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1	Introduction
The	CI	engines	are	widely	utilized	due	to	its	reliable	operation	and	economy.	As	the	petroleum	reserves	are	depleting	at	a	faster	rate,	an	urgent	need	for	a	renewable	alternative	fuel	arise.	Also	the	threat	of	global	warming	and	the	stringent	government	regulation

made	the	engine	manufacturers	and	the	consumers	to	follow	the	emission	norms	to	save	the	environment	from	pollution.

Among	the	many	alternative	fuels,	biodiesel	is	considered	as	a	most	desirable	fuel	extender	and	fuel	additive	due	to	its	high	oxygen	content	and	renewable	in	nature	[1].	Among	the	various	techniques	available	to	reduce	exhaust	emissions,	the	utilize	of	fuel-

borne	catalyst	is	currently	focused	due	to	the	advantage	of	increase	in	fuel	efficiency	while	reducing	greenhouse	gas	emissions.	The	influence	of	cerium	oxide	additive	on	ultrafine	diesel	particle	emissions	and	kinetics	of	oxidation	was	studied	by	Jung	et	al.	[2].	It	has	been
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Abstract

The	performance	and	the	exhaust	emissions	of	a	diesel	engine	operating	on	nano-diesel-biodiesel	blended	fuels	has	been	investigated.	Multi	wall	carbon	nano	tubes	(CNT)	(40,	80	and	120	ppm)	and	nano	silver	particles	(40,	80	and	120	ppm)	were

produced	and	added	as	additive	 to	 the	biodiesel-diesel	blended	fuel.	Six	cylinders,	 four-stroke	diesel	engine	was	 fuelled	with	 these	new	blended	fuels	and	operated	at	different	engine	speeds.	Experimental	 test	 results	 indicated	 the	 fact	 that	adding	nano

particles	 to	diesel	and	biodiesel	 fuels,	 increased	diesel	engine	performance	variables	 including	engine	power	and	 torque	output	up	 to	2%	and	brake	specific	 fuel	 consumption	 (bsfc)	was	decreased	7.08%	compared	 to	 the	net	diesel	 fuel.	CO2	emission

increased	maximum	17.03%	and	CO	emission	in	a	biodiesel-diesel	fuel	with	nano-particles	was	lower	significantly	(25.17%)	compared	to	pure	diesel	fuel.	UHC	emission	with	silver	nano-diesel-biodiesel	blended	fuel	decreased	(28.56%)	while	with	fuels	that

contains	CNT	nano	particles	increased	maximum	14.21%.	With	adding	nano	particles	to	the	blended	fuels,	NOx	increased	25.32%	compared	to	the	net	diesel	fuel.	This	study	also	presents	genetic	programming	(GP)	based	model	to	predict	the	performance

and	emission	parameters	of	a	CI	engine	in	terms	of	nano-fuels	and	engine	speed.	Experimental	studies	were	completed	to	obtain	training	and	testing	data.	The	optimum	models	were	selected	according	to	statistical	criteria	of	root	mean	square	error	(RMSE)

and	 coefficient	 of	 determination	 (R2).	 It	 was	 observed	 that	 the	GP	model	 can	 predict	 engine	 performance	 and	 emission	 parameters	with	 correlation	 coefficient	 (R2)	 in	 the	 range	 of	 0.93–1	 and	RMSE	was	 found	 to	 be	 near	 zero.	 The	 simulation	 results

demonstrated	that	GP	model	is	a	good	tool	to	predict	the	CI	engine	performance	and	emission	parameters.
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detected	that	addition	of	cerium	to	diesel	cause	significant	reduction	in	number	weighted	size	distributions	and	light-off	temperature	and	the	oxidation	rate	was	increased	significantly.

The	structural	and	morphological	characterization	of	a	Ce-Zr	mixed	oxide	supported	Mn	oxide	as	well	as	on	its	catalytic	activity	in	the	oxidation	of	particulate	matter	arising	from	diesel	engines	has	been	studied	by	Escribano	et	al.	[3].	Mn-Ce-Zr	catalyst	shows

high	activity	in	the	soot	oxidation	producing	CO2	and	CO	as	a	byproduct	in	the	range	425–725	°K.	Idriss	investigated	the	complexity	of	the	ethanol	reactions	on	the	surfaces	of	noble	metals/cerium	oxide	catalysts	[4].	The	hazard	and	risk	assessment	with	the	use	of	nano-

particle	cerium	oxide	bases	diesel	fuel	was	studied	by	Barry	Park	et	al.	[5].	Effects	of	cerium	oxide	nano-particles	addition	in	diesel	and	diesel-biodiesel-ethanol	blends	on	performance	and	emission	characteristics	of	a	CI	engine	has	been	studied	and	results	showed	that

the	cerium	oxide	acts	as	an	oxygen	donating	catalyst	and	provides	oxygen	for	the	oxidation	of	CO	or	absorbs	oxygen	for	the	reduction	of	NOx.	The	activation	energy	of	cerium	oxide	acts	to	burn	off	carbon	deposits	within	the	engine	cylinder	at	the	wall	temperature	and

prevents	the	deposition	of	non-polar	compounds	on	the	cylinder	wall	results	reduction	in	HC	emissions.	The	tests	revealed	that	cerium	oxide	nano-particles	can	be	used	as	additive	in	diesel	and	diesel-biodiesel-ethanol	blend	to	improve	complete	combustion	of	the	fuel

and	 reduce	 the	exhaust	emissions	significantly	 [1].	Carbon	nano-tubes	 (CNTs)	 are	 as	useful	 additives	 for	 increasing	 the	octane	number.	 Functionalized	 carbon	nanotubes	 containing	amide	groups	have	a	 high	 reactivity	 and	 can	 react	with	many	 chemicals.	These

compounds	can	be	solubilized	in	gasoline	to	increase	the	octane	number.	In	a	study,	the	amino-functionalized	carbon	nano-tubes	were	added	to	gasoline.	Research	octane	number	analysis	showed	that	these	additives	increase	octane	number	of	the	desired	samples	[6].

Experimental	 investigations	 to	measure	 the	performance	and	emission	parameters	of	 internal	 combustion	engines	are	complex,	 time	consuming	and	costly.	To	predict	 the	parameters	 from	 the	engines,	one	approach	 is	 to	utilize	numerical	models	 [7].	The

alternative	to	a	mathematical	model	is	the	experiment-based	approach.	Genetic	algorithm	(GA),	which	is	based	on	solutions	of	fixed	length	chromosomes,	usually	consisting	of	binary	genes,	organized	into	sequences,	often	termed	schema	is	the	most	commonly	used

evolutionary-computation	algorithm	[8,9].	Evolutionary	computation	(EC)	is	drawing	attentions	for	solving	real	engineering	problems.	This	approach	is	to	be	robust	in	delivering	global	optimal	solutions	and	coping	with	the	restrictions	encountered	in	traditional	methods.	EC

harnesses	the	power	of	natural	selection	to	turn	computers	into	optimization	tools	[10–13].	This	is	very	applicable	to	different	problems	in	the	manufacturing	industry	[11–17].

One	of	most	important	EC	methods	is	genetic	programming	(GP).	GP	is	a	similar	technique	as	genetic	algorithm,	an	evolutionary	computation	method	for	imitating	biological	evolution	of	living	organisms.	Genetic	Algorithms	(GAs)	and	genetic	programming	(GP)

have	been	found	to	offer	advantages	dealing	with	system	modeling	and	optimization,	especially	for	complex	and	nonlinear	systems.	GP	has	been	applied	to	a	wide	range	of	problems	in	artificial	intelligence,	engineering	and	science,	chemical	and	biological	processes	and

mechanical	issues	[18–22].	Pires,	et	al.	[23]	used	GP	method	to	predict	the	next	day	hourly	average	tropospheric	ozone	(O3)	concentrations.	The	results	showed	very	good	agreement	between	predicted	and	measured	data.	Prediction	of	compressive	and	tensile	strength

of	limestone	was	carried	out	via	genetic	programming	as	reported	by	Baykasoglu,	et	al.,	[24].	Another	interesting	genetic	programming	application	was	conducted	by	Cevik	and	Cabalar	[25]	for	prediction	of	peak	ground	acceleration	(PGA)	using	strong-ground-motion

data.	In	this	research,	they	demonstrated	a	high	correlation	between	PGA	and	predictions.	Multigene	genetic	programming	is	a	recently	developed	approach	for	improving	accuracy	of	GP	that	was	developed	by	Hinchliffe,	Willis,	Hiden,	Tham,	McKay	and	Barton	[26]	and

Hiden	[27]	and	have	been	utilized	in	some	recent	research	works	[28,29].	Kiani	et	al.	[30]	studied	the	application	of	genetic	programming	to	predict	an	SI	engine	brake	power	and	torque	using	ethanol-gasoline	fuel	blends.	At	this	study,	the	optimum	models	were	selected

according	to	statistical	criteria	of	root	mean	square	error	(RMSE)	and	coefficient	of	determination	(R2).	The	values	of	RMSE	and	R2	for	brake	power	were	found	to	be	0.388	and	0.998.	It	was	observed	that	the	GP	model	can	predict	engine	torque	with	correlation	coefficient

in	the	range	of	0.99–1	and	RMSE	was	found	to	be	0.731.	The	simulation	results	demonstrated	that	GP	model	is	a	good	tool	to	predict	the	engine	brake	power	and	torque	under	test	[30].	Numerous	studies	have	been	under	taken	by	using	GA	for	optimization	of	engine

characteristics	[31–41].	Numerous	studies	have	been	undertaken	by	using	genetic	programming	(GP)	[42–46].	GP	has	been	utilized	to	construct	prediction	model	for	diagnosing	the	engine	valve	faults.	Kalogirou	[47]	reviewed	ANN	and	GP	for	the	modeling	and	control	of

engine	combustion.	A	GP	based	mathematical	model	developed	for	the	prediction	of	SI	engine	torque	and	brake	specific	fuel	consumption	in	terms	of	spark	advance,	throttle	position	and	engine	speed	[48,49].

The	properties,	combustion-	and	emission	parameters	of	some	common	bio-fuels	used	in	diesel	engines	as	used	under	both	steady-state	and	transient	conditions,	has	been	investigated	[65,66].

In	the	present	research	study,	the	stable	diesel	biodiesel	blends	are	prepared	using	vegetable	waste	oil	methyl	ester	as	additive	and	the	emission	reduction	potential	are	investigated	using	nano	silver	and	carbon	nano	tubes	particles	as	fuel	borne	additive	with

neat	diesel	and	diesel-biodiesel	blends	on	the	compression	ignition	engine.	Parallel	a	multi-gene	genetic	programming	(GP)	algorithm	based	mathematical	model	for	predicting	an	CI	engine	performance	parameters	and	emission	parameters	in	relation	to	input	variables

including	engine	speed,	and	nano-particles	in	diesel-biodiesel	fuel	blends.

The	innovative	characteristics	of	 the	present	study	compared	to	existing	similar	studies	 is	utilize	the	new	nano	particles	and	additives	with	diesel-biodiesel	blended	fuels	to	 investigate	the	performance	and	emission	parameters	of	CI	engine.	This	study	also

presents	genetic	programming	(GP)	based	model	to	predict	the	performance	and	emission	parameters	of	a	CI	engine	in	terms	of	nano-fuels	and	engine	speed.	Experimental	studies	were	completed	to	obtain	training	and	testing	data.

2	Experimental	work
2.1	Description	of	the	experimental	setup

In	 this	study,	 the	experiments	were	performed	on	a	CI	engine,	6	Cylinder,	naturally	aspirated,	direct	 injection;	 fuel	 injection	system	of	engine	was	solid	and	mechanical	 injection	with	distributer	system.	The	shape	of	combustion	chamber	was	Shallow	depth

chamber.	Fuel	injector	type	was	single	hole	nozzle	with	hole	diameter	of	0.2	mm	and	spray	cone	angle	obtained	ranges	from	5–	to	20	degree,	it	requires	high	injection	pressure	in	the	range	of	150–180	bar.	The	engine	specification	is	given	in	Table	1.	A	190	kW	SCHENCK-

WT190	eddy–current	dynamometer	was	used	in	the	experiments.	Fuel	consumption	rate	was	measured	in	the	range	of	0.4–45	kg/h	by	using	laminar	type	flow	meter,	Pierburg	model.	The	measuring	precision	error	for	the	calibration	factors	was	±0.1%,	according	to	the

DIN	1319	standard.	The	confidence	level	for	this	model	was	around	95%.	Air	consumption	was	measured	using	an	AVL	Flowsonix	air	flow	meter.	The	measurement	range	was	0…	±1400	kg/h,	with	the	error	of	<±	1%.	The	relative	air–fuel	ratio,	the	emission	parameters

and	the	exhaust	gas	temperature	from	an	online	and	accurately	calibrated	exhaust	gas	analyser	DIGAS4000	were	recorded.	The	emission	parameters	from	an	online	and	accurately	calibrated	exhaust	gas	analyser	DIGAS	4000	were	recorded.	AVL	DIGAS	analyzer	is



used	to	measure	the	exhaust	constituents	such	as	CO,	HC	and	NOx.	The	sensitivity	and	the	measurement	accuracy	of	the	instruments	used	for	measuring	the	exhaust	gas	concentration	have	been	listed	in	Table	2.	The	testing	temperature	was	controlled,	and	temperature

measurement	accuracy	was	±1	°C.

Table	1	Main	characteristics	of	the	test	engine.

Engine	Type CI	engine,	6	Cylinder

Combustion	Order 1-5-3-6-2-4

Bore	×	Stroke(mm) 98.6	*	127

Comparison	Ratio 17:1

Displacement	Volume	(Lit) 5.8

Max.	Torque	(N.m/rpm) 410/1300

Max.	Power	(kW/rpm) 82/2300

Table	2	The	sensitivity	and	the	measurement	accuracy	of	the	instruments	used	for	measuring	the	exhaust	gas	concentration.

Exhaust	gas Measurements	domain Measurements	accuracy Measuring	method

CO 0–15%	vol. 0.06%	vol. Infrared	meth.

CO2 0–20%	vol. 0.5%	vol. Infrared	meth.

HC 0–2000	ppm 12	ppm Infrared	meth.

NOx 0–5000	ppm 32–120	ppm Electronic	meth.

Separate	fuel	tanks	were	fitted	to	the	diesel	engine	and	these	contained	diesel	and	the	biodiesel–diesel	blends.	Fig.	1	shows	the	schematic	diagram	of	the	experimental	setup.	Also	the	use	of	carbon	nano	tubes	(CNT)	and	silver	nano	particles	in	neat	diesel	and

diesel-biodiesel	blend	has	 the	 tendency	 to	settle	down	at	 the	 fuel	 tank.	B20	(B20	or	BD:	20%vol.	Biodiesel	and	80%vol.	diesel	blend),	silver	nano	particle	with	 the	size	of	50	nm	and	CNT	nano	particle	with	 the	diameter	of	5	nm	are	used	 in	 the	 test.	After	series	of

experiments,	it	is	found	that	the	blends	subjected	to	high	speed	blending	followed	by	ultrasonic	bath	stabilization	improves	the	stability.	Vegetable	methyl	ester	(Biodiesel)	prepared	from	the	waste	cooking	oil	(WCO)	through	transestrification	process	(Fig.	2),	and	then

blended	with	diesel	fuel.	The	performance	tests	for	the	diesel-biodiesel	blends	and	neat	diesel	with	nano	silver	and	CNT	nano	particles	as	fuel-borne	catalyst	additive	are	carried	out	on	a	computerized	diesel	engine.	A	computerized	data	acquisition	system	is	used	to

collect,	store	and	analyze	the	data.	All	tests	were	carried	out	at	full	load	(WTO)	condition.	An	important	criterion	of	the	full	load	performance	is	the	maximum	torque	value	as	compared	to	that	in	the	engine	specification,	so	due	to	investigate	the	variation	of	performance

and	emission	parameters	at	critical	condition,	 the	 full	 load	was	selected.	The	 load	applied	on	 the	engine	 is	measured	by	 the	 load	cell	connected	 to	 the	eddy	current	dynamometer.	All	 the	experiments	are	conducted	and	 the	 results	are	 recorded	under	steady	state

conditions.

Fig.	1	Engine	test	set-up	and	test	instruments	(a)	real	and	(b)	schematic.



In	transestrification	process,	the	KOH	(grade	99%)	and	methanol	(grade	99.9%)	were	prepared	from	Merck	Chemical	Industries,	Germany,	and	was	utilized	without	further	purification.	Also,	the	required	standards	were	needed	to	be	considered	in	GC	device	(i.e.

the	methyl	ester	of	fatty	acids	C18:2,	C18:1,	C18:3,	C16:1	and	C16:0)	and	n-heptanes	were	provided	by	Sigma-Aldrich	Company.	A	Gas	Chromatography	(GC)	unit	of	Perkin	Elmer	clarus	on	BS-EN	standard	were	used	for	biodiesel	yield	and	percentage	of	methyl	ester

content	of	the	produced	biodiesel.	The	purified	methylated	using	Metcalf	method,	and	the	prepared	sample	was	injected	into	GC	device	in	order	to	determine	fatty	acids	profile	and	molecular	weight	of	the	used	oil	(Fig.	3).	The	physical	and	chemical	properties	of	WCO	and

the	chromatogram	of	the	WCO	for	this	investigation	are	shown	in	Table	3	and	Fig.	3c,	respectively.	The	produced	Biodiesel	properties	in	comparison	with	ASTM	D6751	standard	has	been	described	in	Table	4.

Table	3	Chemical	and	physical	properties	of	the	used	WCO.

Properties Units Measured	Property

Density g/cm3 0.905

Kinematic	viscosity mPa·s 25.580

Acid	value Mg	KOH/g	oil 0.98

Iodine	value g	I2/100	g	oil 112.5

Water	content mg/g 0.15

Palmitic	acid	(C16:0) wt.% 10.71

Stearic	acid	(C18:0) wt.% 2.45

Oleic	acid	(C18:1)* wt.% 22.90

Linoleic	acid	(C18:2)* wt.% 55.01

Linoleic	acid	(C18:3)* wt.% 2.67

Other	fatty	acids wt.% 6.26

Fig.	2	Transestrification	reaction	of	waste	cooking	oil	with	methanol	in	the	presence	of	catalyst	[50,51].

Fig.	3	(a)	samples,	(b)	gas	chromatography	(GC)	analyzer	and	(c)	the	yields	of	fish	oil	compounds	according	to	the	carbon	numbers	in	the	chain	by	GC.



Mean	molecular	weight	of	WCO g/mol 876.60

* Carbon	atoms	number:	double	bond	number.

Table	4	The	Produced	Biodiesel	Properties	in	comparison	with	ASTM	D6751	standard.

Property Test	Method Limits Units Measured	Property

Water	and	Sediment ASTMD2709 0.05max %volume 0.045

Kinematic	Viscosity	@	40	°C ASTMD445 1.9–6.0 mm2/s 3.5

Sulfated	Ash ASTMD874 0.02max %mass 0.01

Sulfur	S	15	Grade ASTMD5453 0.0015max %mass 0.001

Sulfur	S	500	Grade ASTMD5453 0.05max %mass –

Copper	Strip	Corrosion ASTMD130 No3max No	2

Methanol	Content EN14110 0.20max %volume 0.15

Flash	Point,	Closed	Cup D93 130	min oC 170

Cetane	Number ASTMD613 – 45

Carbon	Residue ASTMD4530 0.05max %mass 0.02

Acid	Number ASTMD664 0.50max mgKOH/g 0.34

Free	Glycerin ASTMD6584 0.02 %mass 0.01

Total	Glycerin ASTMD6584 0.24 %mass 0.01

Phosphorus ASTMD4951 10max ppm –

Vacuum	Distillation	End	Point ASTMD1160 360°Cmax °C –

Oxidative	Stability EN14112 3	min hours 2.2

Cold	Soak	Filtration Annex	toD6751 360max seconds 240

An	 ultrasonic	 processor	 (UP400S,	Hielscher,	 USA)	was	 used	 to	 perform	 the	 transestrification	 reaction	 and	 even	mixing	 biodiesel	 and	 nano-particles	 before	 the	 engine	 tests.	 The	 equipment	 consisted	 of	 the	 processor,	 the	 sonotrode,	 and	 the	 PC	 control

(UPC400T).	The	processor	operated	at	400	W	and	24	kHz	frequency.	The	amplitude	and	the	pulse	for	the	reaction	were	adjustable	from	20	to	100%.	The	titanium	sonotrode	(H22D)	with	a	diameter	of	22	mm	and	a	length	of	100	mm	was	used	to	transmit	the	ultrasound

into	the	liquid.	According	to	the	results	of	similar	studies	for	optimal	reaction	temperature,	reaction	temperature	as	an	effective	factor	in	reaction	efficiency,	was	kept	constant	at	45	°C	by	a	circulator	apparatus	test	set.	The	schematic	diagram	of	the	experimental	set-up

used	in	this	study	is	shown	in	Fig.	4.



Considering	the	accomplished	researches	about	nano	fuels	and	diesel	fuel	nano	additives,	two	silver	nano-particles	(Ag)	and	carbon	nano	tubes	(CNT)	were	applied	as	nano	additives	to	these	fuels.	Furthermore	based	on	researches	conducted	about	the	effect

of	concentrations	of	used	nano-particles	in	reduction	of	exhaust	emissions,	in	this	study	three	concentrations	(40,	80	and	120	ppm)	were	applied.	In	order	to	ensure	the	validity	of	nano-particles	utilized	in	this	research,	SEM	and	TEM	pictures	were	taken	(Fig.	5).

Nano	silver	and	Multi-walled	carbon	nano-tubes	with	90–95%	purity	prepared	by	CVD	method	over	Co-Mo/MgO	catalyst	[52,53].	The	average	diameter	of	the	nano	tubes	varies	from	5	to	20	nm	and	their	length	from	5	to	15	µm.	Specification	of	fuels	and	applied

nano-additives	with	different	concentrations	are	indicated	in	Table	5.	Fig.	6	indicates	a	general	schematic	picture	of	the	whole	experiment	and	the	equipments	were	being	used.

Table	5	Fuels,	Nano-additives	and	their	concentrations.

Fuel Nano-particles Nano	Concentration	(PPM)

Diesel Nano-silver	(Ag) 40

80

120

Biodiesel	(B20=20%	biodiesel+80%	diesel	fuel) Carbon	Nano-Tubes	(CNT) 40

80

120

Carbon	nanotubes	has	been	produced	and	available	for	both	research	and	industrial	purposing.	The	production	cost	of	the	nanotubes	additives	in	diesel	and	biodiesel	blends	in	diesel	engine	was	$3	per	gram.

Fig.	4	The	set-up	for	ultrasonic	assisted	nano-biodiesel-diesel	production	process:(a)	schematic	and	(b)	real.

Fig.	5	TEM	image	of	(a)	the	CNT	nano	particles,	(b)	silver	nano	particles.



2.2	Testing	procedure
The	performance	and	emission	from	the	CI	engine	running	on	biodiesel	(derived	from	vegetable	cooking	oil)	and	blended	with	diesel	fuel	were	evaluated	and	compared	with	diesel	fuel.	A	Hielscher	ultrasonic	processor	(UP400S)	was	utilized	for	mixing	biodiesel,

diesel	and	nano-particles	before	the	engine	tests.	In	the	first	phase,	experiments	were	performed	with	the	biodiesel	(B20)	in	five	engine	speeds	800,850,	900,	950	and	1000	rpm.	Next,	silver	and	CNT	nano-particles	with	concentrations	of	40,	80	and	120	ppm	were	added

to	biodiesel.

Above	20%	biodiesel,	some	parts	of	engine	should	be	modified;	therefore,	only	experimental	results	obtained	up	to	this	percentage	of	biodiesel	will	be	presented.	The	fuel	blends	were	prepared	just	before	starting	the	experiment	to	ensure	that	the	fuel	mixture

was	homogenous.	A	series	of	experiments	were	carried	out	using	diesel,	and	biodiesel	blends.	All	the	blends	were	tested	under	varying	engine	speed	conditions.	The	engine	was	started	using	diesel	fuel	and	it	was	operated	until	it	reached	the	steady	state	condition.	The

engine	speed,	fuel	consumption,	and	load	were	measured,	while	the	brake	power,	brake	specific	fuel	consumption	(bsfc),	were	computed.	After	the	engine	reached	the	stabilized	working	condition,	emission	parameters	such	as	CO,	CO2,	HC,	NOx	 from	an	online	and

accurately	calibrated	exhaust	gas	analyser	were	recorded.	All	experiments	have	been	carried	out	at	full	load	conditions.

3	Experimental	results
3.1	Engine	performance
3.1.1	Brake	power	and	torque	output

Fig.	7	shows	the	effect	of	various	fuels	on	engine	brake	power.	When	the	nano	content	in	the	diesel	fuel	and	diesel-biodiesel	blended	fuel	is	increased,	the	engine	brake	power	slightly	increased	for	all	engine	speeds.	The	gain	of	the	engine	power	can	be	attributed	to	the	increase	of	the

indicated	mean	effective	pressure	 for	higher	nano	content	blends	 [54].	The	heat	of	evaporation	of	nano-diesel	 is	higher	 than	 that	diesel	 fuel,	 this	provides	 fuel–air	charge	cooling	and	 increases	 the	density	of	 the	charge,	and	 thus	higher	power	output	 is	obtained	 [55].	With	 the	 increase	 in

concentration	of	nano	silver	and	carbon	nano	tubes,	the	density	of	the	mixture	and	the	engine	volumetric	efficiency	increases	and	this	causes	the	increase	of	power	[56].	The	addition	of	nano	particles	with	neat	diesel	and	diesel-biodiesel	blends	accelerates	early	initiation	of	combustion	and	the

ignition	delay	decreases.	The	addition	of	biodiesel	increases	the	ignition	delay,	hence	more	fuel	is	accumulated	in	the	premixed	combustion	phase	is	the	cause	for	faster	combustion	which	results	in	higher	peak	pressure.	Higher	peak	pressure	causes	to	have	higher	brake	power	[1].	The	brake

power	of	CNT120-diesel-biodiesel	is	higher	among	all	the	fuel	blends.	The	brake	power	of	the	nano-diesel	blends	is	lower	than	nano-diesel-biodiesel	blends.	A	small	improvement	in	brake	power	is	observed	with	the	addition	of	nano	particles	with	diesel	and	diesel-biodiesel	blends.	The	highest

brake	power	is	observed	as	2.03%	for	CNT120-D80-B20	blend	whereas	it	 is	1.84%	for	CNT120-D100	compared	to	the	neat	diesel	fuel.	Experimental	results	proved	that	the	increase	of	nano	particles	content	and	biodiesel	 increases	the	torque	of	the	engine.	Added	biodiesel	produces	lean

mixtures	that	increase	the	relative	air–fuel	ratio	to	a	higher	value	and	makes	the	burning	more	efficient	[57].	The	improved	antiknock	behaviour	(due	to	the	addition	of	biodiesel	and	nano	particles)	allowed	a	more	advanced	timing	that	results	in	higher	combustion	pressure	and	thus	higher	torque

[58].	A	small	improvement	in	brake	torque	is	observed	with	the	addition	of	nano	particles	with	diesel	and	diesel-biodiesel	blends.	The	highest	brake	torque	is	observed	as	2%	for	CNT120-BD	(Diesel	80%-Biodiesel	20%	vol.)	blend	whereas	it	is	1.8%	for	CNT120-D100	compared	to	the	neat	diesel

Fig.	6	The	Set	up	for	ultrasonic-assisted	nano-diesel	production	process	(a)	transestrification	reaction,	(b)	ultrasonic	set-up	and	(c)	nano-diesel-biodiesel	blend.



fuel.

3.1.2	Brake	specific	fuel	consumption
The	specific	fuel	consumption	is	lower	for	the	nano-diesel	and	nano-diesel-biodiesel	blends	than	neat	diesel	fuel	at	all	the	engine	speed.	This	is	due	to	higher	calorific	value	of	the	diesel-biodiesel	blend	than	neat	diesel;	less	quantity	of	fuel	is	consumed	to	maintain	the	engine	speed

constant.	As	shown	in	Fig.	8,	the	bsfc	decreases	as	the	nano	concentration	increases.	This	phenomenon	is	due	to	the	result	of	nano	silver	and	CNT	nano	addition	which	promotes	combustion	[1].	The	lowest	bsfc	observed	as	202.96	g/kW.hr	for	the	BD-CNT	120	blend	whereas	it	is	222.18	g/kW.hr

for	neat	diesel.	The	variation	of	bsfc	with	nano-diesel-biodiesel	fuels	is	shown	in	Fig.	8.	Improvement	in	bsfc	is	observed	with	the	addition	of	nano	particles	with	diesel	and	diesel-biodiesel	blends.	The	highest	decrease	for	bsfc	is	observed	as	7.08%	for	CNT120-D80-B20	blend	whereas	it	is	5.7%

for	CNT120-D100	compared	to	the	neat	diesel	fuel.

Fig.	7	(a)	Brake	power	with	nano-diesel-biodiesel	blends	compared	to	neat	diesel	fuel	(1000	rpm),	(b)	brake	power	at	different	nano-diesel	fuel	blends	and	engine	speeds	and	(c)	brake	power	at	different	nano-biodiesel	fuel	blends	and	engine	speeds.



3.2	Engine	emissions
3.2.1	CO	emission

Fig.	9	shows	the	concentrations	of	CO	emission	for	different	engine	speeds	and	different	fuel	blends.	The	carbon	monoxide	emission	decreases	with	the	use	of	diesel-biodiesel-nano	blends	than	neat	diesel.	It	can	be	seen	from	this	figure	that	when	nano	concentration	increases,	the	CO

concentration	decreases	which	means	the	combustion	is	tuned	to	be	completed.	The	addition	of	nano	silver	and	carbon	nano	tubes	particles	further	decreases	the	CO	emission	when	comparing	with	neat	diesel.	The	variation	of	CO	emission	with	nano-diesel-biodiesel	fuels	is	shown	in	Fig.	9.	The

CO	of	CNT120-diesel-biodiesel	is	lowest	among	all	the	fuel	blends.	The	lowest	CO	emission	is	observed	as	25.17%	for	CNT120-D80-B20	blend	whereas	it	is	22.48%	for	CNT120-D100	compared	to	the	neat	diesel	fuel.

Fig.	8	(a)	bsfc	with	nano-diesel-biodiesel	blends	compared	to	neat	diesel	fuel	(1000	rpm),	(b)	bsfc	at	different	nano-diesel	fuel	blends	and	engine	speeds	and	(c)	bsfc	at	different	nano-biodiesel	fuel	blends	and	engine	speeds.



3.2.2	CO2	emission
Fig.	10	shows	the	relationship	between	the	CO2	concentrations	and	engine	speeds	for	different	blends	percentage.	Experimental	results	indicate	that	CO2	concentration	increases	as	the	biodiesel	and	nano	particles	concentration	increases.	CO2	emission	depends	on	relative	air–fuel

ratio	and	CO	emission	concentration	[55,60].	As	a	result	of	the	lean	burning	associated	with	increasing	nano	particles,	the	CO2	emission	increased	because	of	the	improved	combustion	[56–60,49,61,21,62–68].	Variation	of	CO2	with	nano-diesel-biodiesel	blends	compared	to	neat	diesel	fuel	has

been	indicated	in	Fig.	10.

Fig.	9	(a)	Variation	of	CO	with	nano-diesel-biodiesel	blends	compared	to	neat	diesel	fuel	(1000	rpm),	(b)	CO	at	different	nano-diesel	fuel	blends	and	engine	speeds	and	(c)	CO	at	different	nano-biodiesel	fuel	blends	and	engine	speeds.



3.2.3	HC	emission
HC	emissions	for	different	speeds	and	blended	fuels	are	illustrated	in	Fig.	11.	This	result	indicates	that	adding	of	nano	particles	and	blending	of	biodiesel	with	diesel	fuel	can	significantly	reduce	HC	emissions.	The	concentration	of	HC	emission	decreases	with	the	increase	of	the	relative

air–fuel	ratio,	the	reason	for	the	decrease	of	HC	concentration	is	similar	to	that	of	CO	concentration	described	above	[57–60].	The	addition	of	nano	silver	particles	decreases	the	HC	emission	while	addition	of	carbon	nano	tubes	increases	the	HC	emission	when	comparing	with	neat	diesel	fuel.

The	use	of	oxygenated	additives	promotes	complete	combustion	is	the	cause	for	the	hydrocarbon	emission	reduction,	but	in	the	case	of	CNT	particles	due	to	have	carbon	in	their	structure,	HC	emission	increases	[1].	The	variation	of	HC	with	nano-diesel-biodiesel	fuels	is	shown	in	Fig.	11.	The

highest	decrease	for	HC	is	observed	as	28.56%	for	Ag120-BD	blend	whereas	it	is	increased	maximum	14.21%	for	CNT120-BD	compared	to	the	neat	diesel	fuel.

Fig.	10	(a)	Variation	of	CO2	with	nano-diesel-biodiesel	blends	compared	to	neat	diesel	fuel	(1000	rpm),	(b)	CO2	at	different	nano-diesel	fuel	blends	and	engine	speeds	and	(c)	CO2	at	different	nano-biodiesel	fuel	blends	and	engine	speeds.



3.2.4	Nox	emission
Considering	the	NOx	emission,	Fig.	12	shows	that	 the	NOx	concentration	 is	higher	when	nano	particles	concentration	 increases.	 It	shows	that	as	the	concentration	of	nano	particles	 in	 the	blends	 increased,	NOx	emission	was	increased.	When	the	combustion	process	 is	closer	to

stoichiometric,	flame	temperature	increases,	therefore,	the	NOx	emission	is	increased,	particularly	by	the	increase	of	thermal	NO	[68–84].	The	NOx	emission	is	lower	for	the	neat	diesel	when	comparing	to	all	the	fuel	blends.	The	effect	of	oxygenated	additives	enhances	combustion	and	the	longer

ignition	delay	due	to	biodiesel	and	nano	particles	addition	results	in	faster	premixed	combustion	is	the	cause	for	higher	combustion	temperature	and	the	subsequent	higher	NOx	emission.	Variation	of	NOx	with	nano-diesel-biodiesel	blends	compared	to	neat	diesel	fuel	has	been	indicated	in	Fig.

12.

Fig.	11	(a)	Variation	of	UHC	with	nano-diesel-biodiesel	blends	compared	to	neat	diesel	fuel	(1000	rpm),	(b)	UHC	at	different	nano-diesel	fuel	blends	and	engine	speeds	and	(c)	UHC	at	different	nano-biodiesel	fuel	blends	and	engine	speeds.



It	should	be	mentioned	that	operating	discrepancies	such	as	injector	clogging	on	CI	engine	operation	mainly	during	operation	with	biodiesel	and	additives	has	not	been	observed.

4	GP	model	development
4.1	Overview	of	genetic	programming

Genetic	programming	(GP)	is	a	sub-branch	of	evolutionary	algorithms	(EAs)	emulating	the	natural	evolution	of	species.	Genetic	programming	(GP)	technique	is	an	extension	to	Genetic	Algorithm	(GA).	The	main	difference	between	GA	and	GP	resides	in	the

nature	of	the	individuals:	in	GAs	the	individuals	are	symbolic	strings	of	fixed	length	(chromosomes);	in	GP	the	individuals	are	nonlinear	entities	of	different	sizes	and	shapes	(parse	trees)	[49].

Koza	[61]	was	one	of	the	scientists	who	first	suggested	the	use	of	GP	to	find	a	symbolic	regression	tree	matching	to	the	mathematical	formula	which	can	best	fit	the	data	according	to	a	fitness	criterion.	Fitting	such	a	model	was	performed	in	an	optimization	frame

work	in	which	the	error	of	the	created	symbolic	trees	versus	sample	data	is	minimized	via	regression.	Thus,	it	is	intrinsically	suitable	for	modeling	of	complex	industrial	problems.	In	order	to	emulate	the	evolutionary	process	in	the	design	of	GP,	certain	components	should

be	defined.	These	include	n-ary	arithmetic	functions,	problem	decision	variables	and	evolutionary	operators	such	as	reproduction,	crossover,	and	mutation	to	symbolic	expressions.	The	symbolic	expressions,	called	individuals	or	solutions,	are	generated	to	create	the

initial	 population.	 A	 population	 in	 evolutionary	 algorithms	 is	 a	 set	 of	 a	 defined	 number	 of	 solutions	 at	 an	 iteration	 of	 the	 algorithm.	 The	 initial	 expressions	 are	 produced	 with	 tree-based	 encoding.	 For	 instance,	 the	 mathematical	 expression	 (

)	can	be	indicated	by	diagram	as	shown	in	Fig.	13.	These	expressions	are	constituted	of	elements	from	two	distinctive	parameter	groups:	(i)	a	functional	set	and	(ii)	a	terminal	set.	The	functional	set	is	generally	arithmetic	function,	e.g.

f	=	{*,	+,	−,	sin,	cos,	log,	power	…}.	The	arguments	for	these	functions	are	supplied	from	the	terminal	set	that	includes	the	decision	variables	and	constants.	For	instance,	in	Fig.	13	the	function	set	(F)	is	composed	of	F	=	{*,	+,	sin,	tanh}	and	the	terminal	set	(T)	is	composed

of	T	=	{x1,	x2,	x3,	a,	b}.	The	initial	solutions	are	restricted	in	terms	of	tree	depth	or	length	of	expression	to	fill	the	first	population	in	the	algorithm	with	the	potential	building	blocks	of	individuals	to	be	created	at	the	next	step	of	the	algorithm.	A	basic	flowchart	of	the	genetic

programming	model	has	been	presented	in	Fig.	14.

Fig.	12	(a)	Variation	of	NOx	with	nano-diesel-biodiesel	blends	compared	to	neat	diesel	fuel	(1000	rpm),	(b)	NOx	at	different	nano-diesel	fuel	blends	and	engine	speeds	and	(c)	NOx	at	different	nano-biodiesel	fuel	blends	and	engine	speeds.

	

Fig.	13	Example	of	tree	representation	of	mathematical	expressions	used	in	GP.

Fig.	14	Flow	chart	of	the	genetic	programming	paradigm.



At	each	generation	a	new	population	is	created	through	selecting	individuals	based	on	their	fitness	and	using	the	genetic	operators	(reproduction,	crossover,	and	mutation).	In	reproduction	operation,	part	of	population	(the	fittest	individuals)	is	preserved	so	that

new	generation	is	the	result	of	genetic	operations	on	the	individuals	of	the	actual	population.	In	crossover	operation	two	individuals	(parents)	are	selected,	their	tree	structures	are	broken	at	a	randomly	selected	crossover	point,	and	the	produced	sub-trees	are	recombined

to	form	two	new	individuals	(offspring)	[21].	Fig.	15	demonstrates	the	crossover	operation.	Mutation	operation	includes	selecting	an	individual,	randomly	choosing	a	branch	and	deleting	and	replacing	it	with	a	new	random	branch	(Fig.	16).	The	existing	population	will	then	be

substituted	with	the	new	population.	The	procedure	is	iterated	until	a	termination	criterion	(achievement	of	the	maximum	number	of	generations	or	a	determined	error	defined)	is	satisfied.

In	reproduction	operation,	part	of	population	(the	fittest	individuals)	is	preserved	so	that	new	generation	is	the	result	of	genetic	operations	on	the	individuals	of	the	actual	population.	In	crossover	operation	two	individuals	(parents)	are	selected,	their	tree	structures

Fig.	15	Crossover	operation	between	two	parents.

Fig.	16	Mutation	operation	in	individual.



are	broken	at	 a	 randomly	 selected	crossover	point,	 and	 the	produced	sub-trees	are	 recombined	 to	 form	 two	 individuals	 (offspring)	 [62].	 The	existing	population	will	 then	be	 substituted	with	 the	new	population.	The	procedure	 is	 iterated	until	 a	 termination	 criterion

(achievement	of	the	maximum	number	of	generations	or	a	determined	error	defined)	is	satisfied.	A	newly	developed	method	for	improving	the	precision	of	GP	is	“multi-gene	genetic	programming”.	The	main	difference	between	the	traditional	and	the	multi-gene	GP	is	the

number	of	trees	which	can	be	used.	In	the	traditional	GP,	a	single	tree	represents	the	model	however,	in	the	multi-gene	GP	several	trees	may	express	the	model.	All	of	these	genes	possess	specific	optimal	weights	and	sum	of	weighted	genes	plus	a	bias	term	would	form

the	final	formula	as	the	best	resulted	numerical	model.	Multi-gene	GP	can	be	shown	as	the	follow:

In	which,	a0	is	the	bias	term	and	ai	is	weight	of	the	ith	gene.	Indeed,	multi-gene	GP	is	a	linear	combination	of	nonlinear	terms,	and	this	feature	allows	identifying	the	model	of	engineering	problems	in	a	highly	precise	manner.

4.2	Modeling	with	GP
The	GP	was	used	in	this	study	to	perform	a	multi-gene	genetic	programming	for	precise	prediction	of	diesel	engine	performance	(power,	torque,	BSFC)	and	emission	(CO,	CO2,	UHC	and	NOx)	parameters.	The	genetic	programming	and	Symbolic	Regression	is	a

new	code	that	has	been	written	on	the	basis	of	multi-gene	GP	for	utilize	with	MATLAB	[63].	The	GP	has	the	possibility	of	setting	some	limitations	to	avoid	bloating.	Bloating	is	defined	as	the	unnecessary	growth	of	the	model	without	any	significant	improvement	in	the

fitness.	In	order	to	avoid	bloating,	some	restrictions	were	imposed	on	initial	parameters	such	as	maximum	number	of	genes,	maximum	depth	of	genes	and	trees,	and	maximum	number	of	nodes	per	tree.	In	addition,	lexicographic	tournament	selection	that	is	an	efficient

method	for	restraining	the	model	bloating	was	utilized	in	GP.	It	is	noteworthy	that	the	present	investigation	has	considered	root	mean	square	error	(RMSE)	as	the	fitness	function	of	the	analysis.	The	RMSE	is	defined	as:

where	 t	 is	 the	experimental	value,	o	 is	 the	predicted	value	and	n	 is	 the	 total	number	of	data.	Table	6	 indicates	 the	 range	of	 the	 initial	parameters	used	 in	 the	GP	 runs.	Other	 initial	parameters	were	adjusted	 to	 their	default	 values	 in	GPTIPS,	according	 to	Searson

[64].

Table	6	Multi-gene	GP	ranges	of	initially	parameters.

Parameter Range

Number	of	generations 100–300

Population	size 100–400

Function	set {+,−,×,√,÷,	sin,	cos,	exp,	log,	tanh}

Max.	number	of	genes 3–5

Max.	depth	of	tree 4–8

Probability	of	crossover 0.70–0.95

Probability	of	mutation 0.04–0.2

Probability	of	reproduction 0.01–0.1

Three	statistical	evaluation	criteria	were	applied	to	assess	the	model	performance:

(i) The	root	mean	square	error	(RMSE)	(Eq.	(2)),	(ii)	The	coefficient	of	determination	(R2)	defined	in	Eq.	(3)	and	(iii)	Variation	explained	(VE)	has	been	described	at	Eq.	(4):

For	developing	 the	GP	model,	 the	data	(560	test	 in	 total),	 taken	from	the	experimental	study	were	used	as	 training	and	testing	sets	 for	 the	GP	architecture.	Data	was	divided	 into	 two	subsets	 including	 the	 training	and	testing	with	a	ratio	of	0.75	and	0.25,

respectively.

(1)

(2)

(3)

(4)



4.2.1	Brake	power
The	following	equation	was	selected	as	the	best	model	for	brake	power.

where	BP	 is	 the	engine	brake	power	 (kW),	and	x1,	x2	and	x3	are	 the	engine	speed	(rpm),	Ag	(ppm)	and	CNT	(ppm)	nano	particle	concentration,	 respectively.	Accuracy	of	 the	equation	 is	studied	by	plotting	 the	measured	values	versus	predicted	by	GP	values	 for	 training	and	 testing	sets

(Fig.	17).	The	values	of	R2	and	RMSE	are	0.9995	and	0.0901	respectively	for	testing	set	(Fig.	17a)	and	0.9998	&	0.0458	respectively	for	training	set	(Fig.	17b).	There	is	a	good	correlation	between	the	predictions	from	multi-gene	GP	and	the	measured	data.	A	comparison	of	the	error	during	testing

and	training	by	using	GP	and	experimental	results	has	been	illustrated	in	Fig.	17c	&	d.	It	was	proved	that	the	multi-gene	GP	model	can	predict	engine	brake	power	with	a	high	variation	explained	(99.95%	for	testing	and	99.99%	for	training)	and	very	low	root	mean	square	(RMS)	error	(0.09	for

testing	and	0.04	for	training).

4.2.2	Torque
The	following	equation	was	selected	as	the	best	model	for	engine	torque:

where	 T	 is	 the	 engine	 torque	 (Nm).	 Accuracy	 of	 the	 equation	 is	 studied	 by	 plotting	 the	measured	 values	 versus	 predicted	 by	 GP	 values	 for	 training	 and	 testing	 sets	 (Fig.	18).	 The	 values	 of	 R2	 and	 RMSE	 are	 0.9965	 and	 0.88868	 respectively	 for	 testing	 set	 (Fig.	 18a)	 and	 0.9993	 &

0.38851	respectively	for	training	set	(Fig.	18b).	There	is	a	good	correlation	between	the	predictions	from	multi-gene	GP	and	the	measured	data.	A	comparison	of	the	error	during	testing	and	training	by	using	GP	and	experimental	results	has	been	illustrated	in	Fig.	18c	&	d.	It	was	proved	that	the

multi-gene	GP	model	can	predict	engine	torque	with	a	high	variation	explained	(99.95%	for	testing	and	99.93%	for	training)	and	very	low	root	mean	square	(RMS)	error	(0.88	for	testing	and	0.38	for	training).

(5)

Fig.	17	Measured	versus	predicted	values	of	brake	power	(a)	testing	set	data,	(b)	training	data	set.	Experimental	results	and	the	GP	model	prediction	of	brake	power	for	(c)	testing	set	data,	(d)	training	data.

(6)



4.2.3	BSFC
The	following	equation	was	selected	as	the	best	model	for	brake	specific	fuel	consumption:

where	 BSFC	 is	 the	 brake	 specific	 fuel	 consumption	 (g/kW.h).	 Accuracy	 of	 the	 equation	 is	 studied	 by	 plotting	 the	 measured	 values	 versus	 predicted	 by	 GP	 values	 for	 training	 and	 testing	 sets	 (Fig.	 19).	 The	 values	 of	 R2	 and	 RMSE	 are	 0.9477	 and	 1.5521	 respectively	 for	 testing	 set

(Fig.	19a)	and	0.9678	&	1.15	respectively	for	training	set	(Fig.	19b).	There	is	a	good	correlation	between	the	predictions	from	multi-gene	GP	and	the	measured	data.	A	comparison	of	the	error	during	testing	and	training	by	using	GP	and	experimental	results	has	been	illustrated	in	Fig.	19c	&	d.	 It

was	proved	that	the	multi-gene	GP	model	can	predict	BSFC	with	a	high	variation	explained	(94.77%	for	testing	and	96.78%	for	training)	and	very	low	root	mean	square	(RMS)	error	(1.55	for	testing	and	1.15	for	training).

Fig.	18	Measured	versus	predicted	values	of	torque	(a)	testing	set	data,	(b)	training	data	set.	Experimental	results	and	the	GP	model	prediction	of	torque	for	(c)	testing	set	data,	(d)	training	data.

(7)



4.2.4	CO
The	following	equation	was	selected	as	the	best	model	for	CO	emission:

where	CO	 is	 the	CO	 emission	 (%Vol.).	 Accuracy	 of	 the	 equation	 is	 studied	 by	 plotting	 the	measured	 values	 versus	 predicted	 by	GP	 values	 for	 training	 and	 testing	 sets	 (Fig.	20).	The	 values	of	R2	 and	RMSE	 are	 0.9337	 and	 0.2678	 respectively	 for	 testing	 set	 (Fig.	 20a)	 and	 0.9922	 &

0.0934	respectively	for	training	set	(Fig.	20b).	There	is	a	good	correlation	between	the	predictions	from	multi-gene	GP	and	the	measured	data.	A	comparison	of	the	error	during	testing	and	training	by	using	GP	and	experimental	results	has	been	illustrated	in	Fig.	20c	&	d.	It	was	proved	that	the

multi-gene	GP	model	can	predict	CO	with	a	high	variation	explained	(93.37%	for	testing	and	99.28%	for	training)	and	very	low	root	mean	square	(RMS)	error	(0.2678	for	testing	and	0.0934	for	training).

4.2.5	CO2

The	following	equation	was	selected	as	the	best	model	for	CO2	emission:

where	CO2	 is	 the	CO2	 emission	 (%Vol.).	Accuracy	of	 the	equation	 is	 studied	by	plotting	 the	measured	 values	 versus	predicted	by	GP	values	 for	 training	and	 testing	 sets	 (Fig.	21).	The	 values	of	R2	 and	RMSE	are	 0.9486	and	0.2358	 respectively	 for	 testing	 set	 (Fig.	21a)	 and	 0.9922	 &

0.0936	respectively	for	training	set	(Fig.	21b).	There	is	a	good	correlation	between	the	predictions	from	multi-gene	GP	and	the	measured	data.	A	comparison	of	the	error	during	testing	and	training	by	using	GP	and	experimental	results	has	been	illustrated	in	Fig.	21c	&	d.	It	was	proved	that	the

multi-gene	GP	model	can	predict	CO2	with	a	high	variation	explained	(94.86%	for	testing	and	99.22%	for	training)	and	very	low	root	mean	square	(RMS)	error	(0.2358	for	testing	and	0.0936	for	training).

Fig.	19	Measured	versus	predicted	values	of	brake	specific	fuel	consumption	(a)	testing	set	data,	(b)	training	data	set.	Experimental	results	and	the	GP	model	prediction	of	bsfc	for	(c)	testing	set	data,	(d)	training	data.

(8)

Fig.	20	Measured	versus	predicted	values	of	CO	emission	(a)	testing	set	data,	(b)	training	data	set.	Experimental	results	and	the	GP	model	prediction	of	CO	for	(c)	testing	set	data,	(d)	training	data.

(9)



4.2.6	UHC
The	following	equation	was	selected	as	the	best	model	for	HC	emission:

where	HC	is	 the	HC	emission	(ppm).	Accuracy	of	 the	equation	 is	studied	by	plotting	the	measured	values	versus	predicted	by	GP	values	for	 training	and	testing	sets	(Fig.	22).	The	values	of	R2	and	RMSE	are	0.9388	and	0.8699	respectively	 for	 testing	set	 (Fig.	22a)	and	0.9961	&	0.2439

respectively	for	training	set	(Fig.	22b).	There	is	a	good	correlation	between	the	predictions	from	multi-gene	GP	and	the	measured	data.	A	comparison	of	the	error	during	testing	and	training	by	using	GP	and	experimental	results	has	been	illustrated	in	Fig.	22c	&	d.	It	was	proved	that	the	multi-gene

GP	model	can	predict	HC	with	a	high	variation	explained	(93.886%	for	testing	and	99.61%	for	training)	and	very	low	root	mean	square	(RMS)	error	(0.8699	for	testing	and	0.2439	for	training).

Fig.	21	Measured	versus	predicted	values	of	CO2	(a)	testing	set	data,	(b)	training	data	set.	Experimental	results	and	the	GP	model	prediction	of	CO2	for	(c)	testing	set	data,	(d)	training	data.

(10)



4.2.7	Nox
The	following	equation	was	selected	as	the	best	model	for	NOx	emission:

Accuracy	of	the	equation	is	studied	by	plotting	the	measured	values	versus	predicted	by	GP	values	for	training	and	testing	sets	(Fig.	23).	The	values	of	R2	and	RMSE	are	0.9843	and	23.169	respectively	for	testing	set	(Fig.	23a)	and	0.9884	&	23.22	respectively	for	training	set	(Fig.	23b).

There	is	a	good	correlation	between	the	predictions	from	multi-gene	GP	and	the	measured	data.	A	comparison	of	the	error	during	testing	and	training	by	using	GP	and	experimental	results	has	been	illustrated	in	Fig.	23c	&	d.	It	was	proved	that	the	multi-gene	GP	model	can	predict	NOx	with	a	high

variation	explained	(98.43%	for	testing	and	98.84%	for	training)	and	very	low	root	mean	square	(RMS)	error	(23.16	for	testing	and	23.22	for	training).

Fig.	22	Measured	versus	predicted	values	of	UHC	emission	(a)	testing	set	data,	(b)	training	data	set.	Experimental	results	and	the	GP	model	prediction	of	UHC	for	(c)	testing	set	data,	(d)	training	data.

(11)

Fig.	23	Measured	versus	predicted	values	of	NOx	emission	(a)	testing	set	data,	(b)	training	data	set.	Experimental	results	and	the	GP	model	prediction	of	NOx	for	(c)	testing	set	data,	(d)	training	data.



Due	to	comparison,	R2	and	RMSE	values	for	Performance	&	Emission	parameters	are	listed	in	Table	7.	Experimental	Data	analysis	by	the	GP	revealed	that	there	is	a	good	correlation	between	the	GP	predicted	results	and	the	experimental	data	(Table	6).	Therefore	GP	proved	to	be	a

useful	tool	for	correlation	and	simulation	of	engine	parameters.

Table	7	R2	and	RMSE	values	for	Performance	&	Emission	parameters.

Parameters Train	set Test	set

R2 RMSE R2 RMSE

Performance	parameters Power 0.9995 0.0458 0.9995 0.0901

Torque 0.9993 0.3885 0.9965 0.8886

BSFC 0.9678 1.15 0.9477 1.55

Emission	parameters CO 0.9922 0.0934 0.9337 0.2678

CO2 0.9922 0.0936 0.9486 0.2358

UHC 0.9961 0.2439 0.9388 0.8699

Nox 0.9884 23.22 0.9843 23.16

5	Conclusions
The	present	work	demonstrates	that	the	use	of	nano-diesel-biodiesel	blended	fuel	will	 increase	the	brake	power	and	torque	and	decrease	the	brake	specific	fuel	consumption.	It	was	also	found	that	the	CO2	and	NOx	concentrations	were	increased	while	the

concentration	of	CO	and	HC	were	decreased	when	nano-biodiesel-diesel	blends	are	used.	The	multi-gene	genetic	programming	results	are	very	good,	R	values	 in	 this	model	are	very	close	to	one,	while	root	mean	square	errors	(RMSE)	were	found	to	be	very	 low.

Analysis	of	the	experimental	data	by	the	GP	revealed	that	there	is	a	good	correlation	between	the	GP	predicted	results	and	the	experimental	data.	Therefore	GP	proved	to	be	a	useful	tool	for	correlation	and	simulation	of	engine	parameters.	GP	provided	an	accurate	and

simple	approach	in	the	analysis	of	this	complex,	multivariate	problem,	the	analysis	of	the	CI	engine	performance	and	emissions.
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Highlights

• Using	nano-diesel-biodiesel	increased	the	brake	power,	torque	and	decrease	bsfc	of	CI	engine.

• The	CO2	and	NOx	increased	while	the	concentration	of	CO	and	HC	were	decreased	with	nano-biodiesel-diesel	blends.



Queries	and	Answers
Query:	Your	article	is	registered	as	belonging	to	the	Special	Issue/Collection	entitled	“Dual-Fuel&Fuel	Addts”.	If	this	is	NOT	correct	and	your	article	is	a	regular	item	or	belongs	to	a	different	Special	Issue	please	contact

aravind.kumar@elsevier.com	immediately	prior	to	returning	your	corrections.

Answer:

Query:	The	author	names	have	been	tagged	as	given	names	and	surnames	(surnames	are	highlighted	in	teal	color).	Please	confirm	if	they	have	been	identified	correctly.

Answer:

Query:	Please	note	that	as	Refs.	[49],	[61]	and	[21],	[62]	were	identical,	the	latter	has	been	removed	from	reference	list	and	ensuing	references	have	been	renumbered.

Answer:

• Good	correlation	was	observed	between	genetic	programming	predicted	results	and	experimental	data.

• GP	proved	to	be	a	useful	tool	for	correlation	and	simulation	of	engine	parameters.

• GP	provided	an	accurate	and	simple	approach	in	the	analysis	of	the	CI	engine	performance	and	emissions.
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