = 1 and α1 = α2 = α3 = 0.9.
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Figure 1. Chaotic behavior of fractional-order economical system based on Equation (4).

3.2. Factional-Order Economic System in the Presence of Disturbance

Models serve as approximations of real-world systems, and it is common for external
disturbances to affect these systems. Therefore, in order to demonstrate the reliability and
risk of a controller, it is necessary to introduce uncertainty or disturbances into the system. A
modified version of the system (4), accounting for disturbances, can be expressed as follows:



Systems 2023, 11, 373 5 of 17


Dα1 x = z + (y− a)x + w1

Dα2 y = 1− by− x2 + w2

Dα3 z = −x− cz + w3

(5)

where w1, w2 , and w3 are disturbances.

4. Synchronization Method

Based on the characteristics of chaotic systems, even small deviations in initial condi-
tions can result in significantly divergent behaviors, emphasizing the criticality of synchro-
nization among these systems.

A synchronization model comprises two systems, known as the drive system and
the response system, with control signals applied to the response system. The mathe-
matical description of the synchronization error, which reflects the deviation between the
synchronized states of the two systems, can be represented as follows:

E(t) = Xr(t)− Xd(t) (6)

where the drive and response system states are represented by the variables Xd and Xr,
respectively, and E(t) is the synchronization error between them.

We consider a commensurate fractional-order economical System (4) as a set of drive
and response systems. Then, we can formulate our model as

Drivesystem :


Dαxd = zd + (yd − a)xd

Dαyd = 1− byd − x2
d

Dαzd = −xd − czd

(7)

Responsesystem :


Dαxr = zr + (yr − a)xr + u1

Dαyr = 1− byr − x2
r + u2

Dαzr = −xr − czr + u3

(8)

where u1, u2, and u3 are control inputs that will be determined later to ensure the conver-
gence of two responses and drive systems to each other to synchronize their states. By
using the definition of synchronization error as Equation (6), we have

Dαe1 = e3 − ae1 + yrxr − ydxd + u1

Dαe2 = −be2 − x2
r + x2

d + u2

Dαe3 = −e1− ce3 + u3

(9)

Using the active controller procedure [29], we can define controller inputs as
u1 = −yrxr + ydxd + k11e1 + k22e2 + k33e3

u2 = x2
r − x2

d + k21e1 + k22e2 + k23e3

u3 = e3 = k31e1 + k32e2 + k33e3

(10)

In Equation (10), kijs for i, j = 1, 2, 3 are the elements of matrix K, which are specified in
accordance with the stability requirements of fractional-order systems and are added to the
control signals. With these controllers, the errors of synchronization become

Dαe1 = (−a + k11)e1 + k22e2 + (k33 + 1)e3

Dαe2 = k21e1 + (−b + k22)e2 + k23e3

Dαe3 = (−1 + k31)e1 + k32e2 + (−c + k33)e3

(11)
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5. Utilizing Reliability and Risk in the Proposed Controller Analysis
5.1. Reliability

Here, we discuss the analysis of the reliability and risk of the designed controller.
Reliability refers to the probability that a component or system will continue to function as
intended and meet its operational requirements within a specified set of conditions for a
given period of time. It quantifies the ability of the component or system to perform its
intended function without failure or breakdown [2]. In the context of the synchronization
problem, reliability can be defined as a function that is influenced by the synchronization
error. The reliability function reaches its maximum value when synchronization is achieved,
indicating that the controller’s reliability is at its peak. In this case, the reliability of a
controller in synchronized states is equal to 1.

According to the defined range of reliability in the interval [0, 1], it is necessary to
normalize synchronization errors within this range to express reliability in terms of those
errors. The reliability of each controller can be written as:

Ri(t) = 1− êi(t) (12)

where êi denotes the normalized synchronization error of ith controller. Indeed, as indicated
by Equation (12), there is an inverse relationship between the reliability of a controller and
its synchronization error. When the synchronization errors are large, the reliability tends
to approach 0, implying that the controller’s performance is less reliable. Conversely, as
the synchronization errors approach zero, the reliability tends to approach 1, indicating a
higher degree of confidence in the controller’s effectiveness.

5.2. Risk

In the introduction, the term “risk” is defined as the potential for a process to fail
in delivering the desired outcomes [2]. Based on this definition, risk can be divided into
two components: the causes of failure and the costs associated with these failures. A
mathematical model of risk can be represented as follows:

Risk = FF ∗ CF (13)

where FF refers to the likelihood or probability of the process or system failing, and CF
represents the potential negative consequences or losses incurred as a result of the failure.
According to the given definition of risk in the context of a synchronization problem, the
failure factor of a controller can be identified as the synchronization error between the
systems being synchronized. The cost associated with this failure factor is related to the
control signals used in the synchronization process.

Riski(t) = êi(t) ∗
t∫

0

u2
i (τ)dτ (14)

Again êi denotes the normalized synchronization error of controller i. The risk of a controller
shows the performance of the controller in the time domain. According to relation (13), the
synchronized states lead to zero risk in a limited time.

5.3. Relation between Reliability and Risk

Equations (12) and (13) show that basically reliability and risk are related to each other
as shown by Equation (15).

Riski(t) = (1− Ri(t)) ∗
t f∫

0

u2
i (τ)dτ (15)
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This means that by increasing reliability, the risk decreases. But it must be noted that in
some problems, the cost part of the above equation ‘(u2

i )’ might have its own relation with
reliability, which leads to a complex relationship between reliability and risk in controllers.

6. Risk Reduction in the Proposed Controllers
Biography Based Optimization Algorithm

The biography-based optimization (BBO) algorithm is a novel optimization technique
inspired by the geographic distribution of biological organisms [39]. In the BBO algorithm,
information sharing among different solutions, referred to as islands or habitats, is facili-
tated through migration. The algorithm employs various parameters to control its behavior
and optimization process. These parameters include:

Suitability Index Variable (SIV): The SIV represents a variable used to evaluate the
suitability of a habitat or island for a particular solution. It quantifies the fitness or quality
of the solution within its respective habitat.

Habitat Suitability Index (HSI): The HSI indicates the overall suitability of a habitat or
island for hosting solutions. It is a measure of the habitat’s ability to support and promote
good solutions.

Immigration Rate (λ): The immigration rate determines the frequency or probability at
which solutions migrate from one habitat to another. It governs the movement of solutions
across different islands in the optimization process.

Emigration Rate (µ): The emigration rate determines the likelihood or rate at which
solutions leave a particular habitat. It controls the departure of solutions from one island to
migrate to other habitats.

More details about this algorithm and optimizing approach can be found in [39].
For the given problem, the coefficients of the controllers in Equation (11) are chosen as

habitats in the BBO algorithm. Furthermore, the cost function of the algorithm is selected
as follows:

f = mean(Risk1)
2 + mean(Risk2)

2 + mean(Risk3)
2 (16)

7. Results of Simulation

In this section, two examples are simulated to demonstrate different scenarios. In the
first case, a new fractional-order model for the financial crisis is introduced. The system
and controller in this case are specifically designed to account for external disturbances.
The aim is to analyze the behavior of the system under the influence of these disturbances
and evaluate the effectiveness of the controller in mitigating their impact. In the second
example, synchronization is achieved between two fractional-order economic systems. A
suitable controller is developed to facilitate synchronization between these systems. One of
the systems is subjected to an external disturbance, which further tests the robustness and
performance of the synchronization controller in the presence of disturbances.

7.1. Example 1

In this example, a new fractional-order version of the financial crisis model is consid-
ered, based on the model introduced by Korobeinikov [44]. The chosen fractional-order
financial crisis model can be expressed as follows:{

Dq1 X = −βXYα

Dq2Y = βXYα − 1
σ Y

(17)

In the considered model, the population is divided into two subpopulations: the healthy
subpopulation and the activated subpopulation. The size of the healthy subpopulation
is denoted by X(t), while the size of the activated subpopulation, specifically focused on
financial problems, is denoted by Y(t).
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Now we can consider external disturbances and control signals in this system as follows.{
Dq1 X = −βXYα + d1(t) + u1(t)
Dq2Y = βXYα − 1

σ Y + d2(t) + u2(t)
(18)

where d1 and d2 are external disturbances. u1 and u2 are control signals. Parameters of this
model are selected as α = 1.92, β = 8.25, σ = 500. Also, fractional orders are selected as
q1 = q2 = 1.55. The results of controller risk for this case can be shown in Figure 2.
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Figure 2. Risk of the second controller in the financial crisis model.

Based on the results obtained, it is evident that the mean risk of the designed controller
is higher when external disturbances are considered. The calculated mean risk of 1.72 for the
controller with external disturbances is greater than the mean risk of 1.38 for the controller
without external disturbances. This finding suggests that the presence of external disturbances
increases the overall risk associated with the performance of the designed controller.

7.2. Example 2

In the given scenario, a fractional-order economical system represented by Equation (7)
is selected as the master system, while the fractional-order economical system represented
by Equation (8) is chosen as the slave system. The parameters for both the master and
slave systems are defined as a = 1, b = 0.1, and c = 1. Additionally, both systems are
characterized as chaotic systems with an order of 0.9.

Based on these system specifications, the synchronization errors can be calculated as follows:
Dαe1 = e3 − e1 + yrxr − ydxd + u1

Dαe2 = −0.1e2 − x2
r + x2

d + u2

Dαe3 = −e1− e3 + u3

(19)

Also, the controller signals are
u1 = −yrxr + ydxd + k11e1 + k22e2 + k33e3

u2 = x2
r − x2

d + k21e1 + k22e2 + k23e3

u3 = e3 = k31e1 + k32e2 + k33e3

(20)
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Initial conditions for the drive system are chosen as (xd(0), yd(0), zd(0)) = (2, 3, 5) and
for the response system as (xr(0), yr(0), zr(0)) = (−9,−5, 14). The simulation time of the
system is selected as 20 s. According to the proposed method, a control coefficient matrix

K =

0 0 0
0 −1 0
1 0 −1


leads to the stable synchronization errors with roots on (−1,−1.1,−2). The synchronization
errors and control inputs are shown in Figure 3 and Figure 4, respectively.
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Figure 3. The synchronization errors of fractional-order economical systems.
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Figure 4. The control signals in synchronization of fractional-order economical systems.

Figure 5 also shows how reliable designed controllers can be. Finally, according to
the mentioned relations, the risk of controllers is calculated, and the results are shown in
Figure 6 . For this case, we can calculate the relation between the reliability and risk of the
controller with some simplifications, such as

u1 = (−yr + k11)e1 + (−xd + k22)e2 + k33e3

u2 = ((xr + xd) + k21)e1 + k22e2 + k23e3

u3 = e3 = k31e1 + k32e2 + k33e3

(21)
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According to the limited amplitude of each section of Equation (21), the convergence of
controller input is guaranteed. Rewriting Equation (21) as

u1 = (−yr + k11)e1 + U1

u2 = k22e2 + U2

u3 = e3 = k33e3 + U3

(22)

where U1 = (−xd + k22)e2 + k33e3, U2 = ((xr + xd) + k21)e1 + k23e3 and U3 = k31e1 + k32e2,
and substituting Equation (22) in Equation (14) leads to

Risk1(t) = ê1(t) ∗
t∫

0
((−yr + k11)ê1(τ) + Û1(τ)

2)dτ

Risk2(t) = ê2(t) ∗
t∫

0
(k22 ê2(τ) + Û2(τ))

2dτ

Risk3(t) = ê3(t) ∗
t∫

0
(k33 ê3(τ) + Û3(τ))

2dτ

(23)

where notation f̂ shows the normalized value of f . According to Equation (12), the relation
between risk and reliability of each controller can be written as

Risk1(t) = (1− R1(t)) ∗
t∫

0
((−yr + k11)(1− R1(τ)) + Û1(τ)

2)dτ

Risk2(t) = (1− R2(t)) ∗
t∫

0
(k22(1− R2(τ)) + Û2(τ))

2dτ

Risk3(t) = (1− R3(t)) ∗
t∫

0
(k33(1− R3(τ)) + Û3(τ))

2dτ

(24)

As mentioned in the previous section, the relationship between risk and reliability of
each controller in the proposed controller coefficient matrix is not a simple reverse relation.
While certain elements of the coefficient matrix, such as k11 , k22 , k33 , and the reference
signal yr(t), have an impact on this relationship, it is not purely inverse.

In the implementation of the BBO algorithm for this specific scenario, the following
parameter settings are used:

Maximum number of iterations: 50
Number of habitats: 30
Keep rate: 0.2
Lower bound of habitats: 0
Upper bound of habitats: 100
For emigration and immigration rates, we consider:
Emigration rate = linspace(1, 0, 30)
Immigration rate = 1 − Emigration rate
The results of risk reduction with this algorithm and the proposed controllers as

Equation (20) are shown in Table 1.
Also, in these systems, disturbances are considered as random values drawn from a

standard uniform distribution in [0, 0.1]. Here again, with the proposed method, controllers
are designed to synchronize two systems. For this case, synchronization errors are shown
in Figure 7. As seen in Figure 7 in comparison with Figure 3, there is not a mentionable
difference between the two figures, which shows the effect of external disturbances. Control
inputs are also illustrated in Figure 8 . The results of compare method are shown in Figure 9.
As seen in this figure, in the presence of external disturbances, the Ref. [45] method can not
synchronize two systems. The reliability of the proposed controllers is figured in Figure 10.
We calculate the risk of the proposed controllers. Figure 11 shows the risk of the system
with and without disturbances. Figure 12 shows the result of Figure 11 with more details.
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Figure 5. The reliability of designed controllers in synchronization of fractional-order economical systems.
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Figure 6. Controller risks in synchronization of fractional-order economical systems: (a) first controller,
(b) second controller, (c) third controller.
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Figure 7. Synchronization of fractional-order economical systems in the presence of external distur-
bances errors.
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Figure 8. The control signals of in synchronization of fractional-order economical systems in the
presence of external disturbances.
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Figure 9. Synchronization of fractional-order economical systems in the presence of external distur-
bances errors using the ref. [45] method.
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Figure 10. The reliability of control signal of in synchronization of fractional-order economical
systems in the presence of external disturbances.
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Figure 11. Designed controller risks in synchronization of fractional-order economical systems in the
presence of external disturbances: (a) first controller, (b) second controller, (c) third controller.
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Figure 12. Risk of designed controllers in synchronization of fractional-order economical systems
with external disturbances: (a) first controller, (b) second controller, (c) third controller.

Table 1. Comparison of control signals risks.

Method Mean(Risk1) Mean(Risk2) Mean(Risk3)

Controllers as Equation (20) with matrix K 168.15 888.32 68.32

BBO optimized method 71.65 296.21 2.62

8. Discussion

In the presence of external disturbances, designing a controller has always been a chal-
lenging task, particularly for fractional-order systems. Simplifying the complex analysis of
systems to facilitate controller design is the most important. In this paper, we propose a new
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analysis for controller design that specifically addresses the presence of external disturbances.
We introduce reliability and risk as new factors in the controller design process.

To thoroughly evaluate the risk associated with the proposed controller, it is necessary
to understand the behavior of the controlled system when subjected to typical disturbances
found in real systems. To achieve this, we incorporate disturbance input signals into both the
master and slave systems. The findings indicate that the mean risk of the designed controller
is higher in the presence of external disturbances compared to when they are absent. This
demonstrates how external disturbances increase the risk of the proposed controller.

After introducing the concept of controller risk, we explore methods to minimize this risk,
similar to the design of robust controllers in traditional control theory. However, the proposed
method in this paper offers the advantage of simple calculation and analysis compared to
traditional robust control methods. Additionally, our method exhibits better performance
compared to previous approaches. To support this claim, we compare our method with
the [45] approach through simulations, which reveal that the [45] approach is not effective in
the presence of external disturbances. Furthermore, we quantify the risk associated with the
controller in a new area of controller analysis and demonstrate that our approach carries less
risk compared to others. This is a significant contribution of this paper.

Moreover, we provide a technique for reducing the risk associated with controllers
in synchronization problems. We modify one of the best existing approaches to suit our
specific problem. Statistical results demonstrate that the proposed method performs well
in terms of risk reduction.

In summary, this paper presents a novel perspective on controller design in the pres-
ence of external disturbances. We introduce a new method for analyzing and designing
controllers in such scenarios, specifically for the synchronization of fractional-order eco-
nomic systems. Our proposed method outperforms existing approaches, making it a
valuable contribution to the field.

9. Conclusions

The presence of disturbances in systems can lead to various issues, particularly in
fractional-order systems with complex mathematical models. Consequently, studying
these systems has posed a significant challenge. This study focused on the reliability and
risk analysis of synchronization in fractional-order systems. The relationships between
reliability and risk in each controller were explored. Specifically, a fractional-order economic
system and a fractional-order model for financial crises were examined.

The study revealed that the relationship between a controller’s reliability and risk
in two identical systems can become highly complex in certain unusual situations. To
further investigate, systems with external disturbances were introduced, and the reliability
and risk of the developed controller were calculated. The simulation results indicated
that small-amplitude disturbances have minimal impacts on synchronization errors and
reliability, but significantly affected the controller risk. Consequently, it is concluded that
considering the controller’s risk can serve as a useful criterion for mitigating the impact of
disturbances on the system.

Based on these findings, a new analysis based on risk was introduced to design a
controller in the presence of external disturbances. Furthermore, an approach for reducing
risk in the proposed controllers was described. Future works may include incorporating
other factors such as uncertainty into the risk analysis. Additionally, different types of
financial models can be utilized and their results can be compared. The proposed method
is applicable to various financial models and can be extended to include new fractional
order models for different economic data in future studies.
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34. Altan, A.; Hacıoğlu, R. Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under
external disturbances. Mech. Syst. Signal Process. 2020, 138, 106548. [CrossRef]

35. Labbadi, M.; Cherkaoui, M. Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor
UAV subjected to disturbances. ISA Trans. 2020, 99, 290–304. [CrossRef]

36. Bevrani, H.; Feizi, M.R.; Ataee, S. Robust frequency control in an islanded microgrid: H∞ and µ-synthesis approaches. IEEE Trans.
Smart Grid 2015, 7, 706–717. [CrossRef]

37. Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An overview of variants and advancements of PSO algorithm. Appl. Sci. 2022, 12, 8392.
[CrossRef]

38. Gao, W.; Liu, S.; Huang, L. A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 2012, 236,
2741–2753. [CrossRef]

39. Ghavifekr, A.; Ghaemi, S.; Behinfaraz, R. A Modified Biogeography Based Optimization (BBO) Algorithm for Time Optimal
Motion Planning of 5 DOF PC-based Gryphon Robot. Int. J. Eng. Work 2014, 1, 38–44.
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