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A System Dynamic Approach for the Smart Mobility of People: 
Implications in the age of Big Data 

 
 
Abstract  

 
Mobility of people can be configured as an information intensive process resulting from a complex set of 
factors. Its effective implementation requires the adoption of methods able to leverage on a set of complex 
and dynamic variables, and mainly on a huge amount of data available. Moving from this assumption, 
this paper aims to demonstrate that system dynamics could present a useful approach for optimising 
decision making for people’s mobility. The conceptual model is built by using the principles of system 
dynamics methodology and is based on causal feedback relationships among the various factors related 
to the different needs of people’s mobility. The causal feedback loops and interrelationship among various 
parameters illustrate the dynamicity and the influence of parameters on one another. The simulation 
analysis was conducted to dynamically evaluate six scenarios corresponding to the different solutions 
available for particular segments of demand. Findings highlight that the modelling approaches could guide 
the city planners to evolve responsive policy interventions for further developing smart mobility of people. 
Implications for policy makers regard the developing sustainable mobility scenarios based on the analysis 
of big data from the adoption of digital platforms grounded on the simulation model.  
 
Keywords – Big Data, Smart Mobility, Data Science, System Dynamics, Simulation Model, Decision 
Making. 
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1. Introduction  

The mobility of people is a critical and relevant driver for cities’ smart growth and regions’ intelligent 
development (Eskandarpou, et al., 2019; Albino et al., 2015; Neirotti et al., 2014; Giffinger, et al., 2007). 
Its continuous evolution is nurtured by the dissemination of digital and smart technologies that have 
impacted its traditional configuration and are assuring its characterisation as a data driven process (Qiu, 
et al., 2019). Even if people and users are intuitively central in the design and implementation of smart 
mobility services, interest in smart mobility issues continues to grow in a multidisciplinary community of 
scholars and researchers (Faulin, et al., 2019). Despite this, the research has failed to focus on the meaning 
and implications of smartness from users’ perspective, which remains an unexplored area (Qu et al., 2019; 
Papa and Lauwers, 2015).  
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The mobility of people presents broad cross-sectorial implications and can offer a relevant contribution 
to the improvement of people’s quality of life, by impacting companies’ competitiveness and territories’ 
socio-economic and environmental goals (Faulin, et al., 2019). As a complex system impacting on a large 
community of stakeholders, such as citizens, government, businesses, environments (Fontoura et al., 
2019), the mobility of people requires the adoption of an intermodal perspective (Szyliowics, 2003), 
increasingly characterized by embracing smart technologies and innovative methods to maximize 
accessibility, minimize transport consumption, contribute to the mitigation of social and environmental 
challenges and to improve the quality of life (Schaffers, et al., 2011). 
 
Conceived in a complex scenario characterized by the ubiquity of information and the wide presence of 
sensors, webcams, and other smart devices, the mobility of people has become increasingly configurable 
as a data driven process (Badii, et al., 2019). This is because in all phases of mobility, users’ access and 
generate a huge amount of data and also because in designing and executing their mobility, people are 
called to leverage a large, dynamic set of variables. The development of big data, digital technologies and 
smart devices has impacted on the transportation systems by producing a radical change in users’ 
behaviour during their journey as well as in the ways they conceive, plan and execute their mobility (Qiu 
et al., 2019; Del Vecchio et al., 2018).  
 
In such a scenario, management of people’s mobility by public and private organisations requires the 
adoption of smart and dynamic decision-making approaches able to leverage on a large number of 
variables evolving in real time (Shepherd, 2014). Big data can be generated by a plurality of sources and 
can present different natures, as structured, semi-structured and unstructured data (Qiu, et al., 2019; De 
Mauro et al., 2016; La Valle et al., 2011). It is mandatory to identify new data mining and analytics 
technologies as well as approaches able to allow prediction and simulations results to support managers 
in the challenge of managing the complex network of relationships around organisations and institutions 
(De Mauro et al, 2016).  
 
In this context, system dynamics arises as a useful approach for managing the complexity of variables and 
optimising the decision making process related to the mobility of people in the Big Data context. System 
dynamics is a recognized methodology to manage the complexity characterising systems when several 
elements interact with each other, as well as analysing their evolutionary dynamics from a qualitative and 
quantitative point of view (Gallo, 2008). The recent debate on system dynamics has allowed verifying its 
wider potential of application in different industrial fields (Bianchi, 2009; Dubois and Holmberg, 2000; 
Faham et al 2017; Fiorani, 2010; Sterman, 1992; Rodrigues, 1994; Roda et al., 2017) and its usefulness 
for establishing regional development strategies (Del Vecchio and Oppong, 2019). Despite this, the 
application of system dynamics in the context of people’s mobility is under-researched. Also, to the best 
of our knowledge, few scholars have attempted to apply it in the context of big data for smart mobility. 
 
Framed in the above premises, this paper aims to contribute to the debate on decision-making methods 
for people’s smart mobility by focusing on system dynamics as a useful methodology for modelling and 
simulating alternative model solutions for human mobility. The model proposed is a pivotal test with 
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interesting speculations on the perspective of big data and offers the basis for a wider replication in the 
decision processes of individuals, firms and public stakeholders. 
 
The remainder of the paper is structured as follows: section 2 introduces the theoretical background 
around the topic of people’s mobility and its smart configuration. Section 3 describes the research 
methodology. Section 4 highlights the evidence related to six simulation scenarios developed with Vensim 
software. Section 5 discusses the simulation model, and the final section concludes the paper describing 
the main contributions, its implications for theory and practices, and future research. 

 
2. Theoretical background 

 
2.1. Smart Mobility in the age of Big Data 

Smart mobility is a topic of interest to a growing community of scholars and researchers. It has been 
identified as a buzzword referring to the combination of approaches and technologies for more intelligent 
and sustainable transportation of people and goods (Faulin, et al., 2019; Papa and Lauwers, 2015). 
Enabled by the dissemination of the Information and Communication Technologies (ICTs) and smart 
devices, the smart mobility paradigm presents a social dimension, linked to its implications at individual 
and community levels, that is still under-researched (Papa and Lauwers, 2015; Batty et al., 2012).  
 
Smart mobility is strictly connected with the issue of smart cities, since it can be seen as cause and effect 
of a territory’s intelligent configuration due to its contribution to the full accessibility of the city, efficient 
land usage (Papa and Lauwers, 2015), and creation of more sustainable behaviours impacting on the 
quality of life and services available for users (Eskandarpour et al., 2019; Zhang, et al., 2019). The wide 
dissemination of digital technologies, Internet of Things (IoTs) and big data has radically impacted the 
configuration of smart cities as well as the way mobility is designed and managed (Badii, et al., 2019). 
The wide proliferation of data, resulting from the integration of physical and social sensing, also known 
as Internet of People and IoTs, presents a great potentiality as platform for cities’ mobility management 
in an ecosystem perspective (Qiu, et al., 2019). As argued by Drchal et al., (2019); a data driven 
perspective, leveraging on machine learning and intelligent algorithms, is expected to increase mobility 
and to support its smart configuration.  
 
The broad dissemination of smart devices has impacted the smart configuration of a city and represents a 
challenge for smart mobility (Qiu, et al., 2019). According to Badii, et al. (2019), the Internet of Things 
is at the basis of redesign and management of cities’ transport infrastructures and is expected to improve 
citizens’ quality of life. This requires the adoption of sustainable and systemic approaches by policies 
makers and operators aimed to enhance the service quality offered (Zhang, et al., 2019). Due to the 
complex and differentiated characteristics of stakeholders involved in the mobility of people, its effective 
implementation requires the adoption of managerial approaches able to provide a dynamic and systemic 
understanding of the process (Fontoura et al., 2019). In this perspective, the contributions of scholars and 
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researchers have recently experienced its acceptance for supporting decision making in the urban planning 
process of reducing carbon dioxide emissions, as in the work of Fong, et al. (2019) as well as for capturing 
the causal relationship in establishing urban transport public policies (Fontoura et al., 2019).  
 
The past few years have seen, from one side, the blossoming of smart mobility initiatives, thanks to the 
accessibility of big data related to traffic, pollution, meteorology, itineraries and adopted policies, and 
from the other side the application of the system dynamics approach to this field. The latter aspect aims 
to analyse the city transportation system (Haghshenas et al., 2015), model urban traffic's energy 
consumption and carbon emissions in Beijing (Wen and Bai, 2017), evaluate the effectiveness of parking 
policies without compromising the service level offered (Bernardino and Hoofd, 2013; Mei et al., 2017), 
and assess the influence of mobility policies in a decision making process (Guzman et al., 2014). 
 
The focus on smart mobility as a data driven system with a growing relevance of knowledge highlights 
the need to adopt dynamic decision making systems able to offer a comprehensive understanding of the 
several factors impacting on mobility and to optimize the alternative mobility solutions available. Smart 
mobility is characterized by a large number of influencing factors that often vary over time. This complex 
phenomenon can be analysed through the system dynamics approach, to understand what kind of factors 
influence the people’s choices and try to model their behaviours, aiming at optimising transportation 
systems and, at the same time, improving the quality of life (Shepherd, 2014; Roda et al., 2017; Fontoura 
et al., 2019). 

 
2.2. System dynamics for optimising decision making in smart mobility  

The challenges emerging in the context of people’s mobility highlight the need for dynamic and systemic 
approaches to smart configuration of mobility. Due to the complexity characterising mobility, as a process 
involving a community of stakeholders with different profiles, system dynamics is assumed as a useful 
approach for capturing causal relationships among them and for simulating alternative scenarios 
(Fontoura et al., 2019; Shepherd, 2014). 
 
Due to its several potentials and robustness, in the last years the system dynamic approach has been 
applied in different industrial fields. Some recent works span different focuses, such as improvement of 
company performance (Bianchi, 2009), risk modelling and simulation (Dubois and Holmberg, 2000), 
dissemination and management of innovation (Maier, 1998; Milling, 2002), decision support in strategic 
management (Fong, et al., 2009), project management (Sterman, 1992; Rodrigues, 1994), analysis and 
definition of political agendas (Fiorani, 2010), public health (Homer & Hirsch, 2006), supply chain (Del 
Vecchio et al, 2018), smart mobility (Roda et al., 2017), sustainable development in higher education with 
the emphasis on the sustainability competencies of students in the field of sustainability (Faham et al 
2017) and so on. At the light of big data, all these challenges present a more complex configuration in the 
attempt to combine economic and environmental sustainability of transports with user demands.  
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The application of system dynamics in the mobility sector has been widely debated. Starting from the 
contribution of Abbas and Bell (1994), system dynamics has been demonstrated as a suitable approach 
for decision making in transport. In a literature review on the application of system dynamics in 
transportation, Shepherd (2014) argued that the approach has been used for modelling scenarios 
supporting political agendas, evaluating alternative fuel vehicles, and setting up innovative pricing 
strategy and revenues models in the airlines sector and the supply chain management in transport. This is 
because system dynamics allow deriving modelling structures useful to explore the several factors behind 
the demand as well as explaining how to change user perception and behaviour. Models can be built with 
stakeholders’ input and then used in the form of games or flight simulators for policy learning. Despite 
this, the literature was limited to assuming the users’ behaviours and needs as predetermined and missed 
putting them at the centre of decisions related to mobility. 
  
Initially developed by Forrester (1958) at MIT Massachusetts Institute of Technology, system dynamics 
results from the integration of qualitative and quantitative methods. It has proved to be a valid method 
with several opportunities of applications in a wide spectrum of disciplines, such as system theory, 
information science, organisational management, control theory, and cybernetics (Shepherd, 2014). 
System dynamics is a methodology aimed to manage the complexity characterising systems where several 
elements interact with each other as well as to analyse their evolutionary dynamics from a qualitative and 
quantitative point of view (Gallo, 2008). The comprehension of evolutionary trends is in the perspective 
of a system dynamics approach based on the combination of systems theory and simulation theory.  
 
To understand the system dynamics approach and the modelling process, it is important to introduce the 
following helpful definitions: 

 Variables, distinguishing endogenous from exogenous, dependent and independent, variables of 
stock, flows, auxiliaries and constants (Borshchev and Filippov, 2004). Exogenous variables, e.g. 
variables not determined within the model but which have a given value; Endogenous variables, 
e.g. variables explained by other ones; Dependent variables, e.g. if there is a relationship between 
the values assumed by two variables; Independent variables, if there is not such relationship; 
Stock or Level variables, with values obtained through a cumulative evaluation of the other 
variables and modified according to the size of the flows; Generic auxiliary variables, the value 
of which is determined by an algebraic equation in which other variables appear; Constant 
auxiliary variables, the value of which does not change over time; Flux-type, the values of which 
are obtained through an instantaneous evaluation of the other variables. 

 Syntactic rules related to the arcs used to join distinct variables by highlighting orientation, point 
of start and end; 

 Causality, distinguishing between linear causality, which exists when a variation in the value 
assumed by a variable causes a consequent change in the value assumed by the other variable 
(Borshchev and Filippo, 2004), and circular causality that occurs when a change in the value 
assumed by a variable causes a consequent change in the value assumed by the other variable, 
and this in turn causes a further change in the value taken from the first variable based on 
retroactive feedback; 
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 Polarity of the causal links, which can be positive when a change in the value of X produces a 
change in the value of Y in the same direction, or negative when the change of Y is in the opposite 
direction. 

 
More recently, system dynamics has been adopted as a useful approach for capturing the causal 
relationship characterising the urban transport system of the Metropolitan Region of Sao Paulo (Fontoura, 
et al. 2019). The interest in system dynamics in the context of mobility is due to increasing challenges 
from smart configuration in terms of improvement of service quality (Zhang, et al., 2019), pollution 
reduction (Faulin et al., 2019; Fong, et al. 2009), increasing urbanisation and demand for just-in time 
deliveries (Macário, et al., 2008), flexibility and cost minimisation (Banister, 2008). The system dynamics 
methodology is well suited to addressing the dynamic complexity characterising many issues related to 
smart mobility.  
 
Created in 1956 by the American electrical engineer Jay W. Forrester, system dynamics methodology 
integrates the concepts of feedback control and calculation involving the development of computer 
simulation models, to explain the behaviour of complex systems and outline actions able to improve 
performances. Gallo (2008) has defined system dynamics as a methodology aiming to represent complex 
systems as a set of different elements interacting among themselves, analysing and modelling these 
systems by paying attention to the dynamic aspects of their behaviour. Its approach emerges from the 
combination of system theory, where the system is studied as a whole and through the links between the 
different parts that compose it (systemic approach), via a mathematical model with a finite number of 
degrees of freedom and which evolves over time according to a deterministic law (dynamic approach), 
and simulation theory, which aims to define a model able to predict the dynamic behaviour of a series of 
events based on specific binding initial conditions, through the use of real data. 
 
A system dynamics model consists of a set of elements useful to delineate the simulation model and to 
perform a qualitative and quantitative analysis of complex systems. It consists of a set of variables, 
equations, and rules that describe the given issue and is developed from a wide spectrum of real data. The 
action of modelling the issue includes an iterative process that goes on until the model is able to satisfy 
requirements regarding robustness, flexibility and ability to reproduce historical patterns, but also to 
generate useful insights, not only to reproduce the past and manage the complexity of the system, but also 
to optimize the decision making process (Homer & Hisch, 2006; Del Vecchio et al., 2018).  
 
Moving from the background discussed, in the next section we aim to demonstrate opportunities for 
adopting system dynamics as an approach for optimising decision making for the mobility of people.  
 

3. Research Methodology 

In this paper, we propose an analysis of different scenarios for optimising decision making in smart 
mobility, based on a system dynamics model simulation, to understand the main dynamic interactions 
among all the variables involved in such a complex framework and to provide a systemic view to 
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strategically support decision making processes within organisations, outline travellers’ profiles, and 
sustain smart mobility in the widest perspective of improving the quality of life.  
 
The adopted methodology was structured in a double stage approach. The first one was devoted to the 
comprehension of the phenomenon in terms of variables, causality and dependency. As the transport 
system and mobility of people are a very sophisticated reality, the issue must be simplified through the 
detection of all the variables and all the dynamical interactions among them, to well describe the 
phenomenon and try to build a model as robust as possible. The second approach was focused 
preliminarily on the identification of a sw tool to be used for the simulation, where all the variables and 
causalities detected during the first stage were used for delineating the quantitative model, building it 
inside the tool and, finally, running the simulation. From a careful benchmarking of software for 
modelling a complex system through system dynamics, the five most used software architectures were 
identified and compared. Finally, based on a set of parameters concerning the interface with operative 
systems, the availability of free versions, type of format required for data in input and the friendliness of 
graphical interface, benchmarking of these alternative solutions has allowed choosing Vensim 
(www.vensim.com), a simulation platform that supports the performance of a real system, as the most 
suitable solution.  
 
3.1 Simulation model development 
 
As previously discussed, the system dynamic methodology involves the development of computer 
simulation models, based on causal diagrams specific to each problem setting. To allow a correct 
simulation, it is desirable to define the boundaries of the given issue, identify all the flows and variables 
and define the mathematical relationships among them, identify the feedback circuits, describe the causal 
and structural map, estimate the initial conditions through statistical methods or other, simulate and, 
finally, analyse the data found.  
 
Here we focus our attention on the smart mobility scenarios related to mobility of people during intercity 
and inter-regional trips in a certain geographical context, taking into account people’s needs and 
availability of money and time available to optimize their choices. Since the transport sector offers a wide 
range of transport alternatives, it was decided to consider as the choice of mode the following cases: travel 
by plane, bus, train or car. Due to the complexity of the transport system and mobility of people, the 
proposed model aims to understand the dynamic interactions among all the interdependent variables 
characterized by a strongly dynamically correlated behaviour and that influence the user during the choice 
of the means of transport. 
 
Therefore, the scenario to which reference will be made is presented below:  

 
A user must arrive at an appointment in a certain place called X at a certain hour h of a certain 
date d and must choose as the most suitable means of transport his own car, bus, plane and train. 
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The model transport decision is noticeably influenced by a large number of variables that push the user to 
opt for one means of transport rather than another one. All these qualitative variables are reported in Table 
1. 
 

Table 1- Qualitative variables that influence the model transport decision. 

Qualitative variables Model variables They depend on: 

The trip’s duration, which is represented by 
a known value when the user opts for public 
transport (assuming therefore  fixed speed 
and distances). 

Bus/Rail/Air-trip duration 
o Random uniform Bus/Rail/Air 

fare 

The car trip’s duration, which depends on 
the travel speed and distance between 
starting point O and the final destination X. Car trip duration 

 

o Car ownership 
o Appointment point 
o Car position 
o Car speed 
 
 

The ticket cost, if user opts for public 
transport. 

Bus/Rail/Air fare 

o Random uniform Bus/Rail/Air 
fare 

o Min Bus/Rail/Air fare 
o Max Bus/Rail/Air fare 
o Seed Bus/Rail/Air fare 
 

The distance between starting point O and 
the departure terminal, in case of public 
transport 

Distance between bus 
arrival-departure terminal/ 
rail station outbound 
trip/airport and bus/rail/air 
customers’ start point 

o Bus/Rail/Air-customers’ start 
point 

o Arrival Bus/Rail/Air-terminal 
outbound trip 

The distance between the arrival terminal 
and final destination point X, in the case of 
public transport.  

Distance between bus 
arrival-departure 
terminal/rail station return 
trip/airport and 
appointment point 

o Appointment point 
o Departure Bus/Rail/Air-

terminal return trip 

The need to use a means of transport for 
movements between the departure point O 
and the departure terminal, or the arrival 
terminal, or the destination point X, and 
vice versa, in the case of public transport. It 
depends on the distance between these 
spatial points. 

Bus/Rail/Air-need for 
another means of transport 

o Difference between outbound 
trip arrival time  and 
appointment time for 
bus/rail/air/car 

o Difference between 
appointment time and 
departure time return trip for 
bus/rail/air/car. 

The difference between the arrival time and 
the appointment time.  

Difference between arrival 
time outbound trip and 
appointment time for 
bus/rail/air/car 

o Appointment time 
o Random uniform bus arrival 

time outbound trip 
 

The difference between the appointment 
time and the departure time. 

Difference between 
appointment time and 
departure time return trip 
for bus/rail/air/car 

o Appointment time 
o Departure time return trip for 

bus 
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Once the scenario has been defined, the next step consists in drawing the causal map. The causal map is 
the mostly theoretical representation of the model and describes, qualitatively, all the dependencies among 
all the variables. The second column of Table 1 Errore. L'origine riferimento non è stata trovata. 
shows the variables used to map out the causal map, while third one declares the dependence from other 
variables, indispensable for the purpose of obtaining the final structural map. 
 

Table 2 - Stock & Flow variables for the causal map. 

Stock Variables - Potential Customers 
- Bus Customers 
- Rail Customers 
- Air Customers 
- Car Customers 

Flow variables - New bus customers flow 
- New rail customers flow 
- New air customers flow 
- New car customers flow 

 
Moreover, to obtain the Stock & Flow map that can provide more quantitative information, because it 
provides the definition of the mathematical equations, two different types of variables were added to the 
causal map and shown in Errore. L'origine riferimento non è stata trovata.. 
 
The characteristic feedback circuit of the model is shown in Fig. 1, which identifies the cause-effect cycles 
existing between the fundamental variables described above. Four different colours are identified, with 
the intention of facilitating the reading of the model itself.  

The need for overnight accommodation, 
whether a customer opts for public 
transport or chooses his or her own car to 
travel. 

Bus/Rail/Air/Car-customers 
overnight stay need 

o Difference between arrival time 
of outbound trip and 
appointment time for 
bus/rail/air/car  

o Difference between 
appointment time and 
departure time return trip for 
bus/rail/air/car. 

o Bus/Rail/Air-need for another 
means of transport 

Expenditure on fuel, in the case of private 
transport, which in turn depends on the 
distance travelled and the presence or 
absence of tolls. 

Car trip expenditure 
o Average consumption 
o Fuel price 
o Toll 

The weights attributed to all the influence 
factors of the choice during the simulation. 

o Bus/Rail/Air fare weight 
o Bus/Rail/Air/Car-trip 

duration weight 
o Bus/Rail/Air/Car-

customers overnight 
need weight 

o Bus/Rail/Air-need for 
another means of 
transport weight 
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In particular, the blue colour refers to the section of the model regarding the choice of the plane as means 
of transport, red characterizes the choice of the bus, the green of the train and the purple of one’s own car 
or other private vehicle. 
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Fig. 1 – Causal Loop Diagram Transport Choice 
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Finally, in Fig. 2 the Stock & Flow model, more suited for simulation, is represented.  

 

Fig. 2 - Stock & Flow Diagram Transport Choice.  
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During the simulation, the following assumptions and simplifications were considered: 

o The variables relating to the need to stay overnight and the need to use additional means of 
transport are considered qualitative variables to negatively affects the flow of customers towards 
one of the four means of transport available for the choice, even ide they don’t impact directly on 
the cost of tickets. 

o Potential customers are totally 1000 and at the starting time of the simulation their number for the 
different model solutions is 0. 

o The place of the appointment (appointment point), which the user must reach at a certain time on 
a certain date, is modelled as an exogenous and constant variable throughout the simulation set at 
998 km (distance Brindisi-Milan downtown). 

o The time of appointment (appointment time), the value of which is between 0 and 24, is 
considered constant during the simulation and set at 10:00, while the arrival and departure times 
are modelled as random variables fluctuating uniformly between 0 and 24. 

o The buses’ departure and arrival terminals (arrival/departure bus terminal outbound trip), both 
for the outbound trip and for the return trip, are modelled as constant exogenous variables during 
the whole simulation. In particular, the bus terminal for the outbound trip is set at 0 km, while the 
bus terminal for the return trip is fixed at 1018 km (distance Brindisi - Lampugnano station). 

o The point where the customer bus is located (bus customers start point) is modelled as a constant 
variable during the simulation, the value of which is between a minimum of 0 km and a maximum 
of 50 km, which indicate the user’s distance from the bus departure terminal. 

o The cost of the bus ticket (bus fare) is modelled as a random variable fluctuating uniformly 
between a minimum of €41.8 and a maximum of €65 (values acquired from the site 
http://goeuro.it for the search for tickets on the Brindisi-Milan route on December 11th). 

o The duration of the bus trip (bus trip duration) depends on the ticket price with a proportionality 
shown in Fig. 3. 
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Fig. 3 - Proportionality between bus fare and bus trip duration 

o The point where the customer rail is located (rail customers start point) is modelled as a constant 
variable during the simulation, the value of which is between a minimum of 0 km and a maximum 
of 50 km, which indicate the user’s distance from the train station. 

o The price of the train ticket (rail fare) is modelled as a random variable fluctuating uniformly 
between a minimum of 73 and a maximum of €149.9 (values acquired from the site 
http://goeuro.it for the search for tickets on the route Brindisi-Milan on December 11th). 

o The duration of the train trip (rail trip duration) depends on the ticket price through 
proportionality expressed in Fig. 4. 

 
Fig. 4 - Proportionality between rail fare and rail trip duration. 
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o Train departure and arrival stations (arrival/departure rail station outbound trip, 
arrival/departure rail station return trip), both for the outbound journey and for the return 
journey, are modelled as constant exogenous variables throughout the simulation. In particular, 
the train station for the outbound trip is fixed at 0 km, while for the return trip it is fixed at 995 
km (distance from Brindisi-Milano Centrale train station). 

o The point at which the air customer is located (air customers start point) is modelled as a constant 
variable during the simulation, the value of which is between a minimum of 0 km and a maximum 
of 200 km, which indicate the user’s distance from the airport. 

o The airport of departure and arrival (airport outbound trip, airport return trip), both for the 
outbound trip and for the return trip, are modelled as constant exogenous variables throughout the 
simulation. In particular, the airport for the outbound journey is fixed at 0 km, while the airport 
for the return journey is fixed at 1042 km (distance from Brindisi airport to Milan Malpensa 
airport). 

o The cost of air ticket (airfare) is modelled as a random variable fluctuating uniformly between a 
minimum of €151 and a maximum of €984.2 (values acquired from the site http://goeuro.it for 
the search for tickets on the route Brindisi-Milan Malpensa on December 11th). 

The duration of the air travel depends on the ticket price with a proportionality shown in Fig. 5. 

 
Fig. 5 - Proportionality between airfare and air trip duration. 

 

o The position from which the car departs (car position) is set at 0 km. 
o The speed of the car is considered constant and equal to 100 km/h. 
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o The duration of the car trip depends on the speed of the car and the distance travelled. It is 
therefore constant, being constant both the speed and the distance travelled. In any case, it was 
modelled to allow any changes to the nature of the variable. 

o The fuel type considered for the private vehicles is Diesel; its consumption was estimated as a 
constant and fixed, in the measure of 4.5 litres per 100 km. 

o The price of Diesel, the value of which can vary from €1.00 to €2.00, is considered constant 
during the simulation and set at €1.35. 

o The proportionality between travel duration and ticket price in the case of bus, train and plane, 
defined based on the data extrapolated for December 11th by the GoEuro site, is considered valid 
for the entire period of the simulation. 

o All weights, e.g. bus fare weight, bus customers’ overnight weight, bus customers’ need for 
another means of transport weight, car trip duration weight, car trip expenditure weight, rail fare 
weight, rail trip duration weight, rail customers’ need for another means of transport weight, rail 
customers’ overnight need weight, airfare weight, air trip duration weight, air customers’ need 
for another means of transport weight, air customers’ overnight need weight are constant 
variables during the simulation and the value of which can vary between 0.0 and 1.0, with an 
increment of 0.1. 

o The sum of the weights regarding a single portion of the whole model (Bus, Rail, Ari, Car) is 1. 
o All weights listed above and present in the same denominator as a fraction (New bus customers 

flow, New rail customers flow, New air customers flow, New car customers flow) can never be 
equal to 0 at the same time; one of them must necessarily be ≠ 0 so that the fraction makes sense 
mathematically, and the simulation of the model can be performed without any error. 
 
 

4. Findings  

Using Vensim software allows running the simulation based on the variables defined in the methodology 
section. By modifying the value of the influencing factors that become part of the model transport choice, 
the simulation allows identifying different scenarios related to segments of customers (e.g. customers 
indifferent to the price or, otherwise, very sensitive to its variations, or customers very sensitive to/not 
interested in the trip’s duration, and so on). 
Here, different plausible scenarios were designed and the simulation was run inside Vensim, to point out 
the particular behaviour of the potential customers called to choose between different means of transport. 
In particular, the following scenarios were identified: 

 Customers not sensitive to the price. 
 Customers not sensitive to the trip duration. 

 Customers not sensitive to the need to stay overnight. 

 Customers not sensitive to the need to use additional means of transport. 

 Customers exclusively sensitive to the price. 
 Customers exclusively sensitive to the trip duration. 
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In this way it is possible for a company manager to understand the variables that influence the 
flow of customers towards the different choices and to what extent, to strategically support 
decision making processes within companies, outline the travellers’ profiles, and sustain smart 
mobility in the widest perspective of improving the quality of life. 
 
 4.1 Scenario 1: Customers not sensitive to the price 
 
The simulation described below analyses the behaviour of the model if customers are disinterested in the 
price of plane, rail, bus and travel ticket or the price of travelling by their own cars. The assumptions for 
the simulation of this scenario are reported in Errore. L'origine riferimento non è stata trovata.. 
 

Table 3 - Assumptions of simulation for Scenario 1. 

 
BUS RAIL AIR CAR 

ASSUMPTIONS 

FOR 

SIMULATION 

bus fare weight = 0 rail fare weight = 0 airfare weight = 0 
car trip expenditure 
weight = 0 

bus trip duration 
weight = 0.6  

rail trip duration 
weight = 0.6 

air trip duration 
weight = 0.6  

car trip duration 
weight = 0.7 

bus customers’ 
overnight need 
weight = 0.3 

rail customers’ 
overnight need 
weight = 0.3 

air customers’ 
overnight need 
weight = 0.3 

car customers’ 
overnight need 
weight = 0.3 

bus customers’ need 
for another means of 
transport = 0.1 

rail customers’ need 
for another means of 
transport = 0.1 

air customers’ need 
for another means of 
transport = 0.1 

 

SIMULATION 

RESULT 
194 257 312 237 

 
During the simulation, time is a free parameter, while the initial value of Potential customers is set to 
1000. The simulation ends when all the Potential customers are exhausted, dividing in the four flows 
related to the four different model transport choices. Nevertheless, from the first moment of the simulation 
the different trends are glaring. As we can see in Fig. 6, the lowest level of customers identifies the choice 
of the bus for travel, obviously depending on the duration of the journey, which is the highest among the 
four means of transport. Moreover, while Rail customers and Car customers have slightly higher and 
similar trends, the trend of Air customers is higher, as air travel has the shortest duration (air travel with 
zero, one or two changes has been considered). The final value that the four variables assume at the end 
of the simulation is reported in the last row of Errore. L'origine riferimento non è stata trovata.. 
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Fig. 6 - Scenario 1: Customers not sensitive to the price. 

 
4.2 Scenario 2: Customers not sensitive to the trip duration 
 
In the simulation of the second scenario described, the behaviour of the model is analysed in the case of 
customers who are not sensitive to the trip’s duration, with regard to both the choice for public transport 
or private vehicles. The assumptions for the simulation of this scenario are reported in Errore. L'origine 
riferimento non è stata trovata.. 
 

Table 4 - Assumptions of simulation for Scenario 2. 

 
BUS RAIL AIR CAR 

ASSUMPTIONS 

FOR 

SIMULATION 

bus fare weight = 
0.6 

rail fare weight = 
0.6 

airfare weight = 0.6 

car trip expenditure 
weight = 0.7 

bus trip duration 
weight = 0 

rail trip duration 
weight = 0 

air trip duration 
weight = 0 

car trip duration 
weight = 0 

bus customers’ 
overnight need 
weight = 0.3 

rail customers’ 
overnight need 
weight = 0.3 

air customers’ 
overnight need 
weight = 0.3 

car customers’ 
overnight need = 0.3. 
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bus customers’ need 
for another means of 
transport = 0.1 

rail customers’ need 
for another means of 
transport = 0.1 

air customers’ need 
for another means of 
transport = 0.1 

 

SIMULATION 

RESULT 
500 252 63 184 

 
In this scenario, the behaviour of the model changes significantly. As we can see in Fig. 7, it can 
immediately be noticed that the highest level of customers corresponds to the Bus customers, while the 
lowest one refers to the Air customers, substantially reversing the situation with respect to Scenario 1. 
Moreover, the trends of the four curves related to the four choices are clearly distinct. Finally, the growth 
of the curves has a similar behaviour as in Scenario 1, with a faster rate in the first part of the simulation 
(especially in relation to the Bus customers) and then with a slower one until it reaches an almost constant 
trend. 
The final value that the four variables assume at the end of the simulation is reported in the last row of 
Errore. L'origine riferimento non è stata trovata.. 

 

Fig. 7 - Scenario 2: Customers not sensitive to the trip duration. 

 
4.3 Scenario 3: Customers not sensitive to the need to stay overnight 
 
The third scenario analyses the behaviour of the model where customers are not sensitive to the need for 
an overnight stay before and/or after the appointment. 
To set the values for the simulation, it was decided to maintain the weight value related to the need to use 
an additional means of transport equal to 0.1, to equal the weights regarding the need to overnight to 0, 
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and to equal the remaining ones among them, as their sum is always equal to 1. The assumptions for 
simulation of this scenario are reported in Errore. L'origine riferimento non è stata trovata.. 
 

Table 5 - Assumption of simulation for Scenario 3. 

 
BUS RAIL AIR CAR 

ASSUMPTIONS 

FOR 

SIMULATION 

bus fare weight = 
0.45 

rail fare weight = 
0.45 

airfare weight = 
0.45 

car trip expenditure 
weight = 0.5 

bus trip duration 
weight = 0.45 

rail trip duration 
weight = 0.45 

air trip duration 
weight = 0.45 

car trip duration 
weight = 0.5 

bus customers’ 
overnight need 
weight = 0 

rail customers’ 
overnight need 
weight = 0 

air customers’ 
overnight need 
weight = 0 

car customers’ 
overnight need = 0 

bus customers’ need 
for another means of 
transport = 0.1 

rail customers’ need 
for another means of 
transport = 0.1 

air customers’ need 
for another means of 
transport = 0.1 

 

SIMULATION 

RESULT 
456 265 71 207 

 
As we can see in Fig. 8, the highest level of customers concerns the Bus customers while the lowest is for 
Air customers, noting the results obtained in the simulation of Scenario 2. Also in this case the 
characteristic curves of the levels grow faster in the first part of the simulation. The final value that the 
four variables assume at the end of the simulation is reported in the last row of Errore. L'origine 
riferimento non è stata trovata.. 
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Fig. 8 - Scenario 3: Customers not sensitive to the need to stay overnight. 

 
4.4 Scenario 4: Customers not sensitive to the need to use additional means of transport 
 
In this scenario, customers are totally disinterested in using additional means of transport to move from 
the departure point to the departure terminal and from the arrival terminal to the meeting place and vice 
versa. To simulate this scenario, with reference to Scenario 3, the values of the weights regarding the price 
and trip’s duration are left unchanged, while those relating to the need for overnight accommodation and 
the need to use additional means of transport are reversed. 
The assumptions for the simulation of this scenario are reported in Errore. L'origine riferimento non è 
stata trovata.. 

Table 6 - Assumptions of simulation for Scenario 4. 

 
BUS RAIL AIR CAR 

ASSUMPTIONS 

FOR 

SIMULATION 

bus fare weight = 
0.45 

rail fare weight = 
0.45 

airfare weight = 
0.45 

car trip expenditure 
weight = 0.35 

bus trip duration 
weight = 0.45 

rail trip duration 
weight = 0.45 

air trip duration 
weight = 0.45 

car trip duration 
weight = 0.35 

bus customers’ 
overnight need 
weight = 0.1 

rail customers’ 
overnight need 
weight = 0.1 

air customers’ 
overnight need 
weight = 0.1 

car customers’ 
overnight need = 0.3 
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bus customers’ need 
for another means of 
transport = 0 

rail customers’ need 
for another means of 
transport = 0 

air customers’ need 
for another means of 
transport = 0 

 

SIMULATION 

RESULT 
420 244 65 271 

 
The results of the simulation are shown in Fig. 9. As expected, the behaviour of the model is similar to 
that of Scenario 3, the two scenarios being similar from the mathematical point of view. However, the 
trends of Rail customer and Car customers are exchanged. The final value that the four variables assume 
at the end of the simulation is reported in the last row of Errore. L'origine riferimento non è stata 
trovata.. 
 

 

Fig. 9 - Scenario 4: Customers not sensitive to the need to use additional means of transport. 

 
4.5 Scenario 5: Customers exclusively sensitive to the price 
 
In great contrast to Scenario 1, in this case we analyse the behaviour of the model when the Potential 
customers are only interested in the cost of the trip (excluding the cost of a possible overnight stay and 
the cost for additional means of transport, considered in the model more as qualitative than quantitative 
variables, the presence of decreases the customer flow towards one of the possible choices). 
To model this scenario, the variables related to the weights attributed by customers to the price (bus fare 
weight, rail fare weight, airfare weight, car trip expenditure weight) were set equal to 1; the other “weight” 
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variables take on value 0. In Table 7, therefore, the assumptions for the simulation of this scenario are 
reported. 
 

Table 7 - Assumptions of simulation for Scenario 5. 

 
BUS RAIL AIR CAR 

ASSUMPTIONS 

FOR 

SIMULATION 

bus fare weight = 1 rail fare weight = 1 airfare weight = 1 

car trip expenditure 
weight = 1 

bus trip duration 
weight = 0 

rail trip duration 
weight = 0 

air trip duration 
weight = 0 

car trip duration 
weight = 0 

bus customers’ 
overnight need 
weight = 0 

rail customers’ 
overnight need 
weight = 0 

air customers’ 
overnight need 
weight = 0 

car customers’ 
overnight need = 0 

bus customers’ need 
for another means of 
transport = 0 

rail customers’ need 
for another means of 
transport = 0 

air customers’ need 
for another means of 
transport = 0 

 

SIMULATION 

RESULT 
487 243 208 61 

 
As might be expected after a mathematical analysis of the model, the flow of Potential customers moves 
towards the choice of the most economical means of transport represented by the bus. The final results 
are shown in Fig. 10. 
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Fig. 10 - Scenario 5: Customers exclusively sensitive to the price. 

 
4.6 Scenario 6: Customers exclusively interested in the trip’s duration 
 
This scenario analyses the case in which the customers are interested only in the aspect regarding the 
trip’s duration. To model this scenario, the variables related to the weights attributed by customers to the 
trip’s duration (bus trip duration weight, rail trip duration weight, air trip duration weight, car trip duration 
weight) were set equal to 1; the other “weight” variables take on value 0. In Table 8, therefore, the 
assumptions for the simulation of this scenario are reported. 
 

Table 8 - Assumptions of simulation for Scenario 6. 

 
BUS RAIL AIR CAR 

ASSUMPTIONS 

FOR SIMULATION 

bus fare weight = 0 rail fare weight = 0 airfare weight = 0 
car trip expenditure 
weight = 0 

bus trip duration 
weight = 1 

rail trip duration 
weight = 1 

air trip duration 
weight = 1 

car trip duration 
weight = 1 

bus customers’ 
overnight need 
weight = 0 

rail customers’ 
overnight need 
weight = 0 

air customers’ 
overnight need 
weight = 0 

car customers’ 
overnight need = 0 
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bus customers’ need 
for another means of 
transport = 0 

rail customers’ need 
for another means of 
transport = 0 

air customers’ need 
for another means of 
transport = 0 

 

SIMULATION 

RESULT 
185 257 297 260 

 
As can be seen in Fig. 11, Potential customers move more towards Air customers, as air travel has a 
shorter duration. The characteristic curves of the Car customers and Rail customers present practically 
the same trend due to the journeys’ similar duration (based on the data extrapolated from the GoEuro 
site). The variable with the lowest level is Bus customers. 

 

Fig. 11 - Scenario 6: Customers exclusively interested in the trip duration.  

The next section will present an overall analysis of all the scenarios to highlight the main differences 
characterising customers’ behaviours in the different mobility solutions available and discuss the different 
scenarios for the improvement of our model. 

 
5. Simulations discussions  

In this section we will discuss the simulation model regarding the six different scenarios of smart mobility 
of people. The scenarios described above and the simulations carried out highlight the characteristic 
behaviour of the potential customers of the transport market, called to make the choice of the most 
coherent transport means. The designed model provides a systemic view of this market and the behaviour 
of the variables involved, useful during the strategic decision-making process of the company to analyse 
and understand, basing on the set of values of the influencing variables of the choice: 
 

o the most profitable customers in relation to a means of transport. 
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o the factors to change for the customers’ retention. 
o influencing factors can be used to attract more customers. 

 
The model does not include all the variables influencing the choice of the most suitable means of transport 
to be used for traveling, but it is a discrete simulator including the most interesting influences factors: 
price of the ticket with regard to the public transport or travel cost for those who choose the private vehicle 
to travel, trip duration, need to stay overnight and need to use additional means of transport. A summary 
of the results coming from the simulation of the different scenarios is given in Table 9. 

Table 9 - Summary of simulation results from the six scenarios. 

SCENARIO DESCRIPTION BUS RAIL AIR CAR 

Scenario 1 
Sensitive to 
price 

194 257 312 237 

Scenario 2 
Sensitive to trip 
duration 

500 252 63 184 

Scenario 3 
Sensitive to the 
need to stay 
overnight 

456 265 71 207 

Scenario 4 

Sensitive to the 
need to use 
additional 
means 

420 244 65 271 

Scenario 5 
Exclusively 
sensitive to the 
price 

487 243 61 208 

Scenario 6 
Exclusively 
sensitive to the 
duration 

185 257 297 260 

 
A comparative analysis among all these scenarios show that the variable Bus customers assumes a 
maximum value in Scenario 2, where customers are not sensitive to the trip’s duration, while it is minimal 
in Scenario 6, where customers are exclusively interested in the trip’s duration. In both cases we refer to 
absolute maximum and minimum.  
At the highest value of Bus customers corresponds the lowest value is of Air customers, while at the lower 
value of Bus customers corresponds again the highest value of Air customers.  
The Rail customers reach the maximum value in Scenario 3, where customers are not sensitive to the need 
to stay overnight, while the minimum value is reached in Scenario 5, where customers are exclusively 
interested in the price. In both cases, these maximum and minimum values do not represent the absolute 
maximum and minimum; e.g., respectively the maximum and minimum reached in all the simulations 
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that were carried out to implement the already illustrated scenarios. In Scenario 3, the highest value is for 
Bus customers, while in Scenario 5 the minimum value is for Air customers. Moreover, observing the 
results reported in all the Table 6, the trend of Rail customers is noted as practically constant in all the 
simulations. 
Moreover, Air customers have the highest value in Scenario 1, where customers are not sensitive to price, 
while it assumes the minimum value in Scenario 5, in which customers are exclusively interested in the 
price. In both cases, these values represent the absolute maximum and minimum values of the whole 
simulation process. 
Finally, the Car customers have the highest value in Scenario 4, in which customers are not sensitive to 
the need to use additional means, and it assumes the minimum value in Scenario 2, where customers are 
not sensitive to the trip’s duration. The absolute maximum in Scenario 4 concerns the Bus customer, while 
the absolute minimum in Scenario 2 is for Air customers. 
It is important to note that the variable related to the need to stay overnight and need to use additional 
means of transport assume mostly qualitative value, to avoid further complicating the model with 
variables regarding the cost of accommodation and the cost of using additional means of transport. So, 
they do not affect the total cost of the trip; instead they directly affect the customer acquisition flow, 
lowering it when they are different from zero.  
A further improvement oriented toward a big data perspective consists in nourishing the model with a 
dynamic database, able to track real-time values of actual prices, travel durations, and departure and 
arrival times, therefore making the model as realistic as possible. This could allow overcoming the limited 
attention reserved by decision makers of private and public transportation organisations to users’ 
centrality in designing and implementing smart mobility services (Qu et al., 2019; Papa and Lauwers, 
2015). From the scenarios depicted, it is possible to demonstrate that, due to the broad dissemination of 
digital and smart technologies, the mobility of people is increasingly configurable as a data driven process 
(Badii, et al., 2019; Qiu, et al., 2019) impacting companies’ competitiveness and territories’ socio-
economic and environmental goals (Faulin, et al., 2019). By interesting a large community of 
stakeholders, such as citizens, government, businesses, environments (Fontoura et al., 2019), the adoption 
of a system dynamics approach as in our simulation allows meeting the challenges of an intermodal 
solutions and to adopt smart technologies to maximize accessibility, minimize transport consumption, 
contribute to the mitigation of social and environmental challenges and improve the quality of life 
(Schaffers, et al., 2011). A decision making process based on system dynamics has demonstrated being 
scalable and suitable to manage scenarios of growing complexity such as mobility of people with different 
needs and behaviours.  
City planner 
Furthermore, in all the phases of people’s journeys, starting from mobility planning to the mobility’s 
execution, users access and generate a large amount of data thanks to digital technologies and smart 
devices, leveraging on a large, dynamic set of variables.  
 
Our study confirms that people’s mobility management by public and private organisations requires the 
adoption of smart and dynamic approaches for the decision making able to leverage on a large number of 
variables evolving in real time (Shepherd, 2014). The smart configuration of mobility thus depends on 
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the system’s effectiveness in managing the huge amount of data available and this requires the 
identification of new data mining and analytics technologies as well as approaches able to allow 
mandatory prediction and simulations results to support managers in the challenge of managing the 
complex network of relationships around organisations and institutions (De Mauro et al, 2016).  
 
In Fig. 12, the system dynamic model was depicted in terms of main components. 
 

 

Fig. 12 – System Dynamics Model 

As mentioned, the system dynamic process can be outlined as the identification of variables, causality and 
their interdependence, the definition of the quantitative model, plus the final simulation process. Hence, 
if the system is nurtured by data coming from different IoT and IoP devices (e.g. all the devices connected 
wirelessly to a network and having the ability to transmit data, such as sensors, smartphones, beacon, and 
so on), the final model will be able to grow into a powerful decision-making tool and, with more opportune 
adaptations, it can sustain smart mobility in the widest perspective of improving the quality of life. 
 
6. Conclusions and implications 
Mobility systems were introduced as the backbone of economic and social progress in the twentieth 
century, although now transport activities are the main cause of unsustainability patterns, especially in 
urban areas (Moradi and Vagnoni, 2018). System dynamics could emerge as suitable approach for 
decision making in the smart city context with reference to the mobility of people. Mobility as a service 
can be considered as a new transport paradigm which aims to integrate different modes of transport, such 
as buses, trains, and shared cars into a service package (Ruutu et al., 2017).  
In this paper, we adopted system dynamics as a useful approach for managing the complexity of variables 
and optimising the decision making process related to the mobility of people. In this perspective, the study 
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presented a system dynamics simulation model of smart mobility of people; using the model, we 
illustrated six possible scenarios with specific factors affecting the likelihood of these scenarios in the 
final aim to develop a complete platform nurtured by big data.  
The simulation has allowed to identify alternative transport solutions for the mobility of people by 
leveraging on a set of complex and dynamic variables and to demonstrate the versatility of a decision 
making approach based on system dynamics for the personalization of such services. In contributing to 
the advancement of the debate on smart mobility, this has allowed to shed new light on the unexplored 
area related to meaning and implications of smartness in the users’ perspective (Qu et al., 2019; Papa and 
Lauwers, 2015). In addition to this, the study has disclosed the potential benefits associated to the adoption 
of Big Data as source of information supporting the smart configuration of mobility services tailored made 
to the needs and profiles of users.  
Areas for future research can be identified in terms of replication and contextualization of the simulation 
model in different contexts as well as in the adoption of more sophisticated mechanisms for segmenting 
and targeting the demand.  
 
6.1. Implications for policy makers and managers 
Implications for policy makers regard the developing sustainable mobility scenarios based on the analysis 
of big data and simulation models. Opportunities to innovate the transport services at urban and extra-
urban level arise. By adopting dynamic decision making systems based on big data, policy makers and 
city managers could leverage on information intensive evidences for innovating the transport services and 
for providing more efficient solutions of mobility. In the meantime, the scalability characterizing the 
model proposed with the implementation of different typologies of variables and data allows to depict 
interesting scenarios for the design and the monitoring of a more efficient and sustainable service of 
mobility.  
The recent attention reserved to the issue of sustainability assumes in the mobility challenging dimensions 
due to the pollution and emission charactering this typology of services. The possibility of providing a 
service of transport on the basis of the real needs of the users and through a methodological dashboard 
able to provide foresights and simulate the better solutions available can contribute to the achievement of 
a more ecological and sustainable usage of transport services and to create a major awareness into the 
users. 
In this direction, further implications can be identified for updating the technological infrastructures, the 
organizational models and human capital involved into the context of smart mobility and into the larger 
context of the cities and territories. 
 
6.2. Limitations and directions for future research 
The simulation model proposed has been focused on the specific territorial needs and conditions. This has 
allowed to identify a set of variables that could be verified into different contexts. At this purpose, in the 
future development it could be useful to consider different geographical areas and distance to be covered 
by the transport services for verifying the goodness of the simulation proposed. In the meantime, it could 
be useful to verify the correspondence of the different categories of users identified for the simulation 
scenarios with more consolidated criteria for segmentation and targeting. In this direction, it could be also 
useful to complete the study through the level of assessment of end users of the different transport services 
adopting a real time survey. 
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