Single range localization in 3D: observability and
robustness 1ssues

Giovanni Indiveri, Daniela De Palma and Gianfranco Parlangeli

Abstract—The problem of estimating the position of a 3D
vehicle subject to a constant unknown velocity disturbance is
addressed: the only available model output is assumed to be
the distance (range) to a reference point. The vehicle’s nominal
velocity is also assumed to be known. An observability analysis is
performed and an observer is designed. The proposed approach
departs from alternative ones and leads to the definition of a
linear time invariant state equation with a linear time varying
output. The localization problem is solved using a novel outlier
robust predictor - corrector state estimator. Numerical simulation
examples are described to illustrate the performance of the
method as compared to a standard Kalman filter.

Index Terms—Observability; Localization; Navigation; Marine
Vehicles; State estimation; Robustness; Outliers.

I. INTRODUCTION

The problem of single range based localization consists in
estimating an agent’s position (or possibly pose, i.e. position
and attitude) exploiting knowledge about its motion model
together with a range measurement from a point and even-
tually other sensor readings. Most often the motion model
is kinematic and the available sensor readings are relative to
velocity and attitude. In some applications a position mea-
surement along the vertical may be acquired through pressure
gauges. The problem of single range based localization is
particularly relevant in land [1], [2], aerial [3] and marine
robotics [4] [5] [6] applications. The challenge of using single
range information for localization is related to the fact that
traditional trilateration algorithms used in systems as the
Global Positioning System (GPS), long base line (LBL) or
ultra short base line (USBL) underwater navigation systems
are ill posed when only range from a single point is known.
Yet fusing information from a motion model of the agent
and a single range measurement can be sufficient to estimate
the position of the agent. Finding the conditions on the
agent’s motion state that allow to estimate its position from
successive measurements of the distance to a fixed beacon is
an observability problem that needs to be tackled in order to
eventually design an observer. Given that range is a nonlinear
function of the position, even if the motion model of the
vehicle should be linear, the observability issue is inherently
nonlinear.

In reference [1] the authors consider the localization prob-
lem for two mobile robots equipped with different sensors.
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Using the Lie derivatives based observability rank criterion
they determine the conditions under which the system is lo-
cally weakly observable and they achieve sufficient conditions
for the observability of cooperative localization. Necessary and
sufficient conditions for local weak observability are derived in
[2]. In [3] the problem of observability is related to the one of
opportunistic navigation. The problem of the observability of
the environment is there introduced and different observability
concepts are investigated and compared. In [4] local system
observability for range-only measurement target tracking is
established through the Fisher information matrix, and results
are validated using an extended Kalman filter (EKF) to esti-
mate the target states. In [6] the authors address observability
issues in the context of the relative localization of autonomous
underwater vehicles. After exploiting some nonlinear observ-
ability concepts, a metric based on the condition number of
the observability matrix is proposed to quantitatively assess
the degree of observability as a function of relative vehicle
motion parameters.

The theoretical foundation on observability for nonlinear
systems is the milestone paper [7] where the fundamental
ideas and results about local and local weak observability are
described: single range localization studies based on differen-
tial geometric tools need to tackle the difficulties related to
local and local weak observability as opposed to the global
observability concept known for linear systems. Such issues
are clearly addressed, by example, in references [8], [9] and
[10]. In [8] the authors propose an algebraic estimator for the
estimation of an underwater vehicle using a single acoustic
transponder. In [9] local weak observability for the kinematics
of an underwater vehicle with range-only measurement is per-
formed and an EKF is proposed. Simulation results evidence
that the EKF shows exponential convergence when the filter’s
initial condition is sufficiently close to the actual one. In [10]
the observability analysis is based on a linearization of the
model.

An interesting approach to address the global observability
analysis and observer design for single range localization
is described in the work of Batista et al. [11] [12] [13]:
they transform the original nonlinear system in a linear time
varying (LTV) system through an augmented state technique.
This leads to the remarkable result of allowing to study the
global observability properties of the system with the tools
of LTV systems theory [14] and of designing a Kalman filter
for global state estimation. Moreover, the problem of range
based localization is technically similar to the problem of
source localization [15] [16] where a vehicle knowing its own
position is asked to estimate the position of a source (or target)



from which it acquires range measurements. The single range
localization problem is of particular interest for underwater
navigation applications where range measurements are typi-
cally acquired through acoustic time of flight based sensors:
the data so collected is often corrupted by outliers. Indeed
the issue of designing outlier robust underwater navigation
systems is of great importance and it has been addressed, for
example, in [17] [18] [19] [20].

Motivated by the above arguments, the main goal of this
paper is to propose an effective localization algorithm for a
3D vehicle based on single range only. The proposed solution
is based on the construction of a fictitious LTI state equation
defined on R® with a time varying scalar output equation
which allows to address the observability analysis and the
state estimation filter design resorting to LTV systems theory.
Furthermore, inspired by the problem of the presence of
measurement outliers, a robust state estimator based on the
Least Entropy-Like approach [21] is designed and illustrated.

The paper is organized as follows: the problem formulation,
main ideas and methods are described in section II. A Kalman
filter and a novel outlier robust state estimator are described
in sections III and IV respectively. Implementation aspects of
the proposed robust state estimator are addressed in section V.
Finally, conclusions are summarized in section VI.

II. SINGLE RANGE LOCALIZATION

Consider an agent (or a vehicle, in the following) with posi-
tion given by vector p and a source (or navigation reference)
with fixed inertial position s. Denoting with

r.=s—p (D)

the relative position of the source with respect to the agent it
is assumed that this can access the measurement y given by
squared norm of r, namely

y=|r|> )

Moreover, denoting with {1} and { B} an earth fixed and body
fixed frames respectively, it is assumed that the agent has
access to a measurement of its attitude, namely it can measure
the rotation matrix ‘R € SO(3) thanks to an on board
navigation system (Attitude and Heading Reference System
- AHRS). The agent velocity is given by a superposition of a
drift term v; (unknown, but constant) and a controlled input
term v,. For underwater vehicles the velocity term v, can
be generated through a guidance controller exploiting an on
board navigation sensor as a Doppler Velocity Logger (DVL).
The drift term v; models a constant unknown ocean current.
The resulting agent motion model expressed in frame {I} is
thus

p = V,-—‘er (3)
vi = 0 “4)
s = 0. 5)

Consequently, the agents state equations in terms of the
relative position r expressed in the fixed frame {I} result in:

Po= —ve—vy (6)
vi = 0 (7
y = || (8)

In the sequel we will refer to the model in (6, 7, 8) as the
"original” model. The problem addressed in the paper can
thus be formulated as in the following subsection II-A.

A. Problem formulation

Given the linear state equations (6 - 7) for the state
vector (r',v;)" € RS and the nonlinear scalar output
y in (8) determine the conditions on the input v, that
guarantee observability of the state (r',v;)" and design a

state estimator that is robust to possible outliers in the output y.

This problem corresponds to the one addressed in [13] with
the only difference that here it is formulated in the inertial
frame {I} rather than in the body fixed frame {B}. Yet it
should be noticed that the available information in the two set-
ups is identical as both formulations require to have access to
the rotation matrix ‘R € SO(3). In particular, in the present
paper 'Rp is needed to recover v, in the {I} frame from its
measurement in the {B} frame through a DVL (or other on
board navigation sensors).
To tackle the formulated observability problem consider the
integral of (6)
r(t)—ro =

—vy (t—to) —/ v (T)dT =

to
= —Vf (t - to) - Iv,,, (t07 t) (9)

having defined the displacement I, (to,t) € R3*! as

¢
I, (to,t) ::/ v, (7)dr (10)
to

and ro := r(t) . Equation (9) allows to compute

li=to
(r(t) + Iy, (t0,1)) " (v(t) + I, (t0, 1)) =
= (ro— vy (t—t0)) ' (ro— vy (t—to))
implying
IO + [T, (fo, > + 2Ty, (to, ) x(t) =
= [lroll® + [lv4[I* (t = to)* =2 (xg v4) (t —to) (1D)
namely
[e(@)]* — llroll® + | v, (to. O)II* = (12)
= 21 (to,)r(t) = 2(rg ve) (t —to) + vyl (t —t0).

Notice that the left hand side of (12) is made of all known
terms and it can be used as a new output map

g(t) = r®I® = lrol® + I Iy, (to. )]* =

= y(t) — o + | Ly, (to,t)|? (13)



and the right hand side of (12) can be expressed as a linear
time varying (LTV) term in the new state variable z € R8*!

T )7 (14)

z= (", (egvy)llvel? vy
ie.

G(t) = C(t)z = [—QIIr(tO,t) —26 &2 olxg} z.(15)
being § = (t — tg). Given the definition of z in (14) and the

model (6) - (7), its dynamic equation is linear time invariant
(LTD):

z=Az+ Bv, (16)
namely
r 03x3 0O3x1 Ozx1  —I3x3
5 = d | (cgvg) | _ | Oixz O 0 01x3
dt HVJ‘”2 01><3 0 0 01><3
Vi 03x3 03x1 0O3x1  Osxs
Tr —1I3x3
(rovy) O1x3
r- 17
||"f||2 O1x3 v a7
vy O3x3

The range-only localization problem of estimating r and the
current velocity v from a measurement of ||r|| in (6, 7, 8) is
hence reduced to a state estimation problem on a linear time
invariant state equation (16) - (17) with an LTV output map
(15), namely

{ z=Az+ Bv, (18)

g(t) =C(t) z.
Estimating z will result in estimating both r and the current
velocity vy. Moreover, in case that the absolute position of
the source s is known a priori, by estimating r the absolute
position of the vehicle could also be computed as p =s —r.

B. Observability analysis

The observability properties of LTV system (18) can be
studied through the observability Gramian

t
G(to, t) = / AT OT (1) O() ATz, (19)

to

Given the structure of the A matrix in (17), notice that A% =
Ogxs implying that the exponential matrix e("—*0) is simply

eMT0) = Igus + A(T — to) (20)
such that C/(7)e("—%0) results in
C(r) A=) = |21 (to,7) —2¢ (2 2T (to,7)]
and

eAT(T—tU) CT (T) C(T) eA(T_tO) —

41, 1), 4« I, —20°I,, —4CI,. I,
ACIy, 4¢? -2¢° —4¢* 1,
-2¢° I, -2¢° ¢t 201,
—ACI, I —4C%I,,  20°I,,  4CM,, I,

@n

where ( = 7 — tp and the dependency of I from ¢, 7 has
been omitted for the sake of notation compactness.

As for the observability conditions, following standard
results for LTV systems [14], the LTV model in (18) will be
observable in the time interval [ty, ¢] if and only if the Gramian
given by equations (19) and (21) has full rank. Moreover, the
structure of equation (21) implies that a necessary condition
for the observability of the LTV model (18) in the time interval
[to, t] is that

t
G (to,t) =4 / I, (to,7) I, (to,T)dr (22)

to
has full rank, i.e. three. Overall, the observability properties
in the presence of constant currents can be summarized as
follows.
Main Result - Observability conditions.
The LTV model in (18) is observable on [tg,t] if and only if
the velocity signal v,. guarantees that the Gramian in equations
(19) and (21) has full rank. Moreover a necessary condition
for observability on [tg, t] is that the matrix G11(to,t) € R3*3
in (22) has rank 3. Finally, the observability of the LTV model
in (18) is a sufficient, but not necessary, condition to grant the
observability of the original model in (6, 7, 8).
Proof of the Main Result
The necessary and sufficient conditions on the Gramian in
equations (19) and (21) follow from standard LTV systems
theory [14]. As for the necessary condition on the rank
of the matrix G1i(tg,t) € R3*3 in (22) it results that if
G11(to, ) should not be full rank on [to, t], there would exist
a constant vector v € R3*! v = 0 such that I, (to,7) v =
0 V 7 € [to,t]: this implies that any vector parallel
to z* = (av',0,0,3v")T € R®! for any constant
a, € R would belong to the kernel of the Gramian (19)
- (21) that, hence, would not be full rank. This proves that
rank(G11(to,t)) = 3 : Gii(to,t) € R3*3 is defined in (22)
is a necessary condition for the observability in [to,t] of the
LTV model in (18).
At last, given that:

1) all the possible state trajectories of the original model
(6, 7, 8) are (by construction) a subset of components of
specific state trajectories of the augmented LTV model in
(18);

2) the two systems share the same identical input / output
information,

the observability of the LTV system (18) implies (i.e. it is a
sufficient condition) the observability of the original system
(6, 7, 8). Notice that the opposite implication is false, namely
the observability of the original system would not imply the
observability of the LTV system. In fact, the state trajectories
of the LTV system belong to a larger space (R® in place of
RY) and include, by example, cases where the fifth component
z5 of z could be negative: this would not correspond to any
trajectory of the original system as the mapping 25 = ||v¢|?
would be obviously violated. It is worth highlighting that since
the observability of the LTV system is a sufficient condition
for the observability of the original nonlinear system, the full
rank condition of the matrix G11(to, ) can not be a necessary
condition for the observability of the original system as well.
Remark

As for the LTV system (18), the Main Result is simply



stating that it is observable if its observability Gramian is
invertible. This is of course obvious and is not the point.
The relevance of the Main Result is related to the fact that
the (simple) derived observability conditions imply global
observability for the original nonlinear system (6, 7, 8). This
is remarkable as traditional nonlinear observability methods
allow to determine only local observability results. In [12]
[13] a state augmentation technique is proposed to address
the same observability analysis and state estimation problem
at hand. As a result the original nonlinear problem is mapped
on a nine dimensional LTV system of the form

z = A(t,u(t),y(t)) z+ Bu(t)
y(t) =Cz.

(23)
(24)

The system matrix A(t) in (23) explicitly depends, among the
rest, on the output y(¢) that is the range measurement (i.e. the
norm of the agent’s position vector). More precisely, the A(t)
matrix is a function of terms proportional to 1/y(t): this poses
both fundamental as well as implementation issues (singularity
if y(t) ~ 0). These issues are absent in the approach described
in this paper as the state equation matrix does not depend on
1/y(t). In this respect the proposed solution resembles the
one in [11]. Notice that despite the difference between the
augmented LTV models (18) and (23-24), the observability
conditions are quite close. This is not surprising since they
come from the same original problem. In particular, in [13]
necessary conditions and sufficient conditions for the observ-
ability of (23-24) are derived in terms of linear independence
of a set of function, whereas in II-B necessary and sufficient
conditions for the LTV model in (18) are found in terms of
rank of the observability Gramian (19).

III. KALMAN FILTER DESIGN

With reference to the model in (18) assume that it is
discretized and affected by state and output zero mean mu-
tually independent disturbances respectively wy and e with
covariances @y and Rj. Denoting with zy;, the Kalman
estimate at step k and with Z, ), the model prediction,
the localization Kalman filter can be designed. In particular,
a numerical experiment is performed using the same agent
velocity profile v, used in the examples presented in [15] and
[13] namely v, = (2cos(t), —4sin(2t), cos(t/2)) " [m/s].

The source beacon s is s = (2,3,1)" [m], the current
is vi = (0.2,0.3,—0.1)T [m/s], and the initial position
of the agent is pp = (2,2,0)" [m] such that the inertial
position of the agent by p(t) = (2 + 0.2¢ + 2sin(t),2 +
0.3t + 2cos(2t), —0.1¢ + 2sin(0.5¢)) T [m]. Notice that, by
direct calculation, the above v, input satisfies the observability
condition given in the Main Result. The covariances on the
state z and output %(¢) employed in the Kalman filter are
Q = (le — 2)diag([1,1,1,1e — 4,1e — 6, (le — 2),(le —
2),(le — 2)) and R = 1 respectively with proper units (i.e.
[m?] for position variables and [(m/s)?] for velocity variables).
Furthermore, assuming to acquire the velocity input through a
DVL, a Gaussian noise with covariance (1e —4)diag([1, 1, 1])
[m/s] has been added on v,. The filter is initialized with a
position py = (—30, 20, 30) " [m] as opposed to the real initial
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Fig. 1. Kalman filter estimation errors including currents: estimation error
components of p (left) and of the current velocity v (right).

position pg = (2,2,0)"[m] and a current estimate V; =
(0.1,—0.1,0.1) "[m/s] as opposed to the real current v; =
(0.2,0.3,—0.1) T [m/s]. A sampling time 7, = (1/50)[s] has
been used in the implementation of the Kalman filter. The
resulting time evolution of the position estimation error p — p,
being p = s—r and its estimate p = s—¥, are plotted in figure
1 together with the current estimation error vy — v ¢. Uniform
complete observability of the LTV system is required to ensure
that the Kalman filter is asymptotically stable [22] [23] [24].
Moreover, the proposed solution allows to design a Kalman
filter for state estimation on a system where all the system
matrices (4, B and C(t)) are not affected by measurement
noise as they do not depend from the output. Nevertheless,
even if the velocity input v, was perfectly known, i.e. noise
free, the optimality of the Kalman filter is not preserved since
the quantity actually measured is the range, not its square (2).
In case of Gaussian noise for the range measurements, the
noise affecting the squared range would have a chi-squared
distribution rather than Gaussian. Therefore the Kalman filter
can be considered a suboptimal solution rather than optimal
for the LTV system. Consequently, of course, the proposed
Kalman filter is not optimal for the original nonlinear model
either. Moreover, the noise affecting the squared range is
amplified for large distances due to the square operator.



Indeed, the output covariance is a function of the range itself.
In particular, the covariance is increasing with range. Therefore
special care needs to be taken in case of large distances where
the performance of the estimation may be reduced. In this
context the use of augmented descriptor systems [25] [26] to
design observers that estimate simultaneously system states,
measurement output noises and input uncertainties could be
investigated. Also notice that the new output g(¢) in (13)
depends on the very first measurement y(¢¢). This dependency
can impact on the robustness of the solution as a single bad
measurement (as an outlier) at ¢ = ¢y will affect the output
for ever. A remedy to this issue can be found by periodically
re-setting the initial measurement y(to) with y(¢). This would
also prevent possible uncertainties in the knowledge of v,.(t)
from biasing unboundedly the displacement I, in (10) used
to compute y. A detailed analysis of this implementation detail
goes beyond the scope of this paper and will not be addressed
further. Besides this issue, notice that outliers are likely to be
present in the range measurements in particular when acoustic
sensors are employed.

IV. OUTLIER ROBUST STATE ESTIMATION

Range measurements are often contaminated by outliers,
namely data points that cannot be modelled by a single (even-
tually Gaussian) probability distribution function. To address
this, one class of approaches exploits the equivalence between
the Kalman filter and a weighted least square regression
problem. It is known that the Kalman filter can be derived as
a solution to the following minimization problem [24] [27]:

Zp g1kl = (25)

1

. A Tp—1 .

arg min {Z(Zk+1 = Zp1e) Py (Zrr — Zigage) +
1

+ §(§k+1 — Crrazip1) Ryl (G — Ck+lzk+1)}

where Ry is the covariance associated to the measurement
Yr+1 and Ppyq; is the covariance of the (model) predicted
state Zp41)x- In [28], [29] and [30] the authors solve this
minimization problem in a robust manner replacing the second
term of the objective function by robustifying functions used
in the methodology of M-estimation (e.g., the Huber function
[31]). They express the solution as a weighted least square
approximation, where each weight indicates its contribution
to the state estimate. Robustness is achieved trying to give
a finite weight to single residuals that exceed a threshold.
Each residual contributes to the objective function based on its
bare value regardless the overall residual distribution. Other
approaches as [32] and [33] model the observation noise
through a heavy-tailed distribution assigning outliers a non-
negligible probability: interestingly the resulting estimators
still result in a weighted [32] or iterative re-weighted [33]
least squares solution. A robust alternative technique is here
proposed based on the robust parameter identification method
known as LEL (Least Entropy-Like) [21]. The basic idea

is to estimate the state minimizing the following non linear
objective function

Zii1|k+1 = argming, , Jyiq

Jer1 = 3 ((Zk+1 - 2k+1|k)TP];+11‘k(Zk+1 - 2k+1\k)) +

Jdynamical model

+ Cka+1(T1, e ,Tk+1)
JLEL
(26)
where 7; = §; — Cizy), @ = 1,...,k and 741 = Ypy1 —

Cr+121+1 denote the residuals. Hy(-) represents a residual
loss function defined by exploiting the mathematical properties
of Gibbs entropy. Notice that this is not to be confused with
information theoretic or statistical based entropy methods.
Refer to [21] for a detailed discussion about this point. Define
D41 as the least squares cost

k+1

2
Dy = E T
i=1

and the relative squared residual ¢; as

27)

2 k+1
. T
if Dyp1 #0= ¢; = ;77— : ¢ € [0,1] and > a=1,
S 72 i=1
j=1
(28)
the residual loss function has the following definition:
0 if D41 =0
Hipr = kel (29)

_m > gilogg; otherwise.
i=1

The main difference with respect to the Kalman filter and the
methods based on M-estimators relies on the structure of the
second term of the objective function (26). The aim of such
loss function is to give a global measure of the scatter of
the relative squared residuals. The idea behind the estimator
is to make the relative squared residuals ’as little equally
distributed as possible’. If this is the case, most residuals
are small (with respect to the normalization constant Dy 1,
i.e. the Least Squares cost) and ’a few’ of the residuals are
large. Data points corresponding to these large residuals are
outlier candidates. It is worth highlighting that the structure
of the LEL entropy-based loss function can not be resembled
to the methodology of M-estimators. Indeed according to the
definition of M-estimators, the contribution to the objective
function of the ¢-th residual does not depend on the other
residuals. This is not the case of the proposed estimator, since
all residuals contribute to the objective function of the i-th
residual through the relative squared residual g;.

It should be noticed that due to the normalization factor
1/log(k + 1) in (29), Hi41(-) € [0,1] by construction, so the
parameter « in (26) is to be regarded as a tuning gain needed
to make the two terms of Ji,; comparable.

As explicitly reported in (26), Hy41(-) depends on the
residuals {ry,...,rp+1}: each residual r; in this set is a
function of the state estimate Z;; that is a fixed quantity for



all 4 < k 4+ 1. Hence in terms of state variables, Hj1(-) in
(26) depends only on zj 1, namely

Hyy1(zr1) = Heg1(r1(21)1),m2(22)2), - -+ Thp1 (Zrr1))

that for the sake of notation compactness will be alternatively
expressed as a function of z, namely z +— zj; resulting in
Hy.11(z). In order to find the solution of the minimization
problem (26), Hj1(z) can be approximated in a neighbor-
hood of zy;, with a quadratic function by means of its second
order Taylor series expansion.

Hyt1(2) = Hyp1 (2ip1) + Vi Hogr (230)' (2 — 2ye) + (30)

+%(Z — )" H [Hie1(2age)] (2 — 2age) + o(||z — 2 i |1%)

where the gradient and hessian #(-) of the LEL cost function
computed about the point zy;, are denoted respectively as

Vo Hi1()lz=z2,, = Vo Hi+1(Zk|x)
HHk41()la=20 = H[Hrt1(201r)]

€2y
(32)

fBy direct calculation assuming D1 # 0O the gradient and
hessian of Hyq result in:

2
Va Hi 1 (£) = Dyi1(F)log(k +1)
N 1log 2, (F) — Sr(f) or £ 33
gr}c+1( ) Dk+1(f) k:+1rk+1( ) ( )
_ 2 T 2 .
H[Hk+1(f>] - D£+1(f) 10g(k’+1) |:20k+1 CkJrlrk:Jrl(f)

Spy1(F)
Dy (f)

(D (B)logrE(6) =S (€) +2 Dy (1)

) (2 log 7"13+1(f) —2 + 1) - Cl;r+1ck+1 :

(34)

being f = zy11, Dy defined as in (27) and Sk as

k
Sera(f) = | Y r2(2;) logr? (2;);) | +77 g1 () logriy, ().
j=1

(35
Direct inspection of equations (33, 34) reveals that while the
gradient V, Hy11(2zx+1) is always well defined, the hessian
matrix H[Hy11(2r4+1)] is ill posed if 7441 = 0 due to the
presence of the term logr} 41 (not multiplied by 7441) in
(34). A regularization technique for H[Hj41(zk41)] will be
discussed in section V. Assuming for the moment the hessian
to be limited and well defined, the objective function Jj; in
(26) is approximated as

Jer1 = (Zpg1 — ik+1|k)TPk_+11‘k(Zk+l — Zp1|k) T

+ (Hk+1(ikk) + Vo Hy1 () | (Zhg1 — Zags)+

1
30— o) Ml (o~ ae) ) G6)

Thus, setting the gradient of Ji; with respect to z;; equal
to zero, the filter equations result in:

(37)
(38)

Zit1k = AdZr|k + Baver
Pri1je = AaPrpAg + Qu

—1
Ky = (P,;ll‘k +aH[Hk+1(ik|k)]) aH[Hy11(2Zk )] (39)
Zi1 = Zig1 |k + Kreor Zrpe — Zrs)n) +

—1
- (Pl;tluk +O‘H[Hk+1(ik|k)]) a Vy Hiy1(2pk)

—1
Peiijer1 = (P;:Hk + O‘H[Hk-‘rl(ik\k)])

(40)

(41)
It is worth emphasizing that the term P, 4_11‘ e T
oH[Hy11(2Zg)x)] is the hessian of the cost Jy ;. Assuming
that H[Hp.1(2y)] is positive definite, the estimate 2y, in
(40) is actually a local minimum for Jj,. Notice also that
besides the term

1
*(P{fukJrOéH[HkH(imk)]) aVy Hip1(Zge)  (42)

in (40), the resulting state estimator filter has a predictor -
corrector structure as the standard Kalman filter. Indeed the
term in (42) will be null if ik‘k is a local minima of Hy ;. This
method is characterized by a low computational effort making
it suitable for real-time applications. In the next section further
details about practical implementation are addressed.

In order to illustrate the robustness properties of the algo-
rithm, it has been tested on the same numerical experiment
performed in the previous section with the addition of some
outliers in the range measurements. Indeed, if acoustic sensors
are employed to acquire range measurements a significant
source of non-Gaussian noise is the multi-path phenomena.
Therefore building on (2), the outliers have been generated
according to the following measurement model:

y(t) = (ut) [r@®))*+¢,  e~N(,R) (43
1 for inliers
ult) = { 2 for outliers. (44)

In the numerical simulations described in the following the
outliers (1 = 2) have been randomly generated with probabil-
ity 1% (i.e. at each step the value of p is 1 with probability
99% and 2 otherwise). As an exception to this strategy, a
set of 50 consecutive outliers (x = 2) has been introduced
starting at time 40 seconds in order to test the performance
of the filter in extreme conditions. Outliers are depicted with
a blue star in figure 2 for the sake of clarity, but of course
the measurements were fed to the filters without making any
use of the knowledge that a value was an outlier or not. The
measured output and the resulting evolution of the position
and current estimation errors obtained through both filters are
plotted in figure 2 revealing the sensitivity of the standard
Kalman filter to outliers as compared to the LEL filter. Notice
that the Kalman filter generating the results in figure 2 is
the ideal one, i.e. the measurement and state noise covariance
matrices used to compute the Kalman gain are precisely the
ones used in the model.
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Fig. 2. Kalman and LEL filter estimations errors in presence of outliers:
estimation error components of p and v ¢. Bottom plot: observed noisy output
data with outliers (depicted as blue stars).

Besides the reported results, extensive simulations have
been performed confirming that the LEL estimator outper-
forms the Kalman estimator in terms of outlier robustness.

V. IMPLEMENTATION ISSUES FOR ROBUST ESTIMATION

1) Recursive and finite memory formulations: The struc-
tures of the gradient (33) and hessian (34) of the LEL cost
function reveal that they can be computed in a recursive form,
exploiting the following update equations:

Diy1(zr11) = Di + 711 (Z641) 45)
Skt1(Zr11) = Sk + iy (2h41) log 174 (Zr11). (46)

This avoids storing all past data as only the described quan-
tities at the current time step k£ + 1 are needed making the
computation suitable for real-time applications. Nevertheless,
given the structure of (45 - 46) (notice that Dy is non
decreasing) in line of principle there could be numerical
overflow issues over time. To prevent these problems, an

alternative strategy is a finite memory solution through a
sliding window implementation. Indicating with N the size
of such window, the update equations for Dy and Si1 are

k

D

j=k+2—N

Di11(2Zr41) = r3(255) | + Tia(ze41) 47)

k

D

j=k+2—N

+ rep1(Zrg1) log 174y (Zgn),

Sky1(zr41) = T?(ij\j) log Tyg(i‘ilj) +

(48)

whereas (33) and (34) remain unchanged. As a result, the
only values to be stored are the squared residuals 77 (z; ;)
relevant to the last N observations. This implementation
has the additional advantage of forcing the filter to ’forget’
measurements and eventually outliers in the distant past and
placing more emphasis on recent measurements.

2) Regularization: As already noticed in analyzing the
hessian matrix of the LEL cost function in (34), irrespective
of the recursive or finite memory implementation of the filter,
the LEL hessian matrix dependence from the term log ri 11
needs to be regularized to prevent unlikely, but theoretically
possible divergences due to a perfectly null residual.

Notice that the perfect fitting case Dyy; = 0 can be
thought as the limit case of complete absence of outliers
(and otherwise ideal data). Indeed, given the properties of the
LEL estimator [21], the complete absence of any outlier when
Dy11 > 0 (non perfect fit) will result in a potentially poor
estimation performance: this is because the LEL estimator is
designed to find the fit that maximizes one relative squared
residual (g; in (28)) while minimizing the others so as to
minimize the entropy-like loss function. Indeed, the absolute
minimum of the LEL cost is achieved if all residuals but one
are null. Hence, an additional regularization strategy that was
implemented to derive the presented results consists in the
following: in each time step with Dy, > 0, and only for that
time step, the largest residual r? max ON the batch of N that are
being processed is temporarily incremented by a certain scale
factor, typically an order of magnitude. This implementation
strategy guarantees the presence of a residual being sensibly
larger than the others on the current batch of N residuals.
Notice that N is either the size of the finite window or the total
number of data depending on the chosen filter implementation
(finite memory or not). Indeed, if the r%mm is actually an
outlier, the increase of its value is not expected to corrupt the
estimation since it will still remain an outlier; otherwise, if
rfmam is an inlier (case of quasi-perfect measurements fit), it
will become the only outlier in the observations set and the
finite sample breakdown point [34] of the LEL function cost
will continue to grant robustness.

As for the hessian divergence if 17, (zp41) = 0 (but
Dyy1 > 0) this can be addressed by fixing an arbitrarily
small threshold § > 0 and replacing rj_(zx+1) with d in
case 77, (zg+1) should be smaller than §. Notice that due
to the limited divergence speed of the log(:) function for
vanishing arguments, the § value can be chosen to be very
small. Indeed, in spite of the very extensive simulations ran to



evaluate the proposed algorithm this regularization step was
never necessary and never performed in practice.

3) Local nature of H: The entropy-like loss function
Hy.11(+) is nonlinear and may have multiple local minima
[21]. Moreover, its approximation by means of the second
order Taylor series expansion has a local nature. As a con-
sequence, special care needs to be taken in initializing the
filter. Experience has shown that the Kalman filter estimate is
a reliable candidate for initializing the proposed filter.

4) Tuning factor o The loss function Hyy1(-) € [0,1]
by construction, so the parameter « in (26) is to be regarded
as a tuning factor needed to make the two terms of Jii1
comparable. More precisely, the parameter o can be tuned
trying to make the hessians of Jyynamical moder and Jpgr, in
(26) of the same order of magnitude. Following this guideline
in the presented numerical experiments « has been kept
constant and equal to 45. Future work will focus on algorithms
to automatically and, perhaps, adaptively tune this gain online.

VI. CONCLUSIONS

The problem of single range based localization for a kine-
matics model of a 3D vehicle was addressed. The problem is
relevant in several field robotics applications, particularly in
underwater scenarios where ranges are measured acoustically
and alternative localization devices as GPS are not available.
The proposed solution allows to address the observability
analysis and the state estimation filter design on an LTI state
equation defined on R® with a time varying scalar output
equation. Moreover, to cope with possible outliers in the range
measurements, a robust predictor - corrector state estimator has
been proposed. Such filter builds on the novel Least Entropy-
Like (LEL) parameter estimation paradigm illustrated in [21]
that significantly departs from alternative robust state estima-
tors based on M-estimators or heavy-tailed noise distributions.
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