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Dexterous Underwater
Manipulation
from Onshore Locations

Streamlining Efficiencies for
Remotely Operated Underwater

Vehicles
By Andreas Birk, Tobias Doembach, nderwater manipulation is a chal]gnging' pro-
Christian Atanas Miiller, Tomasz Luczynski, blem. The state-of-the-art technology is dominated
Arturo Gomez Chavez, Daniel Kéhntopp, by remotely operated vehicles (ROVs). ROV
Andras Kupcsik, Sylvain Calinon, Ajay K. Tanwani, operations typically require an offshore crew

Gianluca Antonelli, Paolo di Lillo, Enrico Simett,
Giuseppe Casalino, Giovanni Indiveri, Luigi Ostuni,
Alessio Turetta, Andrea Caffaz, Peter Weiss,

consisting of, at minimum, an intendant (or
supervisor), an operator, and a navigator. This crew must

Thibaud Gobert, Bertrand Chemisky, Jeremi Gancet, often be doubled or even tripled due to work shifts. In
Torsten Siedel, Shashank Govindaraj, Xavier Martinez, addition, customer representatives often wish to be physically
and Pierre Letier present offshore. Furthermore, underwater intervention

missions are still dominated by a significant amount of low-
level, manual control of the manipulator(s) and of the
vehicle itself. While there is a significant amount of re-
search on autonomous underwater vehicles (AUVs) in
general and fieldable solutions already exist for inspection and
exploration missions, possibilities remain for adding
intelligent autonomous functions for interventions.



The work we present here is intended to reduce the num-
ber of robot operators required offshore—hence, reducing
costs and staffing requirements—by facilitating operations
from an onshore control center and narrowing the gap between
low-level teleoperation and full autonomy (Figure 1). The
basic idea is that the user interacts with a real-time simulation
environment, and a cognitive engine (CE) analyzes the user’s
control requests and turns them into movement primitives the
ROV needs to autonomously execute in the real environment,
independently of communication latencies.

This article focuses on the results of intensive field trials
held 26 June-7 July 2017 in the Mediterranean Sea near Mar-
seille, France. Seven extended experimental dives were per-
formed with the ROV while connected via satellite to the
command center in Brussels, Belgium. Four different sites
were used with different water depths (8, 30, 48, and 100 m).

Overview

Our work here is targeted at a high technology readiness
level of six, i.e., it is developed and validated beyond only lab-
oratory experiments. The research vessel Janus II from Comex
with a 2,500-msw rated SubAtlantic Apache ROV is used for
this purpose (Figure 2). For our research, the ship is equipped
with satellite communications, explained in the “Satellite
Communication” section, to allow control of the ROV by
pilots located in a command center in Brussels, as discussed
in the section “Control Center and the Exoskeleton” Fur-
thermore, a skid is added to the ROV to carry additional
components used for our research, i.e., an electric manipu-
lator and two manipulators in a bimanual setup (as
described in the section “Underwater Manipulators™) and a
vision system.

Underwater Manipulators

Our manipulator was designed beginning with the underwa-
ter modular arm. Two kinds of electrically driven joints hav-
ing either one or two motion axes are complemented by a set
of links to connect the joints. Different kinematic configura-
tions can be obtained by varying the number of basic modules,
i.e., joints and links, and/or the way they are interconnect-
ed. The arm is characterized by six degrees of freedom
(DoF), obtained by connecting three modules, each with
two DoF forming a pitch-roll configuration. The overall
length when totally stretched is slightly more than 1 m.
However, the arm is also fully foldable to minimize its size
when parked in the ROV skid during the navigation phas-
es. Both a single-arm and a dual-arm setup can be used.
During the 2017 trials, a mockup of grippers currently
under development was used.

Vision System

An intelligent underwater vision system with computing
power on board the ROV is used to minimize the traffic over
the umbilical cable from the ROV to the vessel. The system is

based on high-resolution firewire (IEEE 1934b) cameras in
pressure housings connected to an embedded computer,
which can be used for vision processing and adaptive video
compression on board the ROV

The firewire bus supports, among others, the synchroniza-
tion of the cameras. They can therefore be used for multicam-
era stereo setups to generate depth information from different
views with a known relative geometry. Because of the Apache
ROV’s payload constraints, a stereo setup with two cameras
was used in the 2017 trials. The compute bottle of the vision
system on board the robot also services the core navigation
sensors in the form of a LinkQuest NavQuest 600 P Micro
Doppler velocity log (DVL) and a Xsens MTi-300 inertial
measurement unit (IMU).

Satellite Communication

Satellite communications services for mobile offshore mari-
time operations are associated with bandwidth limitations
(uplink and downlink), inherent delays, and disruptions; in
addition, they require a complex stabilized satellite tracking
antenna. In the context of this research, we employ a mari-
time very-small-aperture terminal from a service provider
(Omniaccess) that includes a Ku-band Cobham Sailor 800
tracking antenna, its controller, and the related modems. The
nominal data bandwidth for the uplink from the vessel is
768 kB/s, and the downlink to the vessel is 256 kB/s, with an
inherent nominal round-trip delay of 620 ms.

Control Center and the Exoskeleton

The onshore control center in Brussels consists of a monitor-
ing and control room that features a double 7-DoF arm and
6-DoF hand-force feedback exoskeleton. It is based, in part,
on a design for the European Space Agency [1] that was fur-
ther improved on in the EU-FP7 project ICARUS [2]. It is
designed as a modular solution, allowing each arm and hand
exoskeleton subsystem to be easily and conveniently con-
nected and removed from the rest of the setup. Furthermore,
it features a passive gravity compensation system that con-
nects to the arm exoskeletons and can be calibrated to com-
pensate for the full mass of the exoskeleton’s physical setups
as well as the mass of the user arms. The user is, hence, given
the impression of operating in neutral buoyancy, i.e., as a
diver typically would. This reduces user fatigue during the
ROV operation.

A Test Panel for System Validation

For validation, a test panel was developed; it also served as a
target for the trials to emulate different scenarios, e.g., offshore
oil and gas facilities or the handling of archeological artifacts
(Figures 2 and 3). The panel consisted of three sides, each
equipped with mockup elements. One side was used to test
functionalities in offshore oil and gas interfaces based on the
International Standards Organization 13628 standard includ-
ing, e.g., valves or wet-mate connectors. In addition, a biologic
panel (including mockup corals) and an archeological box
(including mockup ceramics) were included.
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1. The system tested in field trials consists of (a) an Apache ROV extended with newly developed components, including a
dual-arm setup and an intelligent vision system, which is deployed from the (b) Comex Janus Il vessel having a satellite connection to
a control center in Brussels. (c) A mockup panel structure is used to test different application scenarios. (Photos courtesy of DexROV

consortium.)

To sustain effective remote ROV operations, multiple data
flows are required, such as those for ROV commands, video
streams, pose updates, 2.5-dimensional (2.5-D) or three-
dimensional (3-D) environmental maps, status updates, and so
on, between the onshore and offshore nodes; these data flows
are transmitted via the satellite link. It is, therefore, critical to
optimize the bandwidth usage by prioritizing data flows with
specific quality of service (QoS) information, shaping the traffic
[3] to avoid network overload and ensure data reliability with
minimal overheads. To address the described challenges, the
Data Distribution Service (DDS) OpenSplice (Prismtech) mid-
dleware is used to exchange data between the onshore and off-
shore nodes over the bandwidth-constrained satellite network.

The onshore control center and the ROV control and per-
ception framework embed command and data interfaces in
the robot operating system (ROS) through asynchronous
publish-subscribe mechanisms over named and type-specific
topics. A ROS-to-DDS bridge has been developed and can be
configured to interface with existing ROS topics in a system.
For each ROS topic, the ROS-to-DDS bridge automatically
creates a corresponding DDS data reader, data writer, and
named topics across the distributed nodes with associated
QoS policies according to the object management group’s
DDS QoS specification.

The architecture of the bridge is scalable to deploy multi-
ple nodes for dynamic discovery of distributed ROS-to-DDS
entities. The maximum burst sizes indicate the amount, in
bytes, to be sent at maximum, with every resolution in milli-
seconds. With reliable QoS, i.e., guaranteed data delivery, the
maximum burst values are typically set just below the maxi-
mum bandwidth available for the uplink from the offshore
side. For example, in the presence of a 768-kB/s satellite
uplink, a maximum burst size of 650 kB/s, i.e., around 85% of
the bandwidth, was found to be efficient. The remaining
bandwidth is made available for retransmissions of data

igure 5. The ROV and the test panel during the field trials.
(Photo courtesy of DexROV consortium.)

packets. In the case of the best-effort QoS, i.e., it is not neces-
sary to resend or acknowledge any received packets, the max-
imum burst size can be set to the available bandwidth. During
the marine trials, the satellite link was shared between multi-
ple data flows that were assigned different priorities, and the
maximum burst sizes were adapted proportionately.

The main purpose of the CE is to overcome teleoperator con-
trol delays in the face of satellite communication latency. Prior
to the mission, the teleoperator first demonstrates a set of
tasks (e.g., turning a valve or grasping a handle) using the
exoskeleton in the onshore control center, which the CE
encodes as statistical models. These models are transferred to
the offshore vessel, where control of the ROV takes place.
During mission execution, the offshore model assists the tele-
operator-guided manipulation such that the tasks are replicat-
ed by adapting them to the current environmental situations.
This reduces the cognitive load on the teleoperator, who can
concentrate on selecting the tasks in the virtual environment.
The CE can assist the teleoperator in two different
modes [4]:
1) Shared control. The teleoperator input is combined di-
rectly with the motion predicted by the task model. The
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< . An overview of the learning approach used in the CE. (a) Demonstrations are collected with different task parameters
(frames of reference). (b) The demonstrations are transformed in each particular frame, and a GMM is learned in each frame. (c) In
a new situation, a new GMM is computed with a product of linearly transformed Gaussians. (d) The computed trajectory distribution
provides a variance estimate for each set-point, which determines how accurately the robot should pass through these set-points.
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Figure 5. The shared control mode with two frames of reference
on each side. The current poses of the teleoperator and robot
are displayed with blue dots. ID: identification.

adaptation is weighted based on the variability of the
demonstrations in those parts of the task that are current-
ly executed. For parts of the task requiring accuracy, the
model assists the teleoperator by correcting deviations
from the original demonstrations. For parts of the task
allowing more variations, the teleoperator is free to move
within the regions corresponding to the demonstrations.
2) Semiautonomous control. The task is executed by gener-
ating the most likely trajectory starting from the current
pose of the robot. This mode is particularly useful when
delays or interruptions from the satellite communication
are expected. In this control mode, the teleoperator visu-
alizes and triggers the execution of the movement,
which continues until a new signal from the teleoperator
is given [5].
In the following, we summarize task learning and how
motions are reproduced in varying situations.

Learning Adaptive Tasks from Demonstrations

Our application requires the CE to learn skills based on only a
handful of demonstrations (typically up to ten). Additionally,
we require skills that can be reproduced in novel environmen-
tal situations, for which no demonstration is available. To

i

Teleoperator Side
" Robot Side

¥

“gure 6. The semiautonomous control mode, with acceleration
commands and an associated trajectory computed from any of
the robot/teleoperator poses (displayed as blue points) using
the model.

achieve this goal, the CE relies on a task-parametrized Gauss-
ian mixture model (GMM) [6] to encode demonstrations exe-
cuted in different situations (Figure 4). The task parameters
are frames of reference (coordinated systems with position
and orientation information) associated to virtual landmarks
or objects/tools in the environment. For example, in a valve-
turning task, such frames may refer to the robot base frame,
the current valve pose, and the targeted valve pose.

Figure 4 depicts the learning and retrieval process. First,
demonstrations are collected in varying situations (each time
with different task parameters). To capture the variance of the
demonstrations, GMMs are learned in each task-relevant
frame. Learning the models in each individual frame allows
the system to generalize the observed tasks to new situations.

Task Reproduction with Adaptation

to New Situations

In a novel environmental situation, the Gaussian-mixture
components are transformed using the newly observed task
parameters [Figure 4(c)]. The retrieved GMM is exploited
differently according to the selected control mode, with the
aim of reducing the cognitive load on the teleoperator when
executing a set of tasks.



In the shared control mode (Fig-
ure 5), Gaussian-mixture regression is

Position Error
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used on both the teleoperation and -
robot sides to generate probabilistic 0.06 |
trajectory distributions, represented as
a tube in the figure. On the teleopera- 0.04 |
tor side, this tube is adapted locally 0.02 -
to match the situation of the virtual _
environment in which the user is E o0
immersed—here, the model can be
used, e.g., for haptic corrections. On =l
the robot side, the same model adapts —-0.04
to the situation that is locally detected.
This situation can potentially differ -0.06
from the one currently experienced by —0.08
the user, as depicted in the figure: the 0
two tubes have different shapes but
share the same GMM parameters.

In this way, the robot is provided
with a fast adaptation technique that

can directly exploit the locally sensed
information, i.e., the tube is adapted
online without passing through the
slow satellite communication. This
type of assistance is relevant for han-
dling small transmission delays, ie., to
cope with situational discrepancy due
to the slow refreshing rate. For longer
delays, a semiautonomous mode, as
described next, is usually preferred.

In the semiautonomous control
mode (Figure 6), a linear quadratic
tracking controller in operational
space is used to generate a reference
trajectory starting from the current
robot pose. These acceleration com-
mands in operational space are used
by the robot controller until the teleop-
erator decides to abort the task or
switch to another task. On the teleop-
erator side, the retrieved trajectory is
used for visualization purpose.
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Task Priority Inverse Kinematics

From a control point of view, the DexROV system is much
more similar to an AUV than an ordinary ROV in the sense
that it needs to take care of many control objectives on its
own, with high-level inputs coming from the user through
the CE.

For this reason, following an approach similar to the one
adopted for the Trident (7] and Maris 8] projects, the devel-
oped control is a task priority inverse kinematics (TPIK) algo-
rithm that allows one to set a priority order among several
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7. (a)The position error over time during the experiments. The error is relatively
hlgh because the control gains were maintained at low levels for safety reasons during
these tests. (b) The joint positions and the minimum/maximum thresholds are shown
(in red). The plots show how the TPIK approach enforces the validity of the joint limits.

tasks and find the system velocity vector y that accomplishes
them simultaneously, at best, following the priority order.

Given a hierarchy composed of k tasks o1...6%, the target
velocity y can be computed as
y=y1+ Niyz+ -+ + Nix-19% (1)

where each y; is the velocity contribution of task i, and N,
is the null space of the augmented Jacobian matrices from o,
to 0. If there are conflicting tasks, the projection of the veloc-
ity contribution of the lower-priority tasks into the null space
of the higher-priority ones guarantees that the priority order
is always respected. In addition, this control framework has
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The end-effector position and orientation error and the measure
of manipulability with the corresponding minimum threshold.
All the set-based tasks stay within their limits, while the position
and orientation errors reach a null value.

been extended to handle set-based tasks [9], [10], e.g., arm
joint mechanical limits or obstacle avoidance, where the con-
trol objective is to keep the task value above a lower threshold
or below an upper threshold. To effectively and safely operate
the system, it is useful to divide all the tasks into three groups
and exploit this classification for assigning priority levels:

1) safety tasks, such as ROV autoaltitude, mechanical joint
limits, and obstacle avoidance, that assure the integrity of
the system and of the environment in which it operates

2) operational tasks, which include all of the tasks command-
ed by the user, such as ROV guidance from point A to B,
end-effector position, or configuration

3) optimization tasks, which include all those tasks that are
not strictly necessary for the actual accomplishment of the
operation but that help to do it in a2 more efficient way, e.g.,
arm manipulability.

The hierarchy can be changed in terms of the number of tasks

and their order of priority as a function of the action that

needs to be performed.

Experimental Validation
The developed control framework was validated and tested
during the 2017 field trials. In the following, the results of an
experiment in which only the manipulator is controlled with
the proposed TPIK algorithm are shown. Then, a simulation
showing coordinated control of the vehicle and the arm
is described.

Regarding the field experiment, the chosen task hierarchy
is composed of two tasks: arm joint limit avoidance and end-
effector position. The end effector is commanded to follow a
simple circular trajectory, while the joint-three upper and
joint-five lower thresholds have been chosen to become
active during the motion of the end effector and thus test
the priority mechanism. Figure 7 shows the position error
and the joint values with the corresponding thresholds. The
effectiveness of the control algorithm is clear, as the end effec-
tor follows the desired trajectory and the joint values never
exceed the desired upper and lower thresholds.

A simulation experiment further illustrates the results of
coordinated control. The task hierarchy is as follows:

o Arm manipulability. To avoid singular configurations, a
minimum value of 0.029 is set for the measure of the arm’s
manipulability.

o Virtual box. A set of six virtual walls surrounding the arm
base frame assures that the arm never tries to move the end
effector outside its workspace.

o End-effector configuration. A constant set-point for the
position and the orientation of the arm has been set.

Figure 8 shows the results. The system’s initial position
is set far away from the desired waypoint; it moves both
the vehicle and the arm to reach this waypoint with a null
error, while the arm manipulability and the end-effector
position expressed in the arm base frame never exceed the
desired thresholds.

With regard to vehicle-related tasks, the proposed solution
[11] builds on standard techniques leading to a proportional-
integral controller including an anti-wind-up mechanism.

Unaerwaier Fercepuon 1or vianipuiaion

Camera Calibration

For manipulation—with both teleoperation and autono-
my—it is essential that the sensor system is well calibrated
to correctly capture the environment. We use a novel cali-
bration and refraction correction process for underwater
cameras with flat-pane interfaces that is easy and conve-
nient to use while providing very accurate rectification
results [12].



The correction is derived from an
analysis of the axial camera model for
underwater cameras, which is physical-
ly correct but computationally hard to
tackle. It can be shown how realistic
constraints on the distance of the cam-
era to the window can be exploited,
leading to an approach known as the
pinax model because it combines
aspects of a virtual pinhole model with
the projection function from the axial
camera model. The pinax model is not
only convenient because it allows in-air
calibration; it also outperforms standard
methods in terms of accuracy [12].

3-D Mapping and Object
Recognition

The data from the camera system with
its stereo setup are processed online to
generate dense 2.5-D point-clouds,

(Figure 9). The well-known octree data
structure is used for this purpose. More
precisely, our implementation builds
upon the popular OctoMap library
[13], which is extended for differential
update operations to support efficient,
low-latency transmission of the 3-D
representation over the satellite link to
the onshore command center [14]. Furthermore, an efficient
strategy for underwater color updates is added.

Underwater images suffer from challenging light condi-
tions, especially wavelength-dependent attenuation and for-
ward scattering and backscattering. When coloring the
octomap, a very simple but efficient strategy is used: because
attenuation is wavelength and distance dependent, the
brightest measurement is used, which corresponds to the
closest and, hence, most accurate sample [14]. For substan-
tial image enhancement—at much higher computational
cost—a new variant of the dark channel prior for underwa-
ter vision is used [15]. Even though there are known adapta-
tions of this method to underwater applications, further
improvements are made by reformulating the problem.
Bright regions in the dark channel appear in outdoor images
in air on nonsky regions because of the backscattering,
which is used in the original dark channel prior. In contrast
to other adaptations of the method to underwater applica-
tions, the estimation of the atmospheric light is adjusted,
which leads to clear improvements [15].

The core navigation of the vehicle is based on the data of
the associated sensors connected to the vision compute bot-
tle, i.e., the NavQuest DVL and the Xsens IMU. These data
are fused in an extended Kalman filter and can be aided by
the registration of the stereo scans and the tracking of objects
up to the level of full simultaneous localization and mapping.

(a) (b) (c)

which are integrated into 3-D maps @

When (a) the vehicle approaches (b) the mockup panel structure, (c) the
augmented reality marker can be used to aid the navigation to validate different
navigation methods. Among others, (d) a 3-D octomap is generated in real time, which is
transmitted to the offshore control center. (e) Because the mockup panel structure is—as
in oil and gas operations—a priori known, perceived parts can be used to determine its
pose and project the known model in the scene to aid the execution of tasks. (Photos
and screenshot courtesy of DexROV consortium.)

The mockup panel structure is equipped with augmented
reality markers (Figure 9), which can further aid the naviga-
tion and be used for validating the other navigation methods.
The lower-level image processing, i.e., rectification and
image enhancement, are important for the robust recogni-
tion of the markers.

The 3-D octomap can be run with a 2-cm grid cell reso-
lution. This is well suited for autonomous operations like
collision avoidance and path planning, and it is also suffi-
cient to give human operators in the onshore command
center an overview of the environment including unex-
pected obstacles and the terrain. To aid manipulation, we
exploit the fact that, in many application cases, e.g., for oil
and gas operations, the structures to be dealt with are
known. The detailed simulation framework employed for
component and system validation [16] can be used in this
context to provide a virtual visualization of the real under-
water operations (Figure 9), i.e., when the vision system of
the ROV detects or tracks parts of the structure of interest,
the structure’s pose is transmitted to the onshore com-
mand center and the known model can be projected into
the scene. Furthermore, dedicated vision processes can
detect and localize crucial objects as a basis for (semi)
autonomous manipulation. For example, the valves on the
mockup structure are detected and localized with an active
contours method having superellipse fitting. Their



different system components and

their interplay.

The main lessons learned from the
field trials are as follows:

1) ROV operation from an onshore
control center via a satellite link is
feasible, in principle, despite laten-
cies and low bandwidth.

2) It is, however, important that the
system is capable of detecting the
operator’s intentions and using this
information to (semi)autonomously
carry out tasks.

3) There is no black or white with
respect to autonomy, but there are

08 Simulation different levels that can be useful, or
0.6 even necessary, depending on the
8 04 communication conditions.
£o02 4) Good situational awareness thmugh
) e | | ] B (R— constant update of the onshore envi-
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Flgure 10. (@) As the basis for (semi)autonomous manipulation, the orientations of the
valves on the mockup structure are determined by an active contours method using
superellipse fitting in combination with a Hough transform. (b) The errors in a single
frame state detection are within a few degrees, and they behave very similarly in the
sea trials (real data) as in the high-fidelity simulation of the system (simulation).

orientations are determined with a Hough transform to
estimate the predominate edges within the fitted ellips-
es (Figure 10).

Condusions

An approach to underwater manipulation was presented that

facilitates the use of a distant onshore control center with an

exoskeleton based on the following:

1) efficient transmission of multiple data streams over a satel-
lite link

2) a CE to mitigate communication latencies by encoding sta-
tistical models of manipulation tasks

3) the vehicle control, which is more oriented toward AUV
than ROV operations

4) an intelligent vision system, which provides perception
capabilities.

The approach was tested in July 2017 in a first field cam-

paign over two weeks in the Mediterranean Sea near

Marseille. Seven extended dives with about 11 h of

experimental data were performed, wherein the ROV

interacted with a mockup panel structure to validate the
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