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Abstract: A quantitative evaluation of kinetic parameters, the joint’s range of motion, heart rate,
and breathing rate, can be employed in sports performance tracking and rehabilitation monitoring
following injuries or surgical operations. However, many of the current detection systems are
expensive and designed for clinical use, requiring the presence of a physician and medical staff to
assist users in the device’s positioning and measurements. The goal of wearable sensors is to overcome
the limitations of current devices, enabling the acquisition of a user’s vital signs directly from the
body in an accurate and non–invasive way. In sports activities, wearable sensors allow athletes
to monitor performance and body movements objectively, going beyond the coach’s subjective
evaluation limits. The main goal of this review paper is to provide a comprehensive overview of
wearable technologies and sensing systems to detect and monitor the physiological parameters of
patients during post–operative rehabilitation and athletes’ training, and to present evidence that
supports the efficacy of this technology for healthcare applications. First, a classification of the
human physiological parameters acquired from the human body by sensors attached to sensitive
skin locations or worn as a part of garments is introduced, carrying important feedback on the user’s
health status. Then, a detailed description of the electromechanical transduction mechanisms allows
a comparison of the technologies used in wearable applications to monitor sports and rehabilitation
activities. This paves the way for an analysis of wearable technologies, providing a comprehensive
comparison of the current state of the art of available sensors and systems. Comparative and statistical
analyses are provided to point out useful insights for defining the best technologies and solutions for
monitoring body movements. Lastly, the presented review is compared with similar ones reported in
the literature to highlight its strengths and novelties.

Keywords: advanced diagnostics; bio-vital markers; e-healthcare; injury-prevention; mini-invasive
monitoring; rehabilitation parameters; sports performance tracking; wearable sensors

1. Introduction

Monitoring human physiological functions and performance during real-time ac-
tivities is becoming increasingly popular in sporting and healthcare environments [1–4].
Recent studies demonstrated that introducing enhanced recovery after surgery programs
can significantly improve post-surgical recovery quality, thereby helping to decrease the
time for rehabilitation outside clinical centers [5,6]. Traditionally, doctors or physicians
assist the patients in completing the rehabilitation training using hands or basic and stan-
dard equipment. The assessment of a patient’s physical state, the degree of rehabilitative
training, and the effectiveness of the rehabilitation results are thus highly dependent on the
physician’s expertise and level. Moreover, more than 70% of patients usually fail to comply
with post-surgical programs when moving home. The main limitations to a successful
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rehabilitation are the lack of time and feedback from specialists, the difficulties in remem-
bering how to execute the exercises, and the inability to feel the benefits of the therapies
and the related improvements. Therefore, the measurement of a human being’s kinetic
and other vital and physiological parameters is essential to monitor and collect a series
of data (e.g., movements, bending, joint rotation, and so on) useful to provide important
tracking feedback to the user. This allows for the adoption of suitable protocols that ensure
the patients carry out their physiotherapy programs even at home. In rehabilitation after
trauma or injuries, these data allow for defining the correct therapies and evaluating their
effectiveness and patient progress. Moreover, in sports training, they allow for optimizing
the exercises and assessing an athlete’s progress.

The rapid development of the Internet of things [7–9], due to the technological ad-
vancement of sensor and communication technology, together with increased availability,
lower cost, and advancements in personal computing devices, has paved the way for
new opportunities and challenges for the research and development of wearable health-
care devices [7,8,10–14]. Wearable sensors enable users to identify and measure different
clinically relevant parameters, such as functional motions, biomechanical and bio–vital
parameters, and athletes’ workloads, to enhance performance while reducing the risk of
injury. Wearable monitoring devices can give a continuous and real-time flow of physio-
logical data, creating precise treatment plans and player-specific training regimens to help
minimize or prevent injuries.

This review aims to provide an overview of the most recent wearable sensors and
systems in the literature used to detect and monitor physiological parameters in athlete
training tracking and post-operative rehabilitation of patients. At first, the most signifi-
cant parameters for monitoring post-operative rehabilitation and sports performances are
introduced. Additionally, a first classification of the discussed and analyzed parameters
is provided, distinguishing between medical rehabilitation and sports fields. After this,
an analysis of the available technologies for detecting and acquiring the physiological
parameters directly from the human body is provided. In detail, wearable sensors will be
classified according to the parameters they allow to identify, such as body movements or
physiological parameters. Inertial, capacitive, piezoresistive, piezoelectric, and flexoelec-
tric transduction mechanisms will be detailed. Afterward, some figures of merit (FoM)
helpful for classifying the analyzed technologies in terms of performance are shortly de-
scribed. FoM are used in this paper to identify the characteristic parameters of the discussed
technologies and compare and classify the working mechanisms used to implement the
analyzed transduction mechanisms. These quantities allow quantifying their efficiency
and performance. An overview of wearable technologies for monitoring body motions
is presented, providing a detailed depiction of the available sensors and systems. Addi-
tionally, they are classified in two main categories: (i) wearable sensors for post-operative
rehabilitation monitoring and (ii) wearable sensors for athletes’ performance monitoring.
The described technologies are then compared to achieve a detailed classification according
to the sensor’s maturity, sensitivity, the range of detection, the area of the body where
they are typically placed, the measured parameters allowed by that specific technology,
and the corresponding response time. In addition, several publicly available datasets
related to sports and rehabilitation monitoring are discussed. Finally, a comparison of the
presented review work with similar ones reported in the scientific literature is presented to
highlight its novelties and strengths. The main novelties and contributions of the presented
review are:

• A detailed classification of human physiological parameters useful for extracting
information about a patient’s health status during post-operative rehabilitation and
sports performances.

• An in-depth analysis of the transduction mechanisms for acquiring parameters related
to body motions; also, innovative wearable technologies and sensors to monitor human
activities are discussed, ranked by high comfort and flexibility.
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• A comprehensive overview of available wearable technologies for monitoring motions
of body parts and physiological parameters to enhance rehabilitation therapies and
customize athletes’ training.

• A comparison of the presented review with similar ones reported in the literature; its
strengths lie in its completeness and level of detail, dealing with both sensing systems
for monitoring rehabilitation and sports performances. In addition, it does not limit
the discussion to specific sensor categories, applications, or monitored body areas,
as detailed in the comparison reported in Section 6. The joint discussion of the two
applications represents one of the novelties of the presented work, rarely treated in
other review articles with the presented level of detail. In addition, the proposed
work reports comparative analyses related to the discussed scientific studies from the
performance point of view, providing useful insights for determining the best sensing
strategies for developing future wearable systems for monitoring the human body.

The remainder of the review is arranged as follows: Section 2 presents a detailed
classification of the primary parameters acquired on the body surface to extract information
related to post-operative rehabilitation or sports training. Afterward, Section 3 analyzes the
main sensing mechanisms for detecting body motions related to physiological activities;
later, the figures of merit for comparing and classifying sensing mechanisms implemented
by wearable devices are described. Section 5 reports a survey of available wearable technolo-
gies for monitoring body motions which find application in post-operative rehabilitation
and athlete performance tracking. Furthermore, an overview of datasets related to sports
and rehabilitation monitoring is introduced. Lastly, Section 6 presents a comparative analy-
sis of the presented review work with similar ones reported in the literature, highlighting
its strengths and novelties.

Selection and Exclusion Criteria for the Presented Review Paper

Before starting the discussion of the presented review is necessary to define the criteria
used to select and exclude the most appropriate scientific works and review papers. The
latter has been defined specifically, taking into account many elements of the analyzed
documents, such as applicability to the treated themes, relevance, publication year, and
redundancy concerning other chosen articles. The goal was to provide the reader with
as broad a view as possible of wearable systems and technologies for monitoring body
motions and biophysical parameters which assist medical staff in a patient’s rehabilitation
process and tracking an athlete’s performances. The selection process was conducted
following the methodology shown in Figure 1; in particular, analysis of the documents
was performed according to a three-step procedure. In detail, the procedure began with
the title’s evaluation, followed by the analysis of the abstract, then coming to the careful
reading of the full paper. Each step involved a binary evaluation, leading to acceptance or
rejection of the considered document according to the criteria above (Figure 1). At the end
of the analysis, if the document was unclear, analysis of its contents was further deepened
by researching information from external sources. If, after this study, the contents remained
unclear, the document was discarded from the review, noting the reasons for its exclusion.

Ultimately, 141 documents were analyzed to realize the overview of smart devices for
monitoring rehabilitation and tracking sports activities; Figure 2 depicts the distribution
of the selected documents grouped according to their typology (research articles, review
articles, and books).

Furthermore, Figure 3 reports the distribution of the databases and the main keywords
used to research the documents included in the presented review.
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2. Classification of Human Physiological Parameters

The measurement of vital human parameters is essential to provide important tracking
insights and feedback on the health status of the final user. For this reason, the acquisition
of information directly from the human body by sensors attached to sensitive skin loca-
tions or worn as a part of garments allow obtaining clinically relevant parameters. They
ensure a continuous flow of data, going beyond the limits of traditional rehabilitation and
training methods [15].

Some joints, such as the elbow, are limited to bending in one direction; others, such as
the shoulders and hip, can perform more complex movements in three dimensions. In this
respect, one of the relevant key parameters that should be monitored during rehabilitation
after injury to the bones, muscles, or nerves is the range of motion (ROM) [16–18]. Being
calculated as the joint’s rotation angle in respect to a reference plane, as in the case for elbow
flexion/extension, or a reference axis, as in forearm pronation/supination movements,
it is defined as the freedom of joint movements in a space (Table 1). It is obtained by
measuring the angle between the standard joint position and the final one the patient can
reach without experiencing pain; thus, it is a suitable parameter to evaluate improvements
over time [19–23].

Table 1. Table showing the main angles on the joints of the upper and lower body limbs.

Symbol Representation

θS−ab/ad Shoulder abduction/adduction
θS−hab/ahd Shoulder horizontal abduction/adduction
θS−in/ex Shoulder internal/external rotation
θW−fl/ex Wrist flexion/extension
θW−ra/ul Wrist radial deviation/ulnar deviation
θF−pr/su Forearm pronation/supination
θE−fl/ex Elbow flexion/extension

θA−IC, front Ankle initial contact angle—frontal plane
θA−IC, sag Ankle initial contact angle—sagittal plane

θA−MAX, front Ankle maximum—frontal plane
θA−MAX, sag Ankle maximum angle—sagittal plane
θK−IC, front Knee initial contact angle—frontal plane
θK−IC, sag Knee initial contact angle—sagittal plane

θK−MAX, front Knee maximum—frontal plane
θK−MAX, sag Knee maximum angle—sagittal plane

In this context, Kim et al. in [24] analyzed patients’ upper joint movement ranges by
using wearable devices. As a monitoring benchmark, the authors calculated the angles of
different upper joints. The wrist flexion/extension, wrist radial/ulnar deviation, shoulder
external/internal rotation, shoulder adduction/abduction, forearm supination/pronation,
and elbow flexion/extension were then studied by tracking the detected angles, enabling
to emulate each patient’s movements using a real-time animation of an avatar to improve
the monitoring experience (Figure 4a). An additional parameter that allows evaluating a
patient’s improvements during rehabilitation is the comparison between the mobility range
of the limb affected by the trauma and the mobility of a healthy one—e.g., how much the
injured limb is used during the day—establishing the movement frequency. Together with
the parameters above, the patient’s balance and gait [25–27], cardiac and respiratory param-
eters (such as HR—heart rate, blood pressure, HRV—heart rate variability, RR—respiration
rate, etc.) [28–31], neck muscle vibrations (frequency, pattern, intensity) [32], chewing
(duration and frequency) [21], and swallowing frequency [33,34] are recorded. The latest,
especially in patients affected by diseases such as dysphasia and dysphagia, are studied
and analyzed to monitor the patient’s health after surgery and understand how some
pathologies affect their normal state.
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pictures of the integrated device into wearable belts (a) [24]. The main angles measured on the lower
limbs for rehabilitation monitoring and sports tracking are highlighted in (b).

As reported in Table 1, other fundamental angles can be extracted for the lower limb.
The knee and ankle angles are essential for preventing injuries; in particular, the initial
contact angle (IC), maximum angle (MAX) at the midstance, as well as the latency between
the IC and MAX can be extracted both in the frontal and sagittal planes (Figure 4b) [35].
These parameters are subject to significant variations during running over long distances,
and are also affected by the typology of worn footwear [35]. Furthermore, from the analysis
of kinetic data, the elastic characteristics of ligament structures in the knee extensors and
plantar flexors can be calculated [36].

As with the post-operative rehabilitation process, it is also possible to identify some
key physiological parameters for monitoring athletes’ sports performance. Some of these
parameters can overlap with those mentioned above: for example, ROM and joint motion
angles can provide meaningful feedback on the definition of movement strategies for
athletes or the correct execution of motion in a specific discipline [37–42]. Intensity and tra-
jectory of body movements, in addition to heart and breathing parameters (e.g., HR, SpO2,
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RR, etc.) during long physical activity periods, can carry information about an athlete’s
fatigue and fitness decrease [10], which provide essential feedback on the athlete’s health
status. Correct execution of running or jumping [43–45], hit pressure [46] in combat sports,
response time, and acceleration to execute a movement [47] are additional parameters of
interest that are usually monitored during sports activity tracking [48–52]. S. Saponara
designed and proposed a wearable device capable of monitoring some of an athlete’s
key movement parameters in combat sports [47]. In this work, the author analyzed the
pressure of kicks and punches on a target body to quantify a movement’s effectiveness
from a traumatological model correlated with the subjective indication of a coach. The
acceleration of movements was also analyzed and compared with the ideal values for that
specific technique, allowing the athlete to avoid trajectories that deviate from the standard.
Additionally, the user’s response time was studied to examine the time to pull a kick or
a punch—roughly a tenth of second—depending on the combat technique and athlete’s
physical characteristics.

A classification of the parameters (or group of parameters) discussed above is sum-
marized in Table 2, where medical rehabilitation and sports fields were distinguished; this
classification derives from the analyses in the scientific literature reported in this review
work. However, some parameters are involved both in rehabilitation monitoring and sports
performance tracking, such as heart and breathing parameters. This classification aims
to give the reader a comprehensive overview of the main parameters monitored during
medical rehabilitation and sports activities.

Table 2. Classification of human physiological parameters usually identified in monitoring patients’
rehabilitation (a) and athletes’ activities (b).

Rehabilitation Parameters Sports Activity Parameters

Joint bending (angle or ROM) (A)

[18,21,22,24–29,32,39–44,50,53–60] (*)
Joint bending (angle or ROM) (A)

[18,21,22,24–29,32,39–44,50,53–60] (*)

Joint rotation (B) [18,21,24] (*) Joint rotation (B) [18,21,24] (*)

Neck muscle vibration (frequency and pattern)
[22,27–30,32,39,42,53] Jumping (distance and peak acceleration) [39,44,50,55]

Heart parameters
(HR—heart rate, HRV—heart rate variability, blood pressure)

[21,27,28,30,42,56] (*)

Heart parameters
(HR—heart rate, HRV—heart rate variability, blood pressure)

[21,27,28,30,42,56] (*)

Breathing parameters (RR—respiration rate,
inhalation/exhalation times, flow rate)

[21,29–32,53,61] (*)

Breathing parameters (RR—respiration rate,
inhalation/exhalation times, flow rate)

[21,29–32,53,61] (*)

Swallowing (interval and frequency) [21,33,34] Hit acceleration [47]

Chewing (duration and frequency) [21] Hit pressure [40,43,46,47]

Movement response time (C) [47] (*) Movement response time (C) [47] (*)

Movement trajectories [47] (*) Movement trajectories [47] (*)

Walking (speed and stance time and pressure)
[22,29,39,41,43,44,50,55,62] (*)

Walking (speed and stance time and pressure)
[22,29,39,41,43,44,50,55,62] (*)

Plantar pressure distribution [50,62,63] (*) Plantar pressure distribution [50,62,63] (*)

Fatigue [64]

Running (speed, pace, acceleration)
[22,39,41,43,45,50,55,64]

(a) (b)
(*) It is applied for both rehabilitation and sports activities. (A) Bending movement around a joint (such as the
knee or elbow). (B) Twisting movement produced by the superposition of small rotational movements around the
joint. (C) Time interval between the stimulus’ appearance and the corresponding muscle reaction’s start.
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In conclusion, considering the parameters and physiological processes reported in
Table 2, the set measured depends on the typology of clinical rehabilitation or sports activity
to be monitored. For instance, Figure 5 depicts some examples with related monitored
parameters and activities.
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3. Transduction Mechanisms for the Acquisition of Human Parameters from the Body

In the last decade, the advancement of various sensing technologies and the develop-
ment of highly flexible and conformable wearable devices and sensors have paved the way
for innovative solutions that monitor human activities by exploiting minimally invasive
and comfortable devices.

In broad terms, wearable sensors can be classified by considering the parameters they
should identify: body movements (position, gait, acceleration, etc.) or physiological param-
eters (heart rate, heart rate variability, voice, etc.). However, a more detailed classification
is based on the working transduction mechanism. In this respect, inertial, optical, and
angular sensors are the main instruments for monitoring the human body’s gait.

Optical fiber sensors (OFS) are based on optical technology and do not suffer from
electromagnetic interference. OFS are composed of a light source that transmits a light beam
to a photodetector through an optical fiber. They can be used to assess a joint’s bending
angles by measuring the angle and the attenuation of the reflected light beam when detected
by the photodetector [65–68]. Joint motion angles are also measured using angular sensors
or goniometers based on strain gauges or resistive potentiometers. However, some of the
main problems of these sensors are their lower accuracy and rigidity, which do not allow
them to be positioned comfortably on the joints. Markerless and marker-based motion
capture technologies are also available for monitoring human physiological parameters.
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They are used to quantify the kinematics of a motion, with the ability to enhance clinical
evaluations of function and performance [25,69–74].

An alternative to the previously mentioned sensors, inertial sensors, are widely used
by clinicians to perform kinematic measurements to monitor both healthy and pathological
movements, quantify the degree of impairment and the severity of the damage, plan
rehabilitation strategies, and evaluate the impact of various therapies. An inertial sensor
consists of a small and rigid central body, the inertial measurement unit (IMU), which
usually integrates MEMS devices such as accelerometers, gyroscopes, and magnetometers,
enabling the perception of movement in multiple dimensions using a single sensor. They
are usually placed above and below the joints (neck, fingers, elbow, shoulder, hip, knee,
ankle, etc.), and they allow detection of bending angle, linear 3D acceleration, three-
dimensional orientation, and angular velocity to track joint movements, walking speed, etc.
(Figure 6a) [75–78]. Moreover, an additional advantage of IMU is the capacity to measure
a patient’s or an athlete’s energy consumption—critical for determining, for example,
the intensity of the training—by multiple integrations of vertical acceleration over time.
Despite their high accuracy, low-cost design, and portability, IMU sensors are sensitive
to electromagnetic interference and noise, especially indoors; they are affected by a drift
effect and high rigidity, limiting their daily application. For this reason, their utility is often
restricted to clinical applications under expert supervision.
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S. Z. Homayounfar et al., SLAS Technology; published by Elsevier, 2020” [79]); (b) piezoresistive (i),
piezoelectric (ii), capacitive (iii), and triboelectric (iv) sensors [80]).

Electromechanical sensors based on different transduction methods, such as capacitive,
triboelectric, piezoresistive, and piezoelectric effects, are more appropriate for wearable
applications. By virtue of the material used for their fabrication, these sensors are usually
lighter, comfortable, robust, and suitable to detect physiological parameters directly from
the human body since they can be attached to or integrated into clothes, wraps, yarns,
etc. [81]. These devices can be fruitful in several healthcare applications, covering continu-
ous health monitoring, daily and athletic activity tracking, and acting as a multifunctional
electronic skin. However, the employment of nanomaterial-enabled wearable sensors on a
large scale faces several challenges and technical issues, such as improving their perfor-
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mance (biocompatibility, performance stability, multi-modal sensing capability), efficient
integration, and advances of other compliant/stretchable components.

Piezoresistive sensors (Figure 6b-i) are the most widely used technologies to transform
deformation stimuli into electrical signals. The working principle of these sensors relies on
the relation

R =
ρl
A

(1)

where l is the surface’s length, A the cross-section’s area, and ρ the material’s electrical
resistivity. By choosing suitable materials, and varying one or more of these parameters
by deforming the structure of the sensor, the resistance value changes accordingly. By
calibrating the sensor and correlating the resistance variation to the applied compression
or traction force, it is possible to evaluate the intensity and magnitude of the external
stimuli. Piezoresistive sensors can be classified into strain and pressure sensors depending
on the mechanical force applied. The choice of suitable materials, the production process,
and the general operation of piezoresistive strain sensors have been extensively studied
by researchers.

Moreover, structured 3D patterns, such as micro-pillars, half-spheres, or pyramid
shapes, can affect the performance of piezoresistive sensors, as well as the combination
of conductive materials such as carbon nanotubes (CNTs), cellulose nanocrystals (CNCs),
silver nanowires (AgNWs), graphene, and other polymers, with a rubber body to provide
elastic properties. If subjected to a tensile force, the resulting compound varies the con-
ductive paths, redistributing the percentage of the conductivity inside the material and,
consequently, varying the resistance value. An interesting fabrication method involves
synthesizing the piezoresistive material as a fabric in clothes and optimizing its function-
ality, for example using elastic fibers painted with conductive substances or wool fibers
covered with graphene nano-sheets (GNPs) or conductive carbon (CB) [27,30,32,56,82].
Yao et al. in [83] presented a novel methodology for integrating multifunctional e-textiles
without sacrificing stretchability, wearability, or washability. The material was obtained by
depositing from a AgNW solution onto a glass plane and evaporating the residual solvent.
After, a TPU layer was spin-coated over the AgNW network, letting the solvent evaporate
and solidify. Then, the layer was transferred onto a stretchable fabric by heat-pressing at
140 ◦C. The test results indicated that the resulting AgNW–TPU layer is characterized by
low sheet resistance (0.2 Ω/�), a low Young’s modulus, excellent stretchability (50%), and
good washability (10% resistance increase after 100 washing cycles).

Capacitive sensors exploit the physical properties of a capacitor made of proper elastic
materials, to vary the capacitance value when pressure or traction is applied (Figure 6b-ii).
They consist of two metal electrodes separated by a dielectric elastic material, such that the
capacitance is

C =
ε0εrA

d
(2)

where A is the surface area of the two metal plates, d is the thickness of the dielectric
material between them, ε0 is the electrical permittivity of the vacuum, and εr is the relative
electrical permittivity. The capacitance variation is then strictly related to a change in
the thickness of the dielectric material or the metal plate’s surface area, and it varies
linearly with the applied force or pressure. Using proper readout circuitry, it is possible to
transduce this capacitance variation in a voltage output signal. Despite a good sensitivity,
capacitive sensors show a limited detection range, mainly due to a decrease in the elasticity
of the final device when metal electrodes are deposited on the dielectric elastomer. For
this reason, in a wearable application, the conductive electrodes are usually made of
elastic materials such as a mixture of polydimethylsiloxane (PDMS) or EcoFlex and silver
nanowires (AgNWs) [55,61], liquid indium gallium arsenide (GaInAs) alloy paints [57], or
conductive hydrogels [28].

The direct piezoelectric effect (Figure 6b-iii) allows transducing the mechanical en-
ergy caused by deformation or strain into electrical energy, usually collected as a voltage
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signal [84,85]. This phenomenon is based on the property of some ceramic crystals and
polymeric materials to generate dynamic charge separation and a consequent electric po-
tential due to reorientation of the dipoles inside the material lattice while subjected to a
force or mechanical stress. Materials used to produce piezoelectric sensors can be organic,
such as polyvinylidene fluoride (PVDF), polyacid(D-lactic) (PDLA), and polyacid(L-lactic)
(PLLA), or inorganic such as aluminum nitride (AIN), lithium niobite (LiNbO3), barium
titanate (BaTiO3), lead zirconate titanate (PZT), zinc oxide (ZnO), and quartz. Organic
polymers are often preferred for their biocompatibility, simpler manufacture, and low cost.
However, they show a lower piezoelectric response when compared to their inorganic
counterpart [86]. One of the most used materials for piezoelectric wearable sensors is
PVDF which has excellent physical properties, high polarization, and good flexibility, often
combined with tetrafluoroethylene (TrFE) to improve the piezoelectric coefficients [87,88].

The triboelectric effect is a contact electrification phenomenon whereby a voltage signal
is generated by transferring electric charges between two materials when they are in contact
with each other and are subjected to friction and rubbing (Figure 6b-iv)—during the rub-
bing, one material gives electrons, charging itself positively. In contrast, the other material
receives the released electrons, charging itself negatively as a consequence. Triboelectric-
based sensors can be classified into four categories, according to their operating modalities:
(i) vertical contact–separation sensors; (ii) in-plane sliding sensors; (iii) single-electrode sen-
sors; (iv) freestanding triboelectric sensors [43,89–91]. Triboelectric sensors add the potential
advantage of being self-powered since the output signal generated by the electrification
process can be harvested and stored in batteries. For this reason, triboelectric sensors are
widely employed in wearable applications, ensuring long-lasting operations such as joint-
movement tracking and breathing monitoring [26]. Different materials can be used to fabri-
cate triboelectric charge-generating and charge-trapping layers and electrodes. Usually, they
are polymer-based, highly flexible materials, allowing the device to be embedded inside
clothing or placed conformably in direct contact with the skin [92]. Poly(dimethylsiloxane)
(PDMS), fluorinated ethylene propylene (FEP), fluorinated poly(ethylene terephthalate)
(PET), and Poly(vinylidene fluoride-co-trifluoroethylene) (PVDF–TrFE) are some of the
most used materials for the charge generating layer [93]. Polystyrene (PS), polyimide (PI),
and PVDF, having many trapping sites due to the non-uniform energy levels along their
main chains, are often used as charge-trapping layers. In some cases, they include nanoparti-
cles, such as Ag nanowires (AgNWs), which promote trapping the electrostatically induced
charges at the metal–dielectric interfaces. Solid and flexible electrodes, including metals,
graphene, and indium tin oxide (ITO), are usually used for the charge-collecting layer
together with conductive elastic nanocomposites, which have stable electrical properties in
various mechanical environments.

A combination of the previously mentioned transduction methods is often developed
to improve the response of the final hybrid sensor to the applied stimuli. Hybrid devices
made by combining triboelectric and piezoresistive effects or triboelectric and piezoelec-
tric effects are extensively explored [18,43]. A combination of inertial and piezoresistive
transduction methods is also available, especially for monitoring joint movements [59], gait
characteristics [63], or respiratory activity [94].

A summary of the electromechanical transduction technologies discussed above is
reported in Table 3. Here a classification of the sensors and systems has been carried out,
taking into account the transduction mechanism, the ability of the sensors to generate a
signal without driving it by an external source (hereafter referred to as active/passive
element), strengths, main drawbacks, and area of the body where the sensor can be applied.
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Table 3. Comparison of the main transduction technologies used in wearable systems to monitor
sports and rehabilitation activities.

Transduction
Technology Active/Passive Strengths Drawbacks Body Area

Inertial Passive

• Reliability
• High accuracy
• Small size
• Low power
• Wide operative range
• Wide bandwidth
• Linearity

• Sensitivity to EMI
• Sensitivity to undesired

body movement
• Complexity in

data processing

Knee [20,54,95],
elbow [96,97], chest [97,98],
wrist [97,99], shoulder [97],

head [97], throat [100]

Piezoresistive Passive

• Robustness
• Simple structure
• Low cost
• Well-known

mechanism
• Stable over time
• High durability

• High power consumption
• Sensitive to

environmental conditions
• Difficulty in scaling down
• Poor linearity

Foot [62],
wrist [27,30,44,56,60],
finger [27,32,44,56,60],

throat [27,30,32],
chest [31,32],

elbow [32,44,60],
knee [25,32,44,60],

neck [32], nose [30],
cheek [27,30], ankle [44],

abdomen [60]

Capacitive Passive

• Low cost
• Wide operative range
• Wide temperature range

• Sensitive to
environmental conditions

• Poor linearity
• Vibration sensitivity

Finger [28,29,53,55],
throat [28,29,53],

wrist [28,57], cheek [29],
knee [29,55], elbow [29,57],

foot [29], belly [53,61],
head [46]

Piezoelectric Active

• Active
• Robustness
• Simple structure
• Biocompatibility

(according to
used material)

• Simple scaling-down

• Responsive only to
dynamic stimuli

• High sensitivity to
temperature
and moisture

Wrist [21,24,39,87],
throat [21,22,25,28,39,87],
cheek [21], nose [21,87],

shoulder [24], forearm [24],
elbow [22,24,39,42],

foot [22], knee [39,64],
finger [30,33,79], ankle [64]

Triboelectric Active

• Active
• High sensitivity
• Adaptable to different

sizes and shapes
• Low cost
• Simple structure

• Difficult signal reading
• Sensitive to

environmental conditions
• Low durability
• Limited short circuit

output current

Tongue [33], finger [50],
wrist [26,50,91],

elbow [26,41,50,58],
foot [41,50,91],

knee [26,41,91], belly [91],
ankle [26], shoulder [26],

spine [26]

Establishing a comparison between the various technologies to better understand how
they could work in post-operative rehabilitation and sports performance monitoring proved
to be a complex task. To help the reader understand the complexity of the scenarios for these
technologies, we present two summarizing figures. The radar charts of Figure 7 report a
statistical analysis of the analyzed papers to determine the ability of that sensor/technology
to detect frequency variations in the desired physiological activity, e.g., breathing, bending,
walking, running frequency, and so on. Specifically, the “frequency” parameter was
introduced for this purpose. It represents the number of analyzed papers (a total of
112 documents) where a given sensing technology was employed to monitor specific body
areas (i.e., ankle, neck, chest, foot, etc.). The resulting paper numbers were normalized on
a scale from 0 to 10, considering the range of the analyzed sensing technologies and the
considered application areas. In addition, the analysis was carried out taking into account
just the main application area on the body suggested by the authors of each paper.
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Additionally, the radar charts in Figure 8 depict the application rate of the technol-
ogy/sensors analyzed in monitoring typical biophysical parameters, such as joint bending
angles and frequency, extremity pressure, heart pulse, and throat vibration. Similarly,
the “frequency parameter” was calculated to evaluate the propensity of a given sensing
technology to detect the considered biophysical parameters. Similarly, in this case, only the
main acquired parameter was selected for each analyzed paper.

These radar charts intend to provide a comparative graphical analysis of all the devices
and sensors analyzed in this review paper. They were built considering the normalized
number of cited research works whose developed technology—capacitive, triboelectric,
piezoresistive, piezoelectric, and inertial—is applied to a specific body area and the desired
parameter which can be detected and monitored.

As can be noted in Figure 7, piezoresistive and capacitive sensors are widely used
for monitoring finger and wrist movements. Their employment can be justified by the
availability of textile-based sensors, widely used for these applications since they feature a
very low profile and high flexibility. However, both sensors’ typologies are passive and thus
require the application of polarization, which is a drawback for low-power applications.
Furthermore, piezoelectric sensors are commonly applied for detecting throat movements.
Indeed, several examples of thin-film piezoelectric layers are proposed in the scientific
literature, showing high sensitivity, flexibility, and biocompatibility, enabling discreet and
safe detection of body movements.
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In addition, from Figure 8 it is evident that piezoresistive, capacitive, and piezoelectric
sensor technologies are currently dominant for detecting joint movements (angles and fre-
quency), as well as throat vibrations, i.e., they are applied to voice recognition. Triboelectric
sensors are commonly applied to detect pressures from different body parts—e.g., feet
and hands. Nevertheless, this sensor technology is not mature enough to be applied to
large-scale devices. In conclusion, from the reported analysis, inertial sensors are used to a
lesser extent than the other sensor technologies, probably due to their high sensitivity to
extraneous body motions, inducing motion artifacts.

4. Figures of Merit for Performance Comparison

Different characteristic parameters can be identified to compare and classify the
working mechanisms used for implementing the wearable sensors and systems discussed
in Section 3 and quantify their efficiency and performance. These parameters will be used
as figures of merit (FoM) for carrying out comparative analysis of the sensing devices
reported in Section 5.

One of the most important parameters is the sensitivity (S), defined as the ratio between
the variation in the output signal dX and the related variation in the input dP:

S =
dX
dP

(3)

states that the input stimulus (compression or traction) generates a significant output
variation in a sensor with high sensitivity [101]. However, in some cases, it is useful to
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resort to the concept of normalized sensitivity to take into account in this parameter the
sensor’s resting value (X0) [102]:

S =
∆X/X0

dP
(4)

A second parameter useful to describe the performance, especially of strain piezoresis-
tive sensors, is the gauge factor Gf defined as

Gf =
∆R/R0

∆L/L0
(5)

which is the ratio between the normalized resistance variation ∆R compared to the resting
resistance R0 as a function of the elongation variation ∆L of the resistive stripe compared to
the resting length L0. Typical values of this parameter range between 2 and >100, depending
on the shape and type of material comprising the stain sensor [103].

Extensibility E, also called Young’s modulus, is an intrinsic feature of the material
used. It defines the maximal threshold beyond which the ratio between the strain and the
traction applied to the material causes the sensor to lose sensitivity and linear behavior.
The Young’s modulus is calculated according to the following equation:

E =
dσ
dε

(6)

where ε is the strain generated when a traction (or stress) σ is applied. A Young’s modulus
approaching the elastic properties of the skin is highly desirable, especially for wearable
devices in direct contact with soft tissues [104].

Additional parameters are evaluated to define the performance of wearable sensors.
The range between the minimum and maximum values the wearable sensor can detect
is defined as the range of detection (RoD); beyond the maximum value, the sensor is no
longer sensitive to input variations [105]. The sensor response time is the time interval
between the application of the external stimulus and the generation of the transduced
output signal (a critical factor in dynamic and real-time activity tracking) [106].

Linearity is the percentage of deviation of the measured signal from the regression
line and allows for evaluation of the signal stability in specific applications [105]. Among
the other FoM, it is certainly worth mentioning the precision, which indicates the capability
of the sensor to keep the measurements reproducible. Another fundamental FoM is the
resolution intended as the lowest observable incremental change of an input parameter.
Resolution can be represented in absolute terms or as a percentage of the reading (or the
full-scale reading). Furthermore, the greatest deviation between the sensor measurement
against the reference obtained by the main or a good reliable standard is defined as ac-
curacy [105]. Furthermore, the offset error is the deviance in the sensor output from a
reference value at the detection range’s bottom end. Lastly, power consumption is critical
in wearable applications, especially for long monitoring of daily life.

5. Overview of Available Wearable Technologies for Body Motion Monitoring

Wearable devices for monitoring body part movements and physiological parameters
improve standard and traditional rehabilitation therapies since they can provide important
feedback to the users—both patients and therapists—additionally allowing to customize
the training path of the athletes. Section 5 reports an overview of the most recent and
innovative wearable sensors and systems based on the transduction technologies detailed
in Section 3 and suitable both for patient rehabilitation after injuries or surgeries and for
tracking the activities of athletes.

5.1. Devices and Systems for Post-Operative Rehabilitation

Patients’ joint movements are often monitored with two useful technologies: in-
ertial sensors (IMU) and vision-based sensors (e.g., Microsoft Kinect) [20,97,99,107,108].
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Ianuculescu et al. proposed a device able to provide post-operative tracking of patient
rehabilitation from home, achieving the same therapy results reached in a hospitalized
structure [54]. The re.flex system consists of two IMU sensors equipped with a three-axis gy-
roscope and an accelerometer for tracking knee movements. A proper software application
for mobile devices was also developed to acquire and process the acquired data from the
IMU sensors. Combining the data collected by the accelerometers and the gyroscopes, the
system can measure up to twelve parameters, such as speed, gravity, and three-dimensional
orientation, allowing the user to monitor movements during exercise training.

Additionally, the mobile application allows the user to interface with the measured
data; the patient and the physician can visualize the movements of the leg through a
real-time three-dimensional avatar and follow the exercises selected and customized by the
physiotherapist. A self-calibrating algorithm automatically detects the sensor’s position
and calibrates it accordingly, to achieve the best output response. This automatic calibration
allows the user to easily attach the sensors to the injured area. The system was tested
for monitoring the reconstruction of the anterior cruciate ligament of 30 patients. They
were randomly separated into two groups 48 h after the surgery: the first group followed
rehabilitation in a clinic, and the second group stayed at home using the re.flex monitoring
system. For both groups, the treatment lasted three months. The group treated remotely
with the re.flex system achieved an average Oxford knee score—an index that measures
knee pain and function after reconstruction surgery—of 1.3 points higher than the group
treated in the clinic.

A capacitive sensor with a bio-inspired eggshell microstructure was proposed by
He et al. for monitoring walking, air blowing, finger, knee, and elbow movements, and
performing voice recognition [29]. The sensor was made of a thin dielectric layer with
microstructured PDMS geometries embedded between two electrodes of MXene titanium
carbide (Ti3C2Tx) mixed with Ag nanowires (Figure 9a). The sensor showed excellent
sensitivity (i.e., 10.13 MPa–1) and a good response time (~ms) within a pressure range from
a few kPa up to 600 kPa (Figure 9b).
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Figure 9. A capacitive pressure sensor’s construction (a). Illustration of the ESIM’s (eggshell inner
membrane) structural elements (i); schematic showing the construction of MXene sheets (ii); and
the manufacture of flexible capacitive pressure sensors (iii). Schematic sensor diagram detecting
human physiological signals and body motions. From top left to bottom right: vocal cord vibration
signal when pronouncing the word “studying”; capacitance responses from the repeated air blowing,
clenching and releasing of finger/knee/elbow bending, and walking (b) [29]. Sensor output during
exhalation and inhalation acquired as capacitance variation during deep breathing, measured in
different positions: standing, sitting, and lying (c). Variation in the capacity during the slight
vibrations of the vocal cords allowed to recognize “Nice to meet you”, “Capacitance”, “Research is
my forever love”, “The University of Manchester”, “Thank you”, and “Freedom” (d) [53].

Chen et al. developed a capacitive sensor with a textile structure, excellent conductivity
and elasticity, and high comfortability when worn [53]. The sensor was fabricated by coating
the starting fabric with nickel. A properly shaped fabric, with a size of 13 mm × 37 mm,
was applied to the patient’s belly to evaluate breathing during rehabilitation exercises. One
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of the two electrodes was inserted inside the tights, the other into the inner part of a belt
(Figure 9c).

By inhaling and exhaling, the patient expands and contracts the abdomen, varying
the distance between the two electrodes and thus generating a capacitance variation (as
shown in Figure 9d). Slight vocal cord vibrations were also monitored to distinguish
sentences pronounced by the patient to diagnose and prevent dysphasia issues. After
repeated bending cycles, a stress test was performed to verify the signal stability. After
hundreds of bending cycles, the device’s capacity increased from 24.3 to 26 pF, showing
good signal stability even after running a high number of cycles. Similarly, in [109], the
authors presented novel Ag–NW-based capacitive strain sensors to sense skin deformations
for tracking finger movements. The sensors’ characteristics were a high sensitivity (gauge
factor ≈ 1), low Young’s modulus (96 kPa), linear response, high stretchability (150%),
negligible hysteresis, and broad strain sensing range greater than required to detect human
movements. The experimental results demonstrated that the skin deformations acquired
with the developed capacitive sensors are highly correlated with those obtained with an
eight-camera optical tracking system. The authors suggest using these sensors to monitor
hand movements in patients affected by chronic diseases such as cerebral palsy, spinal cord
injury, or muscular dystrophy.

Other hand-worn systems were developed to assist users in rehabilitation from stroke
and traumatic brain injury [110]. In Ref. [111], the authors presented an innovative robotic
system for assisting patients with repetitive hand exercises. Specifically, they created a
wearable therapy device driven by pneumatic muscles (PM) that delivers the supportive
forces needed for gripping and finger extension. The robot fingers have two independent
degrees of freedom (DoF); also, position and force data are acquired by integrated sensors
for controlling the robot and evaluating its performance. A fuzzy PID controller was
developed to control the robot’s movements, which, as demonstrated by experimental tests,
performs better than the standard PID controller.

In Ref. [112], the authors presented a hand rehabilitation system that aids patients in
performing repetitive training. It comprises a Myo armband, a robotic glove, a Unity3D,
and a videogame processing platform. The Myo armband gathers spatial and gestural data
using integrated IMU and EMG sensors. The acquired data are wirelessly transmitted to
Unity3D, which derives the controls for the robotic hand. This last device includes two
stepper motors for controlling the opening/closing of the hand. In a hand-training game
created in Unity 3D, players must pick up, hold, move, and drop a cube in progressively
challenging puzzle stages. To make the user feel more engaged in the game, the user sees
virtual hands and arms that mimic their actions.

Furthermore, with 11 elastic actuators that impart extension torques to the finger and
thumb joints, the HandSOME II device helps the patient expand their hand [113]. Despite
the device’s DoFs not being aligned with those of human joints, a new mechanical design
delivers forces orthogonally to the finger segments. Experimental tests were carried out on
seven post-stroke patients affected by hand disabilities, demonstrating that HandSOME II
can enhance the extension angles and range of motion in all finger joints.

Innovative materials are continuously developed for implementing sensors to detect
body movements and physiological parameters, which can easily be integrated into the
clothes. Tan et al. developed a textile-based piezoresistive sole to monitor the patient’s
walking motion during rehabilitation and prevent diseases such as diabetic ulcers and
foot deformation [62]. The sensor was made with a cotton electrode coated with reduced
graphene oxide (rGO) and a fabric electrode with a silver (Ag) circuit inside. Six sensors
were inserted into the shoe sole, allowing for real-time observation of the foot pressure
distribution during movement, achieving an accurate pressure map. The sensors were
connected to a small electronic board equipped with an acquisition circuit, a Bluetooth
module for wireless data transmission, and a battery for power supply. The sensor had a
170 ms response time, a 3.90 kPa–1 sensitivity in a pressure range between 0 and 36 kPa,
and exhibited good stability during a durability test of up to 1000 cycles.
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Weak stimuli such as breathing, swallowing, chewing, finger flexion, muscle vibration,
and joint movements were successfully measured by exploiting a piezoelectric sensor
developed by Wang et al. [21]. The sensor was made of poly(vinylidene fluoride–trifluoro
ethylene) multi-walled carbon nanotubes (p(VDF–TrFE)/MWCNTs) grown in their β-phase
and sandwiched between two gold electrodes. A transparent thin silicone film covered the
device and protected it without altering the final flexibility. The sensor’s sensitivity and
extensibility were calculated, resulting in 540 mV/N and 0.986 Gpa, respectively. Studies
on adult patients were carried out, placing the sensor in contact with the skin on the wrist
and acquiring the heartbeat. A measurement of 84 beats per minute—corresponding to a
standard heartbeat—was recorded even with a very weak input stimulus. The breathing
frequency was also determined with a peak voltage of 0.1 V, as well as the swallowing, by
applying the sensor to the throat. A peak voltage of 0.75 V was easily detected, allowing
measuring also the time the muscles take to complete the whole swallowing movement.
Chewing gestures were finally measured. Here signal peaks of 0.3 V amplitude were
detected. Finger bending and bending of the wrist were also detected. Figure 6a shows the
plot of the acquired signal during the previously mentioned tests. Kim et al. proposed an
innovative sensor to measure gait by exploiting the piezoelectric effect [24].

The sensor, made of a piezoelectric PVDF layer, was fixed on one side by two rubber
bands, while on the opposite side was attached a polyester thread where the mechanical
tension was applied (Figure 10a). A flexible printed circuit board was used to acquire the
output voltage by connecting two electrodes to the upper and lower surfaces of the PVDF
film with carbon-based conductive tape. The upper surface’s ends of the PVDF strip were
protected by a polyethylene terephthalate (PET) layer. Only one of the lower surfaces was
fixed to the PET substrate, allowing the PVDF strip to flow freely over the substrate when a
traction stimulus was applied to the free side. Kapton tape was used to electrically insulate
the sensor. The peak-to-peak open circuit voltage was measured as a function of the upper
limb movement; seven sensors were then embedded in commercial stockings, and medical
bands were applied to the wrist, elbow, chest, and shoulder.
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Figure 10. PVDF flexible sensor and the corresponding output voltage over time, and position for
the detection of heartbeat, breathing, swallowing, and chewing. Additionally, maximum voltage
values depending on the flexion levels of the finger, upper bending, lower bending, and wrist rotation
are also reported (a) [21]. Flexible piezoelectric sensor with the corresponding exploded drawing
showing the multilayered structure (b). Here the deglutition wave recognition and segmentation with
the comparison of the sEMG recorded signals of a single swallow action are reported. Additionally,
spontaneous frequency, duration time, and latency of a swallowing act are also displayed [34].

A minimally invasive sensor for monitoring of the deglutition capabilities of the
patients to evaluate dysphagia issues was developed by Natta et al. [34]. A piezoelectric
sensor worn directly on the throat was used to transduce larynx movements. The sensor
was made using a piezoelectric aluminum nitride (AlN) thin film, sandwiched between
two molybdenum (Mo) electrodes deposited on a very thin flexible polyimide substrate,
reaching an overall thickness of 26 µm and a weight <2 g. A sticky PDMS–PEIE polymer
layer was then used to attach the sensor to the skin (Figure 10b). The output voltage was
successfully transmitted to a smartphone via wireless Bluetooth technology after being
amplified and filtered by a suitable conditioning circuit. Duration of the swallowing act,
frequency of spontaneous saliva deglutition, and latency were easily detected by this sensor,
allowing an objective evaluation of the subject’s swallowing capability and providing, at the
same time, an early diagnosis of pathological conditions. The data collected were compared
with standard surface electromyography (sEMG) signals, showing that the sensor is a valid
alternative to classical devices (Figure 10b).

A sensor to detect and monitor swallowing by converting tongue movements into an
output voltage generated by the triboelectric effect in single-electrode mode, also exploited
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to self-power the sensor itself thereby significantly reducing the power consumption of the
whole system, was developed by Yun et al. [33].

Three layers of different materials were used for fabricating the triboelectric-nanogenerator
for swallowing rehabilitation (TSR): a layer of polytetrafluoroethylene (PTFE) for triboelectric
induction, a copper (Cu) electrode, and a top layer of polyethylene terephthalate (PET).
The triboelectric nanogenerator for swallowing rehabilitation was then applied to the
palate to detect tongue movements. It demonstrated good sensitivity of 47 mV/kPa even
to weak tongue pressures ranging from 20 to 100 kPa. Two different TSR devices were
then characterized, the TSR–B with bare PTFE and the TSR–T60 with 60◦ tilted PTFE.
Peaks of the open-circuit voltage of approximately 13.10 V (with a short-circuit current of
0.512A) were measured for the TSR–B. An increment of the output voltage of approximately
189%—approximately 24.76 V—was observed for the tilted TSR–T60. The power density
was then calculated to define the energy generation for self-power low-consumption devices
when the sensors were connected to a variable resistance load.

Additionally, the sensors’ sensitivity was calculated by analyzing the output voltage
curve as a function of the applied pressure. In this case, the pressure range was split into
two sub-ranges, namely R1 from 20 to 180 kPa and R2 from 300 to 3.4 MPa. The voltage vs.
pressure curve slope was then 35 mV/kPA for the TSR–B and 47 mV/kPa for the TSR–T60
in the range R1 and 1.10 mV/kPa and 2.20 mV/kPa in the range R2, respectively. Finally,
humidity tests were also performed, increasing the humidity percentage from 30% to 80%
to characterize the sensor in a humid environment, reproducing similar test conditions
to the mouth. Figure 11 displays a schematic illustration of the triboelectric-based sensor
following one cycle of tongue movement, the generated output response, the sensitivity,
and its performance when changing the humidity and environmental conditions.
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Figure 11. Schematic illustration of fabricated TSR and the working mechanism in one operating
cycle (a). Open circuit voltage and short circuit current measured on TSR–B and TSR–T60, including
the tension produced when the tilting varies, the pressure sensitivity of both the sensors, the output
voltage when the humidity increases up to 80%, and the power density according to the load
resistors (b) [33].



Sensors 2023, 23, 1856 22 of 40

Besides post-operative rehabilitation after trauma or injuries, numerous wearable de-
vices were presented in the scientific literature for rehabilitation after damage to the nervous
system due to stroke. In particular, G. Li et al. presented an untethered adaptable thumb
exoskeleton that actively supports the thumb’s three degrees of freedom of motion [114].
An adaptive thumb and spherical mechanisms constitute the exoskeleton, including slid-
ers made of ball-type linear bearings to reduce the rolling friction. The exoskeleton’s
workspace, self-alignment, interface forces, admission controller, and grasping aid perfor-
mance were tested experimentally. The workspace and self-aligning tests indicated that
the exoskeleton could obtain a significant thumb joint workspace and self-alignment. The
test results suggested that the presented robot-assisted rehabilitation system could reduce
the tangential interaction force by 76.8% and enhance comfort. Additionally, experiments
demonstrated that the exoskeleton could improve the thumb’s grasping capability.

Similarly, in [115], the authors used wearable inertial sensors placed on different
body parts, which gather the movement data and transmit them through Zigbee to a
PC. Pre-processing methods were applied to enhance the signal quality before extracting
movement features through the multi-sensor fusion technique. Then, the DTW (dynamic
time warping) method was employed to determine movement scores. These scores are
provided as input to a machine learning model (SVR—support vector regression), using
the FMA (Fungl–Meyer assessment) indexes as the output classes’ labels. The trial research
involved 120 stroke patients, and statistical evaluations of the two assessment techniques
were conducted. The experimental results revealed that R2 for the score regression analysis
for both approaches was 0.9667, whereas the mean deviation was 0.30., The percentage of
deviations and relative deviations inside the interval mean ± 1.96 SD (standard deviation)
were equal to 92.50% and 95.83%. Additionally, Y. Ren et al. proposed a robotic ankle device
to generate extensive passive and active movement training in post-stroke patients [116].
It includes a force sensor, a rotational actuator, a leg brace, and a foot holder. Adjusting
the straps may accommodate each person’s leg and foot size. The device is actuated by a
DC motor controlled by an encoder to measure the angle change. The resulting system
guides the patients in motor relearning, providing motivational feedback to the patient
during the rehabilitation training in the active training modality. Experimental tests on
ten post-stroke patients demonstrated that 12 sessions could improve motor control ability
and neuroplasticity.

Table 4 outlines some of the most important specifications of the analyzed sensors and
devices so far, performing a classification according to sensing technology, used materials,
sensitivity, transmission technology, area of the body where the sensor is usually applied,
response time, and operating range.

Table 4. Specification comparison of analyzed rehabilitation monitoring systems.

Reference Sensing
Technology Materials Sensitivity Range of

Detection
Body Area of
Application

Measured
Parameters

Response
Time

Transmission
Technology

Ianculescu
et al. [54] IMU N.A. (*) N.A. (*) N.A. (*) Knee Knee bending

angle N.A. (*) Wireless

He et al.
[29] Capacitive MXene

(Ti3C2Tx)/AgNWs
0.01–2.04
kPa–1 (A) 0–2 kPa

Throat, cheek,
finger, knee,
elbow, foot

Voice recognition,
air-blowing intensity,
joint bending angle,
walking frequency,

and weight pressure

ms Wired

Chen et al.
[53] Capacitive Nickel-coated

fabric N.A. (*) N.A. (*) Belly,
throat, finger

Breathing
frequency and
intensity, voice

recognition, finger
bending angle

5–50 µs Wired

Lei et al.
[28] Capacitive ACC/PAA/alginate

hydrogel 0.17 kPa–1 (A) 0–1 kPa Finger,
throat, wrist

Finger bending
angle, voice recogni-

tion, heartbeat
N.A. (*) Wired
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Table 4. Cont.

Reference Sensing
Technology Materials Sensitivity Range of

Detection
Body Area of
Application

Measured
Parameters

Response
Time

Transmission
Technology

Park et al. [61] Capacitive PDMS AgNW CFs 0.015 kPa–1 (A) 10–50 kPa Belly
Breathing

frequency and
intensity

N.A. (*) Wired

Yao e Zhu [55] Capacitive AgNW/PDMS
Ecoflex

1.62 MPa–1 (A)

below 500 kPa
Up to 1.2

MPa Knee, finger
Finger bending and

knee bending
frequency

40 ms Wired

Sheng et al.
[57] Capacitive GaInSn N.A. (*) Stretchability

up to 250% Elbow, wrist Wrist and elbow
bend angles <10 ms Wireless

Yun et al.
[33] Triboelectric PET/Cu/PTFE 47 mV/kPa 20–100 kPa Tongue

Pressure and
frequency of

tongue movements
N.A. (*) Bluetooth

Tan et al.
[62] Piezoresistive rGO–Ag 3.90 kPa–1 (B) 0–100 kPa Foot

Pressure
distribution on the

foot sole
170 ms Wired

Tognetti et al.
[25] Piezoresistive

Carbon-coated PA
and lycra elastic

yarns

(Angular
sensitivity)
960 Ω/◦ (C)

N.A. (*) Knee Knee
bending angle N.A. Wired

Ge et al.
[56] Piezoresistive PDMS AgNW 4.29 N–1 (D) 0–2 N Wrist, finger

Heartbeat and
finger

bending angle
8 ms Wired

Zhu et al.
[32] Piezoresistive TPU/CNT–CNC GF = 321 Stretchability

> 500%

Throat, finger,
elbow, knee,
neck, chest

Voice recognition
and finger, elbow,

knee, and neck
bending degree

N.A. (*) Wired

Dan et al.
[30] Piezoresistive PDMS/AgNW

14.1 kPa–1,
4.8 kPa–1,

1.84 kPa–1 (B)

(0–3.5) kPa,
(3.5–10) kPa
(10–40) kPa

Wrist, nose,
cheek, throat

Heartbeat,
exhalation frequency,

facial expression
signals, and

voice recognition

47 ms Wired

Kim et al.
[27] Piezoresistive PUD/CNTs

0.31 kPa–1,
0.1 kPa–1,

0.03 kPa–1 (E)

<1000 Pa,
(1–20) kPa,

>20 kPa

Wrist, throat,
finger, cheek

Arterial and
jugular heartbeat,

finger bending
angle, cheek

bulging frequency,
voice recognition

36.7 ms Wired

Lu et al.
[44] Piezoresistive PANI/PAAMPSA

GF = 1.7
(100% strain)

GF = 14.52
(1500% strain)

Stretchability
up to 1935%

Wrist, elbow,
finger,

ankle, knee

Finger, elbow, wrist,
and knee bending
angle, frequency of

walking and jumping

N.A. (*) Wired

Kim et al.
[24] Piezoelectric PVDF–elastic

threads N.A. (*) 0–5 N
Shoulder,
forearm,

elbow, wrist

Bending and
rotation angle of
shoulder, wrist,

and forearm

N.A. (*) Bluetooth

Wang et al.
[21] Piezoelectric (P(VDF–

TrFE)/MWCNT) 540 mV/N 0.5–5.0 N Wrist, throat,
cheek, nose

Heartbeat, intensity
and frequency of

breathing,
swallowing

and chewing

N.A. (*) Wired

Natta et al.
[34] Piezoelectric AlN/Mo

on Kapton 0.025 V/N 10–50 kPa Throat

Frequency,
duration, and

latency of
swallowing

15 ms Wireless

(*) N.A. Not Available. (A) Sensitivity is calculated by normalizing the capacitance variation as ∆C/C0

P where P
is the applied pressure. (B) Sensitivity is calculated by normalizing the resistance variation as ∆R/R0

P where P is
the applied pressure. (C) Angular sensitivity is calculated as ∆R/∆α where α is the bending angle. (D) Sensitivity
is calculated by normalizing the resistance variation as δ(∆R/R0)

δ(F) where F is the applied force. (E) Sensitivity is

calculated by normalizing the current variation as δ(∆I/I0)
δ(P) where P is the applied pressure.

5.2. Devices and Systems for Tracking an Athlete’s Performance

The current wearable sensors for sports tracking still have several limits to overcome,
such as the high cost and high energy consumption, as well as poor fitting features and
elasticity making them uncomfortable to be worn and hamper the movements during sports
activities. However, innovative and challenging solutions have recently been developed in
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different sports fields, such as combat sports, basketball, volleyball, soccer, running, and
weightlifting [117–124].

Masihi et al. designed a capacitive pressure sensor to detect impacts on the player’s
head while using a helmet [46]. The transducer consists of two conductive textile electrodes
and a porous layer of PDMS as a dielectric layer. The porosity of the dielectric layer was
obtained by dissolving carbon dioxide (CO2) gas in a compound of PDMS and sodium
bicarbonate (NaHCO3) and mixing it with nitric acid (HNO3). With this mixture, nine
sensors with different porosities and dielectric constants were fabricated. The difference
in the dielectric constant is mainly due to the percentage of HNO3 used. From laboratory
tests, the device with 15:1 as the PDMS/HNO3 ratio had the highest sensitivity of 0.3 kPa–1

for applied pressures <50 Pa and 3.2 MPa–1 in the pressure range from 0.2 to 1 MPa.
De Fazio et al. developed a self-powered smart insole based on piezoresistive and

inertial sensors (Figure 12a). The insole relies on a matrix of eight custom piezoresistive
sensors developed using a pressure-sensitive polymeric layer (i.e., Velostat), whose resistive
values are read by an acquisition system made with a multiplexer and Arduino Lilypad [63].
The insole is also equipped with an inertial sensor to monitor walking and step counting, a
power module with a battery, and a piezoelectric harvester to recharge it, exploiting the
same pressures applied during gait and walking movements. A Bluetooth module is used
to transmit the data to a PC. The insole was tested while walking at a speed of 1 m/s, and
the acquired data were used to build a distribution pressure map.

A hybrid sensor used to monitor the technical movements of taekwondo athletes was
made by Ma et al. The proposed e-textile sensor can detect elongation and pressure stimuli
by exploiting both piezoresistive and capacitive effects [40]. The sensor was fabricated
starting from commercial polyacrylonitrile (PAN) fibers, coated with carbon nanotubes
(CNTs), and reduced graphene oxide (rGO) to make it conductive. Then, the two achieved
fibers were rolled up, forming a helical structure wound around a polyurethane (PU)
multifilament, obtaining a conductive core-sheath yarn sensitive to stretch (Figure 12b).

The sensor was designed considering the dobok taekwondo uniform should with-
stand substantial pressure impacts (>100 kPa) and extensive stretch movements (with a
strain > 50%). Core-sheath yarns were fabricated with an increasing winding number from
20 to 70 along a distance of 10 cm. To test the elongation ability of the e-textile when used
as a strain sensor, it was stretched, and the relative resistance variation ∆R/R0 as a function
of the stretching was measured. The characterization results showed that yarns from 20 to
50 twists exhibited a negative variation in the resistance response, while yarns with 60 and
70 twists positively increased. Experiments were also performed to characterize the capaci-
tive behavior as a pressure sensor by acquiring the relative capacity variation ∆C/C0 in a
range of pressures up to 110 kPa (a typical practical case). In the ranges 0–9 kPa, 9–37 kPa,
and 37–110 kPa the sensitivity was then calculated, and values of 0.112 kPa–1, 0.0283 kPa–1,
and 0.0021 kPa–1, respectively, were reported. The sensor also had a fast response to pres-
sure pulses between 1.5 and 10 kPa and good stability of the output response even after
100,000 cycles of long tests. Moreover, practical cases were successfully analyzed, and the
sensor was integrated into the uniform on the chest to identify the pressure distribution of
a blow and on the knee to monitor the athlete’s kicks, allowing to identify the angle of the
bending knee (the experimental results are reported in Figure 12b).
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Figure 12. Examples of capacitive and piezoresistive hybrid sensors: (a) The developed sole with
the piezoelectric integrated sensors, the acquisition system, and the Bluetooth module. Below, the
characteristic curves R vs. F (in Kgf and with a logarithmic scale) for five Velostat-based pressure
sensors are shown for different sizes, 3 cm × 3 cm, 1 cm × 1 cm, and 3 cm × 1 cm [63]. The yarn
matrix structure in the inset shows some examples of the final fabric’s elongation, bending, and
twisting (b). A map of the pressure distribution during the hit cycle and resistance variation at
different knee bending angles are shown on the right. Some practical scenarios of using the integrated
sensor on the chest and knee are also reported [40].
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A piezoelectric pressure sensor for a wireless wearable sensing system obtained from
the combination of tetragonal-phase BaTiO3 nanowires and electrospun PVDF nanofibers
was designed and proposed by Guo et al. [22]. The system also includes an electronic
board with a module for amplifying the acquired signal, a power converter, a module for
controlling the data conversion, and a Bluetooth module for wireless transmission. The
output voltage was evaluated using an ad hoc set-up and applying a controlled pressure.
The maximum output current value measured on 100% PVDF fibers was approximately
47 nA, while that measured on the PVDF nanocomposite with 3% BaTiO3 nanowires was
105 nA. The sensor exhibits a sensitivity of 0.017 kPa–1 and a response time of 290 ms,
estimated from the voltage-over-time curve in one contact cycle. A durability test of
1750 contact cycles at a frequency of 3.5 Hz was also performed, showing the sensor has
very good signal stability over time. Practical tests were carried out. The sensor was then
embedded inside a sole to track walking, running, and squatting movements. Current
peaks of 97 nA, 241 nA, and 331 nA were measured, respectively. The sensor was also
attached to the elbow, evaluating the flexion and extension angles at a frequency of 1.15 Hz.
Here, the maximum current generated was 36 nA at an elbow bending angle of 120◦. The
sensor was finally used to detect slight vibrations of the vocal cords when placed when
pronouncing short sentences, such as “Hi” and “Oh my God”. The acquired signal during
these tests is reported in Figure 13a.

Still exploiting the piezoelectric effect, Zhao et al. designed a self-powered sensor
to monitor basketball players’ movements and gestures [39]. The sensor was fabricated
starting from a mixture of dimethyl formaldehyde (DMF) and PVDF poured onto a silicone
substrate. Then, thin Ag electrodes of 300 nm thickness were applied on both sides of
the piezoelectric film. After wiring it, the sensor was attached to the elbow. Generated
voltage spikes of 2.172 V at an angle of 150◦, 3.48 V at 120◦, 6.052 V at 90◦, and 8.08 V at
60◦ were measured. Moreover, the relative piezoelectric output at different frequencies
was also acquired, keeping the same bending angle. Voltages of 5.24 V, 5.24 V, 5.328 V,
and 5.32 V were measured at 0.5, 1, 1.5, and 2 Hz, respectively. Finally, the sensor was
positioned on the popliteal fossa of an athlete for in vivo tests; the generated voltage during
the jumping, walking, and running activities was successfully acquired, showing voltage
peaks of 9.387 V, 1.02 V, and 2.04 V, respectively (Figure 13b).

Liu et al. proposed a similar self-powered piezoelectric sensor composed of polarized
PVDF film for voice recognition and monitoring of arm and hand movements of volleyball
players. Here, the sensor was also used as an energy harvester to scavenge voltage from
the continuous movements of the volleyball player to charge a capacitor and power up
a Bluetooth module for wireless transmissions [42]. The signal generated by the sensor
during hand bending and movements is displayed in Figure 13c.

In addition, Li et al. developed a pressure sensor that, thanks to its high sensitivity
(approximately 1.9 V/kPa–1), was used to detect very slight athlete movements and prevent
overtraining injuries [64]. The sensor was made of polyvinylidene fluoride and hexafluoro-
propylene (PVDF–HFP) nanofibers, obtained through electrospinning and painted with
zinc oxide (ZnO) solution using an atomizing gun. The piezoelectric layer obtained was
sandwiched between two aluminum layers. Wires were then used to collect the voltage gen-
erated by the sensor. Different amplitude forces—from 0.02 N up to 0.5 N—at a frequency
of 1 Hz were applied, and the corresponding response time was estimated at approximately
20 ms. Furthermore, the sensor’s sensitivity was calculated, with a maximum value of
1.92 V/kPa–1. Activities such as running and breaking, usually performed continuously
during a match, were monitored (Figure 13d).
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Figure 13. Piezoelectric sensors: PVDF/BaTiO3-based sensor integrated into a sole with the corre-
sponding output currents generated during squatting, walking, and running activities, elbow ex-
tension and flexion to 60°, 90°, and 120°, and the pronunciation of short sentences (a) [22]. 
PVDF/DMF-based sensor applied on an athlete’s elbow and the corresponding voltage signals gen-
erated at different bending angles and during different physical activities (b) [39]. A schematic dia-
gram of different bending angles of the palm during the test of the PVDF sensor. The output piezo-
electric voltages of three subjects when finger and elbow bending angle change are also reported (c) 
[42]. Soccer player motion monitoring test using the PVDF–HFP-based sensor (d). Pictures of a soc-
cer players’ actions, showing normal ankle motion, abnormal ankle motion, normal knee motion, 
and abnormal knee motion. Moreover, the “brake” action of the same motion is also monitored and 
reported [64]. 

Li et al. [41] developed a low-cost, sweat-resistant triboelectric (BSRW–TENG) sensor 
for tracking movements during individual exercises such as leg and bicep curls and run-
ning. The sensor was used to monitor and track three different sports activities, including 

Figure 13. Piezoelectric sensors: PVDF/BaTiO3-based sensor integrated into a sole with the corre-
sponding output currents generated during squatting, walking, and running activities, elbow exten-
sion and flexion to 60◦, 90◦, and 120◦, and the pronunciation of short sentences (a) [22]. PVDF/DMF-
based sensor applied on an athlete’s elbow and the corresponding voltage signals generated at
different bending angles and during different physical activities (b) [39]. A schematic diagram of
different bending angles of the palm during the test of the PVDF sensor. The output piezoelectric
voltages of three subjects when finger and elbow bending angle change are also reported (c) [42]. Soc-
cer player motion monitoring test using the PVDF–HFP-based sensor (d). Pictures of a soccer players’
actions, showing normal ankle motion, abnormal ankle motion, normal knee motion, and abnormal
knee motion. Moreover, the “brake” action of the same motion is also monitored and reported [64].

Li et al. [41] developed a low-cost, sweat-resistant triboelectric (BSRW–TENG) sensor
for tracking movements during individual exercises such as leg and bicep curls and running.
The sensor was used to monitor and track three different sports activities, including tests
before and after sweating, to verify the waterproofing ability of the materials used and the
stability of the output response. In the first case, the sensor was applied to the elbow to
monitor the degree of bending during the biceps curl, obtaining feedback on the correct
execution of the exercise. Similarly, the sensor was fixed on the back of the knee to monitor
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the leg curl. Finally, it was embedded into the sole of the shoes to detect the steps during
walking and running. The acquired signals are displayed in Figure 14.
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Figure 14. BSRW–TENG sensor applied to the elbow for monitoring biceps curl, leg curl, running, and
walking—before and after sweating—with the corresponding plots of generated output voltages [41].

Table 5 outlines the most important specifications of the analyzed systems for tracking
sports activities, classified according to sensing technology, used materials, sensitivity,
transmission technology, area of the body where the sensor is usually applied, and response
time and transmission technology used.

In Figure 15, a radar chart is reported, comparing the analyzed sensors and devices,
both for rehabilitation and sports tracking purposes, according to their technological
maturity, flexibility, ability to be completely integrated into clothes and garments, sensitivity,
and range of detection.
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Table 5. Specification comparison of analyzed sports activity monitoring systems.

Reference Sensing
Technology Materials Sensitivity Range of

Detection
Body Area of
Application

Measured
Parameters

Response
Time

Transmission
Technology

Masihi et al.
[46] Capacitive PDMS 0.3 kPa–1

3.2 MPa–1 (A)
<50 Pa

0.2–1 MPa Head Head pressure
distribution 115 ms Wired

Li et al.
[41] Triboelectric PDMS–elastic

resin N.A. (*) 2–260 N Elbow,
knee, foot

Knee and elbow
bending angles,
pressure, and

frequency of steps in
running and walking

N.A. (*) Wired

Yang et al.
[50] Triboelectric

TPU/silicone
rub-

ber/conductive
fabric

0.054 V/kPa–1 2–200 kPa Finger, wrist,
elbow, foot

Finger, wrist, and
elbow bending
angles; plantar

pressure distribution
during walking,
running tiptoe,
and jumping

N.A. (*) Wired

Guo et al.
[22] Piezoelectric PVDF/BaTiO3

(NW) 0.017 kPa–1 (B) 1–40 kPa Foot,
elbow, throat

Elbow bending angle,
voice recognition,

pressure, and
frequency of steps in
running and walking

290 ms Bluetooth

Zhao et al.
[39] Piezoelectric PVDF/Ag/PET N.A. (*) N.A. (*)

Elbow, knee,
wrist,

finger, throat

Vocal recognition;
elbow, wrist, finger,
and knee bending

angle; walking,
jumping, and

running frequency

N.A. (*) Bluetooth

Li et al.
[64] Piezoelectric (PVDF–

HFP)/ZnO 1.92 V/kPa–1 0.02–0.5 N Knee, ankle

Frequency and
degree of the knee
and ankle bending

during running

20 ms Bluetooth

Liu et al.
[42] Piezoelectric PVDF N.A. (*) N.A. (*) Throat,

elbow, finger

Vocal recognition,
finger and elbow
bending angles

N.A. (*) Wireless

Saponara
et al. [47]

IMU, strain
gauge, electro-

goniometer
Aluminum N.A. (*) Hundreds of g

(gravity force)
Hip, knee,

elbow

Speed, acceleration,
pressure, trajectory,

and response time of
punch and kick

N.A. (*) Bluetooth

Ma et al.
[40]

Resistive–
capacitive

GO–CNT/PU
e-textile

0.1124 kPa–1,
0.0283 kPa–1,

0.0021 kPa–1 (A)

0–9 kPa,
9–37 kPa,

37–110 kPa
Chest, knee

Hit pressure
distribution and knee

bending angles
120 ms Wired

Zhu et al.
[18]

Triboelectric/
piezoresistive

PTFE/latex–
PVDF/hydrogel N.A. (*) N.A. (*) Wrist Wrist bending and

rotation angles N.A. (*) Bluetooth

Mariello
et al. [43]

Triboelectric/
piezoelectric

PDMS/
Ecoflex–
AlN/Mo

59.4 mV/kPa–1

160 mV/kPa–1,
3.7 mV/kPa–1

0–50 kPa,
50–120 kPa,
120–400 kPa

Foot, elbow,
wrist, finger,
ankle, knee,

neck

Hit pressure on
human skin; walking
and running speed;

finger gestures; ankle,
elbow, neck, wrist,
and knee bending

N.A. (*) Wired

(*) Not Available. (A) Sensitivity is calculated by normalizing the capacitance variation as ∆C/C0

P where P is the
applied pressure. (B) Sensitivity is calculated by normalizing the voltage variation as ∆V/Vs

dP where P is the applied
pressure and Vs is the saturation voltage.

The reported Figure 15 integrates evaluation criteria that are difficult to objectively
estimate, referring to miscellaneous and very different properties for each analyzed technol-
ogy. In particular, flexibility is evaluated as the maximum percentage of the analyzed work
proposing fully flexible devices. Integrability is, instead, derived considering the number
of analyzed works proposing a technology fully integrated or potentially integrable. Here,
10 (the maximum) is assigned to devices already integrated, whereas 5 and 0 are used for
devices potentially integrable and not integrated at all, respectively.

Finally, technological maturity is determined considering the number of works/papers
proposing that transduction mechanism so that the maximum number of cited works corre-
sponds to 10 in the chart of technological maturity. These criteria have been qualitatively
graded based on the authors’ judgment following a thorough review of the recent available
literature. They represent a dynamic picture of the current state-of-the-art related to the
analyzed applications. Despite being qualitative, the authors think the set of criteria is
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important for the scientific community to evaluate the advantages and disadvantages of
each technology. Therefore, larger-surfaced hexagons should, in theory, represent the best
transduction mechanisms to be utilized.
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Sensors 2023, 23, x FOR PEER REVIEW 31 of 42 
 

 

  

Figure 15. Radar chart showing a comparison between the analyzed sensors and devices according 
to their technological maturity, flexibility, ability for full integration into clothes and garments, sen-
sitivity, and range of detection. 

Finally, from these radar graphs, it is clear that piezoelectric sensor technology is the 
most mature, considering the numerous advances made in recent years from the point of 
view of performances (i.e., sensitivity, stability, robustness), integrability, manufacturing 
process, and costs. Additionally, piezoresistive and capacitive sensors offer good perfor-
mance in terms of sensitivity; thanks to textile-based and polymeric solutions, such sen-
sors enable their simple integration into cloths. However, piezoresistive sensors have a 
relatively reduced detection range, limiting the applicability of this sensor typology for 
detecting large movements. Triboelectric sensors allow high flexibility and integrability 
thanks to the multitude of materials that can be used for realizing such devices, including 
polymeric materials. 

5.3. Overview of Datasets Related to Sport and Rehabilitation Applications 
In the last few decades, the scientific community and companies have created several 

datasets containing heterogeneous signal parameters (e.g., accelerations, angles, pres-
sures, etc.) that were acquired through different approaches (e.g., inertial, optical, piezo-
resistive, video, etc.), making them publicly available to researchers for developing future 
applications for rehabilitation and sports performance monitoring. 

Considering the datasets gathered using camera-based and optical systems, the UI–
PRMD (University of Idaho–Physical Rehabilitation Movement Data Set) collects motions 
associated with typical exercises performed by patients in physical therapy and rehabili-
tation programs [125]. The UI–PRMD is a freely accessible dataset, including ten rehabil-
itation movements; ten healthy people performed each motion ten times in front of Vicon 
optical trackers and Kinect cameras. The acquired data are the locations and angular ori-
entations of the body joints in the skeletal models measured using both MoCap (motion 
capturing) systems. Likewise, the KIMORE (KInematic assessment of MOvement and 
clinical scores for remote monitoring of physical REhabilitation) dataset is a free dataset 
containing different rehabilitation exercises collected by an RGB–D sensor [126]. The da-
taset comprises skeletal data from five workouts performed by seventy-eight participants; 
these data are a time series of skeleton joint locations recovered from images taken with a 
Kinect. Furthermore, in [127], a multimodal dataset was proposed to analyze and measure 
the quality of movements carried out during karate moves. In particular, an optical mo-
tion capture system, consisting of nine cameras, was employed to record the user motions 
gathered from seven participants. The data underwent post-processing, which included 
identifying the markers, creating the models, and removing noise caused by “ghost” or 
jitter markers. The authors used the created dataset to assess the quality of karate moves. 

Additionally, several datasets reporting inertial data are available, enabling, for in-
stance, the development of machine learning applications. A daily and sports activities 
data set” comprises motion data of 19 daily and sports activities (e.g., sitting, standing, 

Figure 15. Radar chart showing a comparison between the analyzed sensors and devices according
to their technological maturity, flexibility, ability for full integration into clothes and garments,
sensitivity, and range of detection.

Finally, from these radar graphs, it is clear that piezoelectric sensor technology is the
most mature, considering the numerous advances made in recent years from the point of
view of performances (i.e., sensitivity, stability, robustness), integrability, manufacturing
process, and costs. Additionally, piezoresistive and capacitive sensors offer good per-
formance in terms of sensitivity; thanks to textile-based and polymeric solutions, such
sensors enable their simple integration into cloths. However, piezoresistive sensors have
a relatively reduced detection range, limiting the applicability of this sensor typology for
detecting large movements. Triboelectric sensors allow high flexibility and integrability
thanks to the multitude of materials that can be used for realizing such devices, including
polymeric materials.

5.3. Overview of Datasets Related to Sport and Rehabilitation Applications

In the last few decades, the scientific community and companies have created several
datasets containing heterogeneous signal parameters (e.g., accelerations, angles, pres-
sures, etc.) that were acquired through different approaches (e.g., inertial, optical, piezore-
sistive, video, etc.), making them publicly available to researchers for developing future
applications for rehabilitation and sports performance monitoring.

Considering the datasets gathered using camera-based and optical systems, the
UI–PRMD (University of Idaho–Physical Rehabilitation Movement Data Set) collects mo-
tions associated with typical exercises performed by patients in physical therapy and
rehabilitation programs [125]. The UI–PRMD is a freely accessible dataset, including ten
rehabilitation movements; ten healthy people performed each motion ten times in front of
Vicon optical trackers and Kinect cameras. The acquired data are the locations and angular
orientations of the body joints in the skeletal models measured using both MoCap (motion
capturing) systems. Likewise, the KIMORE (KInematic assessment of MOvement and
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clinical scores for remote monitoring of physical REhabilitation) dataset is a free dataset
containing different rehabilitation exercises collected by an RGB–D sensor [126]. The dataset
comprises skeletal data from five workouts performed by seventy-eight participants; these
data are a time series of skeleton joint locations recovered from images taken with a Kinect.
Furthermore, in [127], a multimodal dataset was proposed to analyze and measure the
quality of movements carried out during karate moves. In particular, an optical motion
capture system, consisting of nine cameras, was employed to record the user motions
gathered from seven participants. The data underwent post-processing, which included
identifying the markers, creating the models, and removing noise caused by “ghost” or
jitter markers. The authors used the created dataset to assess the quality of karate moves.

Additionally, several datasets reporting inertial data are available, enabling, for in-
stance, the development of machine learning applications. A daily and sports activities data
set” comprises motion data of 19 daily and sports activities (e.g., sitting, standing, lying
on the back and right, ascending and descending stairs, etc.) performed by eight subjects
for 5 min [128]. In particular, five sensors were applied to five body areas (i.e., torso, right
arm, left arm, right leg, left leg), recording inertial data on nine DoF (i.e., x, y, z accelerome-
ters; x, y, z gyroscopes; x, y, z magnetometers). Similarly, in [129], researchers presented
the human activity recognition using smartphones data set; the trials were conducted on
30 participants aged 19 to 48. Each participant used a Samsung Galaxy S II smartphone
while engaging in six different activities (walking, walking upstairs, walking downstairs,
sitting, standing, and lying). Using the phones’ integrated accelerometer and gyroscope,
they recorded three-axial linear acceleration and three-axial angular velocity at a constant
rate of 50 Hz. The resulting dataset was divided into two sets at random, with 30% of
the volunteers chosen to create test data and 70% of the participants chosen to create
training data.

Moreover, datasets including heterogeneous data typologies are available; for instance,
MoVi (motion video) is a publicly available dataset, including video and inertial informa-
tion [130]. In particular, 60 female and 30 male patients were involved, collecting data
during 20 everyday and sports movements. The movements were captured throughout
five rounds utilizing an optical motion capture system, video cameras, and inertial mea-
surement units (IMU). The dataset includes 6.6 h of IMU data, 9 h of motion capture data,
and 17 h of video from four distinct points of view.

With regard to gait monitoring applications, examples of publicly available datasets
are the gait in aging and disease database [131], the MIT database [132], and the Georgia
Tech dataset [133]. The first one comprises time series of the walking stride interval acquired
from fifteen subjects (i.e., five healthy young adults, five healthy old adults, and five older
adults with Parkinson’s disease) [131]. On flat ground, the subjects constantly traversed a
path free of obstructions. The stride interval was measured using compact force-sensitive
resistors inserted into the shoe. An ankle-worn microcomputer was used to sample the
analog force signal at 300 Hz using a 12-bit A/D converter while simultaneously recording
the data. The interval between foot strikes was then automatically calculated. The datasets
discussed above are summarized in Table 6, classifying them from the point of view of the
number of participants, the detected parameters, the employed acquisition system, and the
suggested application.
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Table 6. Table summarizing the datasets previously discussed, classified according to the number of
participants, the acquisition system, the detected parameters, and the suggested application.

Dataset Provided by No of
Participants Parameters Approach MoCap System

Details
Suggested

Application

UI–PRMD
[125]

University of
Idaho 10

Locations and
angular orientations

of the body joints
Vision-based Vicon optical trackers

Kinect cameras
Monitoring

rehabilitation exercises

KIMORE
[126]

Marche
Polytechnic
University

78 Joint
locations Vision-based Kinect

cameras
Detection motor

dysfunction

M. Capecci et al.
[127]

Marche
Polytechnic
University

7 Joint
locations Vision-based Kinect v1 Evaluation of

karate moves

Daily and sports
activities data set

[128]

Bilkent
University 8 Inertial

data Sensor-based Inertial sensors (25 Hz
sampling frequency)

Activity
recognition

Human
Activity recognition
using smartphones

data set
[129]

University of
Genoa 30 Inertial

data Sensor-based Smartphone
(Samsung Galaxy S II)

Activity
recognition

MoVi dataset
[130]

York
University 90

Camera images,
joint locations,
inertial data

Vision-based
Sensor-based

15 cameras
(Qualisys Oqus 300 and 310)
2 stationary cameras (RGB

Grasshopper2)
2 hand-held cameras (iPhone 7)

17 IMU sensors
(Noitom Neuron Edition V2)

Motion
recognition

Gait in aging and
disease database

[131]
PhysioBank 15 Stride interval Sensor-based Force-sensitive resistors

Normal gait and
Parkinson’s

disease analysis

MIT database
[132] MIT 24 View, time Vision-based Sony Handycam Gait

recognition

Georgia Tech
[133] Georgia Tech 20 View, time, distance Vision-based - Gait

recognition

6. Conclusions and Future Developments

Wearable sensors are a very promising technology for post-rehabilitation and sports-
tracking applications. The assessment of a patient’s physical state, the degree of reha-
bilitation training, and the quality of the rehabilitation effects are crucial in the recovery
process where the collection of a series of data (e.g., movements, bending, joint rotation,
and so on) is useful to provide important tracking feedback to the user. These data allow
for defining the correct therapies and evaluating their effectiveness and patient progress
based on suitable protocols that ensure the patients carry out their physiotherapy programs
even at home. Moreover, they allow for optimizing the exercises and assessing the athlete’s
progress during sports training.

This paper reviewed the state of research on wearable sensors and devices based
on different transduction mechanisms focusing on devices at a micro-electromechanical
scale. The paper provided an overview of capacitive, piezoresistive, triboelectric, piezo-
electric, and inertial transduction methods, distinguishing between wearable sensors for
post-operative rehabilitation monitoring and wearable sensors for athletes’ performance
monitoring. A comparison of the technologies analyzed was then provided, highlighting
the biophysical parameters they can detect and some key features that allow defining the
performance of the sensors. We believe that our review paper shows several novelties
compared to similar review works reported in the scientific literature. In detail, our review
work focuses mainly on biomechanical sensors for monitoring joint movements, lingering
on aspects related to their design, fabrication, and characterization [107]. Other review
works analyze systems for rehabilitation monitoring by considering the system architecture
rather than the sensors used [107]. Additionally, we focused on biomechanical sensors
(i.e., piezoresistive, piezoelectric, inertial sensors, etc.) for monitoring joint movements,
leaving out other sensor typologies (electrochemical sensors, biosignal detection stages,
etc.) [10,107–109]. Furthermore, the presented work analyzes sensing systems for detect-
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ing both rehabilitation parameters and sports performances; in contrast, other papers
deal exclusively with systems for rehabilitation monitoring or sports performance anal-
ysis [9,11,107,108]. Furthermore, similar papers discuss wearable sensing systems and
other typologies of sensing devices (ambient sensors, portable devices, etc.) or report a
general discussion on applying IoT technologies for monitoring sports performance, losing
specificity for the considered topic [9,10,107–109].

In addition, our review work explores different sensor technologies in-depth (e.g.,
piezoelectric, piezoresistive, triboelectric) for joint monitoring without dwelling on specific
sensor classes (such as inertial sensors) or specific application areas (e.g., knee) [9,11,108,109].
Finally, comparative analyses are presented in our review for each discussed topic, com-
paring the performance of the discussed devices and providing insights to establish the
systems ranked by best performances. This analysis is a fundamental contribution to our
review work, not always shown in other similar works [10,11,107–109]. Table 7 summarizes
the advantages of our review paper compared to similar review works. As evident, the
proposed review presents a more complete and in-depth analysis of the leading technolo-
gies for monitoring rehabilitation and sports performances, not limiting the discussion to
specific sensor categories, applications, or monitored body areas.

Table 7. Comparison between the presented review work and similar ones reported in the scientific literature.

References Limitations of Similar Review Papers Advantages of our Review Paper

L. do Nascimento et al.
[134]

- It mainly deals with the architectural aspects of the
discussed systems.

- It does not consider sensors for monitoring
athletic gestures.

- It deals with other sensor typologies (electrochemical
sensors, biosignal detecting stages, etc.).

- It does not present any comparative analyses.

- It deals with the design, fabrication, and characterization of
sensors for monitoring rehabilitation and sports performance.

- It considers both systems for monitoring rehabilitation and
sports performance.

- It focuses only on wearable sensing systems.
- It presents comparative analyses of the discussed systems.

S. Patel et al.
[135]

- It does not consider sensors for monitoring
athletic gestures.

- It is not focused on wearable systems.
- It deals with other sensor typologies (electrochemical

sensors, biosignal detecting stages, etc.).
- It does not present any comparative analyses.

- It deals with the design, fabrication, and characterization of
sensors for monitoring rehabilitation and sports performances.

- It focuses only on wearable sensing systems.
- It considers only biomechanical sensors.
- It presents comparative analyses of the discussed systems.

R. T. Li et al.
[136]

- It considers only sensing systems for monitoring
sports performances.

- It mainly deals with motion-tracking systems based on
inertial sensors.

- It does not present any comparative analyses.

- It deals with sensing systems for monitoring both
rehabilitation and sports performance.

- It focuses on the main typologies of biomechanical sensors
for monitoring rehabilitation and sports performances.

- It presents comparative analyses of the discussed systems.

D. R. Seshadri et al.
[10]

- It is not focused on sensing systems for detecting
body movements.

- It considers only sensing systems for monitoring
sports performance.

- It does not present any comparative analyses.

- It considers only sensing systems for detecting
body movements.

- It deals with sensing systems for monitoring both
rehabilitation and sports performance.

- It presents comparative analyses of the discussed systems.

Y. Zhao and Y. You
[9]

- It considers only sensing systems for monitoring
sports performance.

- It reports a general discussion on sensor technology for
motion detection, not dwelling on specific systems
reported in the literature.

- It analyses IoT-based wearable systems for monitoring
sports performance, not focusing on the sensory aspects.

- It mainly deals with motion-tracking systems based on
inertial sensors.

- It deals with sensing systems for monitoring both
rehabilitation and sports performance.

- It provides an in-depth discussion of several sensing
systems for motion detection reported in the
scientific literature.

- It deals with the design, fabrication, and characterization of
sensors for monitoring rehabilitation and
sports performance.

- It focuses on the main typologies of biomechanical sensors
for monitoring rehabilitation and sports performance.

S. Bahadori et al.
[11]

- It focuses on knee-motion detection systems.
- It mainly deals with motion-tracking systems based on

inertial sensors.
- It does not present any comparative analyses.

- It considers sensing systems for monitoring different joints
and body movements.

- It focuses on the main typologies of biomechanical sensors
for monitoring rehabilitation and sports performance.

- It presents comparative analyses of the discussed systems.

With regard to the future perspectives for wearable systems for monitoring rehabilita-
tion and sports performances, several factors must be considered. In addition to the full
integration of sensors/actuators, energy sources, procession, and communication within
the clothes, future developments of wearable medical systems are facing toward extending
the monitoring capabilities, improving the user’s comfort, and making the manufacturing
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process more simple, scalable, and sustainable. In detail, new textile-based sensor structures
could be developed, featuring multiple sensing capabilities, reduced invasiveness, and
high reliability. Examples of devices complying with such characteristics are already under
development, combining different sensing mechanisms into a textile sensor, providing
them with extended sensing capabilities and thus improving their applicability [137,138].
Furthermore, advanced electronic textile solutions must be designed, enabling their inte-
gration into fiber-based textile devices, and ensuring improved optical and mechanical
capabilities. Such solutions must be characterized by low power consumption or have
self-sustainable device features, along with being bio-compatible to avoid irritations caused
by their prolongated contact with the skin.

Additionally, new haptic feedback technologies could be developed, including inflat-
able interfaces and dynamic textile shapes (e.g., moving origami textile structures [139]).
These solutions may improve the wearing experience of the wearable device, making it
more pleasant during long periods of rehabilitation. In this context, customized design and
digital manufacturing may be obtained through 3D scanning and 3D printing technologies,
altering their shape and functionality depending on specific demands [140]. The possibility
of precisely and comfortably positioning the sensors for specific patients is made possible
by customization in design.

Furthermore, textile-based displays for discretely providing visual feedback could be
developed and integrated into clothes. Recently, textile-based OLEDs were proposed and
their usage in practical situations demonstrated [141]. The textile-based OLEDs demon-
strated a consistent lifespan under ambient settings, sufficient mechanical toughness to
withstand deformation caused by human movement, and washability, i.e., the ability to
keep their optoelectronic capabilities even in wet situations such as rain, sweat, or washing.
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